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                     Abstract
In this article, we consider the space of càdlàg loops on a Polish space S. The loop space can be equipped with a “Skorokhod” metric. Moreover, it is Polish under this metric. Our main result is to prove that the Borel-σ-field on the space of loops is generated by a class of loop functionals: the multi-occupation field. This result generalizes the result in the discrete case, see (Le Jan, Markov Paths, Loops and Fields, vol. 2026, Springer, Heidelberg, 2011).
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                     Notes
	1.The terminology “càdlàg” is short for right-continuous with left hand limits.


	2.The countability is required by Lemma 1.
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Appendix
Appendix
As promised, we give the proofs for Propositions 1, 2 and 3 in this section. For that reason, we prepare several notations and lemmas in the following.

                  Definition 5

                  Suppose λ: [0, 1] → [0, 1] is a increasing bijection. For t ∈ [0, 1[, define 

$$\displaystyle{\theta _{t}\lambda (s) = \left \{\begin{array}{ll} \lambda (t + s) -\lambda (t) &\text{ for }s \in [0,1 - t]\\ 1 -\lambda (t) +\lambda (t + s - 1) &\text{ for } s \in [1 - t, 1]. \end{array} \right.}$$



                           
                In fact, we cut the graph of λ at the time t, exchange the first part of the graph with the second part and then glue them together to get an increasing bijection over [0, 1].

                  Lemma 2

                  
                    
$$\displaystyle{\sup \limits _{s<t}\left \vert \log \frac{\theta _{r}\lambda (t) -\theta _{r}\lambda (s)} {t - s} \right \vert =\sup \limits _{s<t}\left \vert \log \frac{\lambda (t) -\lambda (s)} {t - s} \right \vert.}$$



                  
                
                  Proof

                  Denote by ϕ(λ, s, t) the quantity \(\vert \log \frac{\lambda (t)-\lambda (s)} {t-s} \vert \). We see that for a < b < c, 

$$\displaystyle{\max (\phi (\lambda,a,b),\phi (\lambda,b,c)) \geq \phi (\lambda,a,c).}$$


 Thus, \(\sup \limits _{s<t}\phi (\lambda,s,t) =\sup \limits _{s<t,t-s\text{ is small}}\phi (\lambda,s,t)\). As a result, \(\sup \limits _{s<t}\vert \log \frac{\lambda (t)-\lambda (s)} {t-s} \vert \) is a function of λ which is invariant under θ
                              
                      t
                    .

                
                  Definition 6

                  For a based loop l of time duration t and r ∈ [0, t[, denote by Θ
                              
                      r
                     the circular translation of l: 

$$\displaystyle{\varTheta _{r}(l)(u) = \left \{\begin{array}{ll} l(u + r) &\text{ for }u \in [0,t - r]\\ l(u + r - t) &\text{ for } u \in [t - r, t]. \end{array} \right.}$$


 Then, we can extend Θ
                              
                      r
                     for all \(r \in \mathbb{R}\) by periodical extension.

                Notice that Θ
                           
                    r
                  (l) is a based loop iff the periodical extension of l is continuous at time r. Nevertheless, we define the distance D(Θ
                           
                    r
                  
                           l, l) in the same way. The next lemma shows the continuity of r → Θ
                           
                    r
                  
                           l at time r when the based loop l is continuous at r.

                  Lemma 3

                  
                    Suppose l is a based loop. Then,
                    \(\lim \limits _{h\rightarrow 0}D(\varTheta _{h}l,l) = 0\)
                    .
                  

                
                  Proof

                  Without loss of generality, we can assume l has time duration 1. By definition, we have that 

$$\displaystyle\begin{array}{rcl} D(\varTheta _{h}(l),l)& =& d(\varTheta _{h}(l),l) {}\\ & =& \inf \Big\{\sup \limits _{s<t}\left \vert \log \frac{\lambda (t) -\lambda (s)} {t - s} \right \vert +\sup \limits _{u\in [0,1]}d_{S}\left (l(\lambda (u)),\varTheta _{h}(l)(u)\right ): {}\\ & & \lambda \text{ increasing bijection on }[0,1]\Big\}. {}\\ \end{array}$$


 Fix 0 < a < b < 1, take λ(0) = 0, λ(a) = a + h, λ(b) = b + h, λ(1) = 1 and linearly interpolate λ elsewhere. Then, 

$$\displaystyle\begin{array}{rcl} D(\varTheta _{h}(l),l)& \leq & \max \left (\left \vert \log \frac{a + h} {a} \right \vert,\left \vert \log \frac{1 - b - h} {1 - b} \right \vert \right ) {}\\ & +& 2\sup \limits _{u,v\in [0,a+\vert h\vert ]\cup [b-\vert h\vert,1]}\vert l(u) - l(v)\vert. {}\\ \end{array}$$



