
SAKey: Scalable Almost Key Discovery
in RDF Data

Danai Symeonidou1, Vincent Armant2, Nathalie Pernelle1, and Fatiha Saïs1

1 Laboratoire de Recherche en Informatique, University Paris Sud, France
2 Insight Center for Data Analytics, University College Cork, Ireland
{danai.symeonidou,nathalie.pernelle,fatiha.sais}@lri.fr,

{vincent.armant}@insight-centre.org

Abstract. Exploiting identity links among RDF resources allows appli-
cations to efficiently integrate data. Keys can be very useful to discover
these identity links. A set of properties is considered as a key when its
values uniquely identify resources. However, these keys are usually not
available. The approaches that attempt to automatically discover keys
can easily be overwhelmed by the size of the data and require clean data.
We present SAKey, an approach that discovers keys in RDF data in an
efficient way. To prune the search space, SAKey exploits characteristics
of the data that are dynamically detected during the process. Further-
more, our approach can discover keys in datasets where erroneous data or
duplicates exist (i.e., almost keys). The approach has been evaluated on
different synthetic and real datasets. The results show both the relevance
of almost keys and the efficiency of discovering them.

Keywords: Keys, Identity Links, Data Linking, RDF, OWL2.

1 Introduction

Over the last years, the Web of Data has received a tremendous increase, con-
taining a huge number of RDF triples. Integrating data described in different
RDF datasets and creating semantic links among them, has become one of the
most important goals of RDF applications. These links express semantic corre-
spondences between ontology entities, or semantic links between data such as
owl:sameAs links. By comparing the number of resources published on the Web
with the number of owl:sameAs links, the observation is that the goal of building
a Web of data is not accomplished yet.

Even if many approaches have been already proposed to automatically dis-
cover owl:sameAs links (see [5] for a survey), only some are knowledge-based. In
[16,1], this knowledge can be expressive and specific linking rules can be learnt
from samples of data. [13,10] exploit key constraints, declared by a domain ex-
pert, as knowledge for data linking. A key expresses a set of properties whose
values uniquely identify every resource of a dataset. Keys can be used as logical
rules to clean or link data when a high precision is needed, or to construct more

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 33–49, 2014.
c© Springer International Publishing Switzerland 2014

34 D. Symeonidou et al.

complex similarity functions [13,7,16]. Nevertheless, in most of the datasets pub-
lished on the Web, the keys are not available and it can be difficult, even for an
expert, to determine them.

Key discovery approaches have been proposed recently in the setting of the
Semantic Web [3,11]. [3] discovers pseudo keys, keys that do not follow the OWL2
semantics [12] of a key. This type of keys appears to be useful when a local
completeness of data is known. [11] discovers OWL2 keys in clean data, when
no errors or duplicates exist. However, this approach cannot handle the huge
amount of data found on the Web.

Data published on the Web are usually created automatically, thus may con-
tain erroneous information or duplicates. When these data are exploited to dis-
cover keys, relevant keys can be lost. For example, let us consider a “dirty”
dataset where two different people share the same social security number (SSN).
In this case, SSN will not be considered as a key, since there exist two people
sharing the same SSN. Allowing some exceptions can prevent the system from
losing keys. Furthermore, the number of keys discovered in a dataset can be few.
Even if a set of properties is not a key, it can lead to generate many correct
links. For example, in most of the cases the telephone number of a restaurant is
a key. Nevertheless, there can be two different restaurants located in the same
place sharing phone numbers. In this case, even if this property is not a key, it
can be useful in the linking process.

In this paper we present SAKey, an approach that exploits RDF datasets to
discover almost keys that follow the OWL2 semantics. An almost key represents
a set of properties that is not a key due to few exceptions (i.e., resources that do
not respect the key constraint). The set of almost keys is derived from the set
of non keys found in the data. SAKey can scale on large datasets by applying a
number of filtering and pruning techniques that reduce the requirements of time
and space. More precisely, our contributions are as follows:
1. the use of a heuristic to discover keys in erroneous data
2. an algorithm for the efficient discovery of non keys
3. an algorithm for the efficient derivation of almost keys from non keys

The paper is organized as follows. Section 2 discusses the related works on
key discovery and Section 3 presents the data and ontology model. Sections 4
and 5 are the main part of the paper, presenting almost keys and their discovery
using SAKey. Section 6 presents our experiments before Section 7 concludes.

2 Related Work

The problem of discovering Functional Dependencies (FD) and keys has been
intensively studied in the relational databases field. The key discovery problem
can be viewed as a sub-problem of Functional Dependency discovery. Indeed,
a FD states that the value of one attribute is uniquely determined by the val-
ues of some other attributes. To capture the inherent uncertainty, due to data
heterogeneity and data incompleteness, some approaches discover approximate
keys and FDs instead of exact keys and FDs only. In [17], the authors propose

SAKey: Scalable Almost Key Discovery in RDF Data 35

a way of retrieving non composite probabilistic FDs from a set of datasets. Two
strategies are proposed: the first merges the data before discovering FDs, while
the second merges the FDs obtained from each dataset. TANE [8] discovers ap-
proximate FDs, i.e., FDs that almost hold. Each approximate FD is associated
to an error measure which is the minimal fraction of tuples to remove for the FD
to hold in the dataset. For the key discovery problem, in relational context, Gor-
dian method [14] allows discovering exact composite keys from relational data
represented in a prefix-tree. To avoid scanning all the data, this method discov-
ers first the maximal non keys and use them to derive the minimal keys. In [6],
the authors propose DUCC, a hybrid approach for the discovery of minimal keys
that exploits both the monotonic characteristic of keys and the anti-monotonic
characteristic of non keys to prune the search space. To improve the efficiency
of the approach, DUCC uses parallelization techniques to test different sets of
attributes simultaneously.

In the setting of Semantic Web where data can be incomplete and may contain
multivalued properties, KD2R [11] aims at deriving exact composite keys from
a set of non keys discovered on RDF datasets. KD2R, extends [14] to be able
to exploit ontologies and consider incomplete data and multivalued properties.
Nevertheless, even if KD2R [11] is able to discover composite OWL2 keys, it can
be overwhelmed by large datasets and requires clean data. In [3], the authors have
developed an approach based on TANE [8], to discover pseudo-keys (approximate
keys) for which a set of few instances may have the same values for the properties
of a key. The two approaches [11] and [3] differ on the semantics of the discovered
keys in case of identity link computation. Indeed, the first considers the OWL2
[12] semantics, where in the case of multivalued properties, to infer an identity
link between two instances, it suffices that these instances share at least one
value for each property involved in the key, while in [3], the two instances have to
share all the values for each property involved in the key, i.e., local completeness
is assumed for all the properties (see [2] for a detailed comparison). In [15], to
develop a data linking blocking method, discriminating data type properties (i.e.,
approximate keys) are discovered from a dataset. These properties are chosen
using unsupervised learning techniques and keys of specific size are explored only
if there is no smaller key with a high discriminative power. More precisely, the
aim of [15] is to find the best approximate keys to construct blocks of instances
and not to discover the complete set of valid minimal keys that can be used to
link data.

Considering the efficiency aspect, different strategies and heuristics can be
used to optimize either time complexity or space complexity. In both relational
or Semantic Web settings, approaches can exploit monotonicity property of keys
and the anti-monotonicity property of non keys to optimize the data exploration.

3 Data Model

RDF (Resource Description Framework) is a data model proposed by W3C
used to describe statements about web resources. These statements are usually

36 D. Symeonidou et al.

represented as triples <subject, property, object>. In this paper, we use a logical
notation and represent a statement as property(subject, object).

An RDF dataset D can be associated to an ontology which represents the
vocabulary that is used to describe the RDF resources. In our work, we consider
RDF datasets that conform to OWL2 ontologies. The ontology O is presented
as a tuple (C, P , A) where C is a set of classes1, P is a set of properties and A
is a set of axioms.