                           
                  Thus, for any 0 < a < b < 1, 

$$\displaystyle{\limsup \limits _{h\rightarrow 0}D(\varTheta _{h}(l),l) \leq 2\sup \limits _{u,v\in [0,a]\cup [b,1]}\vert l(u) - l(v)\vert.}$$


 Since l is a based loop, \(\inf \limits _{a,b}(\sup \limits _{u,v\in [0,a]\cup [b,1]}\vert l(u) - l(v)\vert ) = 0\). Therefore, 

$$\displaystyle{\lim \limits _{h\rightarrow 0}D(\varTheta _{h}l,l) = 0.}$$



                           
                
                  Lemma 4

                  
                    Suppose l
                    1
                    is a based loop with time duration t and l
                    1
                    is continuous at time r ∈ [0,t[. Then,
                    

$$\displaystyle{\inf \{D(l_{1},l): l \in l_{2}^{o}\} =\inf \{ D(\varTheta _{ r}(l_{1}),l): l \in l_{2}^{o}\}.}$$



                  
                
                  Proof

                  Recall that \(D(l_{1},l) =\Big \vert \vert l\vert -\vert l_{1}\vert \Big\vert + d(l_{1}^{\text{normalized}},l^{\text{normalized}})\) where 

$$\displaystyle\begin{array}{rcl} & & d(l_{1}^{\text{normalized}},l^{\text{normalized}}) =\inf \Big\{\sup \limits _{ u\in [0,1]}d_{S}(l_{1}^{\text{normalized}}(u),l^{\text{normalized}}(\lambda (u))) {}\\ & & \qquad \qquad \qquad +\sup \limits _{s<t}\left \vert \log \frac{\lambda (t) -\lambda (s)} {t - s} \right \vert:\lambda \text{ increasing bijection over }[0,1]\Big\}. {}\\ \end{array}$$


 Then, for ε > 0, there exists \(l \in l_{2}^{o}\) and λ such that 

$$\displaystyle\begin{array}{rcl} & & \sup \limits _{s<t}\left \vert \log \frac{\lambda (t) -\lambda (s)} {t - s} \right \vert +\sup \limits _{u\in [0,1]}d_{S}(l_{1}^{\text{normalized}}(u),l^{\text{normalized}}(\lambda (u))) \\ & & \qquad \qquad \qquad \qquad <\inf \{ D(l_{1},l): l \in l_{2}^{o}\} +\epsilon. {}\end{array}$$


                    (5)
                


                           
                  Since the paths are càdlàg, for fixed l
                              1 and l, the following set is at most countable: 

$$\displaystyle{\{a: l_{1}\text{ jumps at time }a\text{ or }l\text{ jumps at }\vert l\vert \lambda (a/\vert l_{1}\vert )\}.}$$


 Thus, we can find a sequence (r
                              
                      n
                    )
                      n
                     such that 
	
                      
                                       \(r_{n} \downarrow r\) as n → ∞,

                    
	
                      
                                       \(\varTheta _{r_{n}}(l_{1})\) and \(\varTheta _{\vert l\vert \lambda (r_{n}/\vert l_{1}\vert )}(l)\) are both based loops.

                    


                           
                  By Lemma 2, we have that 

$$\displaystyle{ \sup \limits _{s<t}\left \vert \log \frac{\lambda (t) -\lambda (s)} {t - s} \right \vert =\sup \limits _{s<t}\left \vert \log \frac{\theta _{r_{n}/\vert l_{1}\vert }\lambda (t) -\theta _{r_{n}/\vert l_{1}\vert }\lambda (s)} {t - s} \right \vert. }$$


                    (6)
                

 Meanwhile, we have that 

$$\displaystyle\begin{array}{rcl} & & \sup \limits _{u\in [0,1]}d_{S}(l_{1}^{\text{normalized}}(u),l^{\text{normalized}}(\lambda (u))) \\ & & \qquad =\sup \limits _{u\in [0,1]}d_{S}\left ((\varTheta _{r_{n}}l_{1})^{\text{normalized}}(u),(\varTheta _{\vert l\vert \lambda (r_{n}/\vert l_{1}\vert )}l)^{\text{normalized}}(\theta _{r_{n}/\vert l_{1}\vert }\lambda (u))\right ).{}\end{array}$$


                    (7)
                

 Notice that \(\varTheta _{\vert l\vert \lambda (r_{n}/\vert l_{1}\vert )}l \in l_{2}^{o}\). Thus, by (5)+(6)+(7), for any ε > 0, there exists \((r_{n})_{n}\) with decreasing limit r such that 

$$\displaystyle{ \inf \{D(\varTheta _{r_{n}}l_{1},l): l \in l_{2}^{o}\} <\inf \{ D(l_{ 1},l): l \in l_{2}^{o}\} +\epsilon. }$$