In OWL22, it is possible to declare that a set of properties is a key for a given
class. More precisely, hasKey(CE(ope1, . . . , opem) (dpe1, . . . , dpen)) states that
each instance of the class expression CE is uniquely identified by the object
property expressions opei and the data property expressions dpej . This means
that there is no couple of distinct instances of CE that share values for all the
object property expressions opei and all the data type property expressions dpej3
involved. The semantics of the construct owl:hasKey are defined in [12].

4 Preliminaries

4.1 Keys with Exceptions

RDF datasets may contain erroneous data and duplicates. Thus, discovering keys
in RDF datasets without taking into account these data characteristics may lead
to lose keys. Furthermore, there exist sets of properties that even if they are not
keys, due to a small number of shared values, they can be useful for data linking
or data cleaning. These sets of properties are particularly needed when a class
has no keys.

In this paper, we define a new notion of keys with exceptions called n-almost
keys. A set of properties is a n-almost key if there exist at most n instances that
share values for this set of properties.

To illustrate our approach, we now introduce an example. Fig. 1 contains
descriptions of films. Each film can be described by its name, the release date,
the language in which it is filmed, the actors and the directors involved.

One can notice that the property d1:hasActor is not a key for the class
Film since there exists at least one actor that plays in several films. Indeed,
“G. Clooney” plays in films f2, f3 and f4 while “M. Daemon” in f1, f2 and
f3. Thus, there exist in total four films sharing actors. Considering each film
that shares actors with other films as an exception, there exist 4 exceptions for
the property d1:hasActor. We consider the property d1:hasActor as a 4-almost
key since it contains at most 4 exceptions.

Formally, the set of exceptions EP corresponds to the set of instances that
share values with at least one instance, for a given set of properties P .
1 c(i) will be used to denote that i is an instance of the class c where c ∈ C.
2 http://www.w3.org/TR/owl2-overview
3 We consider only the class expressions that represent atomic OWL classes. An object
property expression is either an object property or an inverse object property. The only
allowed data type property expression is a data type property.

http://www.w3.org/TR/owl2-overview

SAKey: Scalable Almost Key Discovery in RDF Data 37

Dataset D1:

d1:Film(f1), d1:hasActor(f1,′′ B.Pitt′′), d1:hasActor(f1,′′ J.Roberts′′),
d1:director(f1,′′ S.Soderbergh′′), d1:releaseDate(f1,′′ 3/4/01′′), d1:name(f1,′′ Ocean′s 11′′),
d1:Film(f2), d1:hasActor(f2,′′ G.Clooney′′), d1:hasActor(f2,′′ B.Pitt′′),
d1:hasActor(f2,′′ J.Roberts′′), d1:director(f2,′′ S.Soderbergh′′), d1:director(f2,′′ P.Greengrass′′),
d1:director(f2,′′ R.Howard′′), d1:releaseDate(f2,′′ 2/5/04′′), d1:name(f2,′′ Ocean′s 12′′)
d1:Film(f3), d1:hasActor(f3,′′ G.Clooney′′), d1:hasActor(f3,′′ B.Pitt′′)
d1:director(f3,′′ S.Soderbergh′′), d1:director(f3,′′ P.Greengrass′′), d1:director(f3,′′ R.Howard′′),
d1:releaseDate(f3,′′ 30/6/07′′), d1:name(f3,′′ Ocean′s 13′′),
d1:Film(f4), d1:hasActor(f4,′′ G.Clooney′′), d1:hasActor(f4,′′ N.Krause′′),
d1:director(f4,′′ A.Payne′′), d1:releaseDate(f4,′′ 15/9/11′′), d1:name(f4,′′ The descendants′′),
d1:language(f4,′′ english′′)
d1:Film(f5),d1:hasActor(f5,′′ F.Potente′′), d1:director(f5,′′ P.Greengrass′′),
d1:releaseDate(f5,′′ 2002′′), d1:name(f5,′′ The bourne Identity′′), d1:language(f5,′′ english′′)
d1:Film(f6),d1:director(f6,′′ R.Howard′′), d1:releaseDate(f6,′′ 2/5/04′′),
d1:name(f6,′′ Ocean′s twelve′′)

Fig. 1. Example of RDF data

Definition 1. (Exception set). Let c be a class (c ∈ C) and P be a set of
properties (P ⊆ P). The exception set EP is defined as:

EP = {X | ∃Y (X �= Y) ∧ c(X) ∧ c(Y) ∧ (
∧

p∈P

∃Up(X,U) ∧ p(Y, U))}

For example, in D1 of Fig. 1 we have: E{d1:hasActor} = {f1, f2, f3, f4},
E{d1:hasActor, d1:director} = {f1, f2, f3}.
Using the exception set EP , we give the following definition of a n-almost key.

Definition 2. (n-almost key). Let c be a class (c ∈ C), P be a set of properties
(P ⊆ P) and n an integer. P is a n-almost key for c if |EP | ≤ n.

This means that a set of properties is considered as a n-almost key, if
there exist from 1 to n exceptions in the dataset. For example, in D1
{d1:hasActor, d1:director} is a 3-almost key and also a n-almost key for each
n ≥ 3. By definition, if a set of properties P is a n-almost key, every superset
of P is also a n-almost key. We are interested in discovering only minimal n-
almost keys, i.e., n-almost keys that do not contain subsets of properties that
are n-almost keys for a fixed n.

4.2 Discovery of n-Almost Keys from n-non Keys

To check if a set of properties is a n-almost key for a class c in a dataset D, a
naive approach would scan all the instances of a class c to verify if at most n
instances share values for these properties. Even when a class is described by few
properties, the number of candidate n-almost keys can be huge. For example, if
we consider a class c that is described by 60 properties and we aim to discover
all the n-almost keys that are composed of at most 5 properties, the number of
candidate n-almost keys that should be checked will be more than 6 millions.
An efficient way to obtain n-almost keys, as already proposed in [14,11], is to
discover first all the sets of properties that are not n-almost keys and use them

38 D. Symeonidou et al.

to derive the n-almost keys. Indeed, to show that a set of properties is not a
n-almost key, it is sufficient to find only (n+1) instances that share values for
this set. We call the sets that are not n-almost keys, n-non keys.

Definition 3. (n-non key). Let c be a class (c ∈ C), P be a set of properties
(P ⊆ P) and n an integer. P is a n-non key for c if |EP | ≥ n.

For example, the set of properties {d1:hasActor, d1:director} is a 3-non key (i.e.,
there exist at least 3 films sharing actors and directors). Note that, every subset
of P is also a n-non key since the dataset also contains n exceptions for this
subset. We are interested in discovering only maximal n-non keys, i.e., n-non
keys that are not subsets of other n-non keys for a fixed n.

5 The SAKey Approach

The SAKey approach is composed of three main steps: (1) the preprocessing
steps that allow avoiding useless computations (2) the discovery of maximal
(n+1)-non keys (see Algorithm 1) and finally (3) the derivation of n-almost keys
from the set of(n+1)-non keys (see Algorithm 2).

5.1 Preprocessing Steps

Initially we represent the data in a structure called initial map. In this map, every
set corresponds to a group of instances that share one value for a given property.
Table 1 shows the initial map of the dataset D1 presented in Fig. 1. For example,
the set {f2, f3, f4} of d1:hasActor represents the films that “G.Clooney” has
played in.

Table 1. Initial map of D1

d1:hasActor {{f1, f2, f3}, {f2, f3, f4}, {f1, f2}, {f4}, {f5}, {f6}}
d1:director {{f1,f2,f3}, {f2, f3, f5}, {f2, f3, f6}, {f4}}
d1:releaseDate {{f1}, {f2, f6}, {f3}, {f4}, {f5}}
d1:language {{f4, f5}}
d1:name {{f1}, {f2}, {f3}, {f4}, {f5}, {f6}}

Data Filtering. To improve the scalability of our approach, we introduce two
techniques to filter the data of the initial map.

1. Singleton Sets Filtering. Sets of size 1 represent instances that do not
share values with other instances for a given property. These sets cannot lead
to the discovery of a n-non key, since n-non keys are based on instances that
share values among them. Thus, only sets of instances with size bigger than 1
are kept. Such sets are called v-exception sets.