                    (8)
                

 By triangular inequality of D, 

$$\displaystyle{D(\varTheta _{r}l_{1},l) \leq D(\varTheta _{r_{n}}l_{1},\varTheta _{r}l_{1}) + D(\varTheta _{r_{n}}l_{1},l).}$$


 We take the infimum on both sides, then 

$$\displaystyle{ \inf \{D(\varTheta _{r}l_{1},l): l \in l_{2}^{o}\} \leq D(\varTheta _{ r_{n}}l_{1},\varTheta _{r}l_{1}) +\inf \{ D(\varTheta _{r_{n}}l_{1},l): l \in l_{2}^{o}\}. }$$


 By (8), 

$$\displaystyle{ \inf \{D(\varTheta _{r}l_{1},l): l \in l_{2}^{o}\} \leq D(\varTheta _{ r_{n}}l_{1},\varTheta _{r}l_{1}) +\inf \{ D(l_{1},l): l \in l_{2}^{o}\} +\epsilon. }$$


                    (9)
                

 By Lemma 3, for the based loop l
                              1, \(\lim \limits _{n\rightarrow \infty }D(\varTheta _{r_{n}}l_{1},\varTheta _{r}l_{1}) = 0\). By taking n → ∞ in (9), we see that 

$$\displaystyle{\inf \{D(\varTheta _{r}l_{1},l): l \in l_{2}^{o}\} \leq \inf \{ D(l_{ 1},l): l \in l_{2}^{o}\} +\epsilon \text{ for all }\epsilon > 0.}$$


 Therefore, 

$$\displaystyle{\inf \{D(\varTheta _{r}l_{1},l): l \in l_{2}^{o}\} \leq \inf \{ D(l_{ 1},l): l \in l_{2}^{o}\}.}$$


 If we replace r by | l
                              1 | − r and l
                              1 by \(\varTheta _{r}l_{1}\), we have the inequality in opposite direction: 

$$\displaystyle{\inf \{D(\varTheta _{r}l_{1},l): l \in l_{2}^{o}\} \geq \inf \{ D(l_{ 1},l): l \in l_{2}^{o}\}.}$$



                           
                Then, we turn to prove Propositions 1, 2 and 3.

                  Proof (Proof of Proposition 1)

                   
	
                      Reflexivity: straightforward from the definition.

                    
	
                      Triangular inequality: directly from Lemma 4.

                    
	
                      
                                       \(D^{o}(l_{1}^{o},l_{2}^{o}) = 0\Longrightarrow l_{1}^{o} = l_{2}^{o}\): by Lemma 4, it is enough to show that 

$$\displaystyle{\inf \{D(l_{1},l): l \in l_{2}^{o}\} = 0\Longrightarrow l_{ 1} \in l_{2}^{o}.}$$


 Suppose \(\inf \{D(l_{1},l): l \in l_{2}^{o}\} = 0\). Then, we can find a sequence \((r_{n})_{n}\) with limit r such that \(\lim \limits _{n\rightarrow \infty }D(\varTheta _{r_{n}}l_{2},l_{1}) = 0\). Since \(l_{1}(\vert l_{1}\vert -) = l_{1}(0)\), l
                                       2 must be continuous at r and \(\lim \limits _{n\rightarrow \infty }\varTheta _{r_{n}}l_{2} =\varTheta _{r}l_{2}\) by Lemma 3. Thus, \(l_{1} =\varTheta _{r}l_{2}\).

                    


                           
                
                  Proof (Proof of Proposition 2)

                   
	
                      Completeness: given a Cauchy sequence \((l_{n}^{o})_{n}\), one can always extract a sub-sequence \((l_{n_{k}}^{o})_{k}\) such that \(D^{o}(l_{n_{k}}^{o},l_{n_{k+1}}^{o}) < 2^{-k}\). By Lemma 4, one can find in each equivalence class \(l_{n_{k}}^{o}\) a based loop L
                                       
                            k
                           such that \(D(L_{k},L_{k+1}) < 2^{-k}\). By the completeness of D, there exists a based loop L such that \(\lim \limits _{k\rightarrow \infty }L_{k} = L\). Thus, \(\lim \limits _{k\rightarrow \infty }l_{n_{k}}^{o} = L^{o}\). So it is the same for \((l_{n}^{o})_{n}\).

                    
	
                      Separability: the based loop space is separable. Then, as a continuous image, the loop space is separable.

                    


                           
                
                  Proof (Proof of Proposition 3)

                  For any bounded continuous function \(f: S^{n} \rightarrow \mathbb{R}\), \(l \rightarrow \langle l,f\rangle\) is continuous in l. In particular, it is measurable. By monotone class theorem for functions, \(l \rightarrow \langle l,f\rangle\) is measurable for all bounded measurable \(f: S^{n} \rightarrow \mathbb{R}\).
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