Definition 4. (v-exception set Ev
p). A set of instances {i1, . . . , ik} of the

class c is a Ev
p for the property p ∈ P and the value v iff {p(i1, v), . . . , p(ik, v)} ⊆

D and |{i1, . . . , ik}| > 1.

SAKey: Scalable Almost Key Discovery in RDF Data 39

We denote by Ep the collection of all the v-exception sets of the property p.

Ep = {Ev
p}

For example, in D1, the set {f1, f2, f3} is a v-exception set of the property
d1:director.

Given a property p, if all the sets of p are of size 1 (i.e., Ep = ∅), this property
is a 1-almost key (key with no exceptions). Thus, singleton sets filtering allows
the discovery of single keys (i.e., keys composed from only one property). In D1,
we observe that the property d1:name is an 1-almost key.
2. v-exception Sets Filtering. Comparing the n-non keys that can be found
by two v-exception sets Evi

p and E
vj
p , where Evi

p ⊆ E
vj
p , we can ensure that the

set of n-non keys that can be found using Evi
p , can also be found using E

vj
p . To

compute all the maximal n-non keys of a dataset, only the maximal v-exception
sets are necessary. Thus, all the non maximal v-exception sets are removed. For
example, the v-exception set E“J. Roberts′′

d1:hasActor {f1, f2} in the property d1:hasActor
represents the set of films in which the actress “J. Roberts” has played. Since
there exists another actor having participated in more than these two films (i.e.,
“B, P itt” in films f1, f2 and f3), the v-exception set {f1, f2} can be suppressed
without affecting the discovery of n-non keys.

Table 2 presents the data after applying the two filtering techniques on the
data of table 1. This structure is called final map.

Table 2. Final map of D1

d1:hasActor {{f1, f2, f3}, {f2, f3, f4}}
d1:director {{f1,f2,f3}, {f2, f3, f5}, {f2, f3, f6}}
d1:releaseDate {{f2, f6}}
d1:language {{f4, f5}}

Elimination of Irrelevant Sets of Properties. When the properties are nu-
merous, the number of candidate n-non keys is huge. However, in some cases,
some combinations of properties are irrelevant. For example, in the DBpedia
dataset, the properties depth and mountainRange are never used to describe the
same instances of the class NaturalP lace. Indeed, depth is used to describe nat-
ural places that are lakes while mountainRange natural places that are moun-
tains. Therefore, depth and mountainRange cannot participate together in a
n-non key. In general, if two properties have less than n instances in common,
these two properties will never participate together to a n-non key. We denote by
potential n-non key a set of properties sharing two by two, at least n instances.

Definition 5. (Potential n-non key). A set of properties pnkn = {p1, ..., pm}
is a potential n-non key for a class c iff:

∀{pi, pj} ∈ (pnkn × pnkn) | I(pi) ∩ I(pj)| ≥ n

where I(p) is the set of instances that are subject of p.

40 D. Symeonidou et al.

To discover all the maximal n-non keys in a given dataset it suffices to find the
n-non keys contained in the set of maximal potential n-non keys (PNK). For
this purpose, we build a graph where each node represents a property and each
edge between two nodes denotes the existence of at least n shared instances
between these properties. The maximal potential n-non keys correspond to the
maximal cliques of this graph. The problem of finding all maximal cliques of a
graph is NP-Complete [9]. Thus, we approximate the maximal cliques using a
greedy algorithm inspired by the min-fill elimination order [4].

In D1, PNK = {{d1:hasActor, d1:director, d1:releaseDate},{d1:language}}
corresponds to the set of maximal potential n-non keys when n=2. By construc-
tion, all the subsets of properties that are not included in these maximal potential
n-non keys are not n-non keys.

5.2 n-Non Key Discovery

We first present the basic principles of the n-non key discovery. Then, we in-
troduce the pruning techniques that are used by the nNonKeyFinder algorithm.
Finally, we present the algorithm and give an illustrative example.

Basic Principles. Let us consider the property d1:hasActor. Since this prop-
erty contains at least 3 exceptions, it is considered as a 3-non key. Intuitively,
the set of properties {d1:hasActor, d1:director} is a 3-non key iff there exist at
least 3 distinct films, such that each of them share the same actor and director
with another film. In our framework, the sets of films sharing the same actor
is represented by the collection of v-exception sets EhasActor, while the sets of
films sharing the same director is represented by the collection of v-exception
sets Edirector. Intersecting each set of films of EhasActor with each set of films of
Edirector builds a new collection in which each set of films has the same actor
and the same director. More formally, we introduce the intersect operator ⊗ that
intersects collections of exception sets only keeping sets greater than one.

Definition 6. (Intersect operator ⊗). Given two collections of v-exception
sets Ep and Ep′ , we define the intersect ⊗ as follow:

Epi ⊗ Epj = {Ev
pi
∩ Ev

pj
| Ev

pi
∈ Epi , E

v
pj

∈ Epj , and |Ev
pi

∩Ev
pj
| > 1}

Given a set properties P , the set of exceptions EP can be computed by applying
the intersect operator to all the collections Ep such that p ∈ P .

EP =
⋃

⊗
p∈P

Ep

For example, for the set of properties P = {d1:hasActor, d1:hasDirector},
EP={{f1, f2, f3}, {f2, f3}} while EP = {f1, f2, f3}

Pruning Strategies. Computing the intersection of all the collections of v-
exception sets represents the worst case scenario of finding maximal n-non keys

SAKey: Scalable Almost Key Discovery in RDF Data 41

within a potential n-non key. We have defined several strategies to avoid useless
computations. We illustrate the pruning strategies in Fig. 2 where each level
corresponds to the collection Ep of a property p and the edges express the in-
tersections that should be computed in the worst case scenario. Thanks to the
prunings, only the intersections appearing as highlighted edges are computed.

(a) Inclusion Pruning (b) Seen Intersection Pruning (c) example of nNonKeyFinder

Fig. 2. nNonKeyFinder prunings and execution

1. Antimonotonic Pruning. This strategy exploits the anti-monotonic char-
acteristic of a n-non key, i.e., if a set of properties is a n-non key, all its subsets
are by definition n-non keys. Thus, no subset of an already discovered n-non key
will be explored.
2. Inclusion Pruning. In Fig. 2(a), the v-exception set of p1 is included in one
of the v-exception sets of the property p2. This means that the biggest intersec-
tion between p1 and p2 is {i3, i4}. Thus, the other intersections of these two prop-
erties will not be computed and only the subpath starting from the v-exception
set {i3, i4, i5} of p2 will be explored (bold edges in Fig. 2(a)). Given a set of
properties P = {p1, . . . , pj−1, pj , . . . , pn}, when the intersection of p1, . . . , pj−1

is included in any v-exception set of pj only this subpath is explored.
3. Seen Intersection Pruning. In Fig. 2(b), we observe that starting from
the v-exception set of the property p1, the intersection between {i2, i3, i4} and
{i1, i2, i3} or {i2, i3, i5} will be in both cases {i2, i3}. Thus, the discovery using
the one or the other v-exception set of p2 will lead to the same n-almost keys.
More generally, when a new intersection is included in an already computed
intersection, this exploration stops.

nNonkeyFinder Algorithm. To discover the maximal n-non keys, the v-
exception sets of the final map are explored in a depth-first way. Since the
condition for a set of properties P to be a n-non key is EP ≥ n the exploration
stops as soon as n exceptions are found.

The algorithm takes as input a property pi, curInter the current intersection,
curNKey the set of already explored properties, seenInter the set of already
computed intersections, nonKeySet the set of discovered n-non keys, E the set
of exceptions EP for each explored set of properties P , n the defined number of
exceptions and PNK the set of maximal potential n-non keys.

The first call of nNonKeyFinder is: nNonKeyFinder(pi, I, ∅, ∅, ∅, ∅, n, PNK)
where pi is the first property that belongs to at least one potential n-non key
and curInter the complete set of instances I. To ensure that a set of properties

42 D. Symeonidou et al.

should be explored, the function uncheckedNonKeys returns the potential n-
non keys that (1) contain this set of properties and (2) are not included in an
already discovered n-non key in the nonKeySet. If the result is not empty, this
set of properties is explored. In Line 3, the Inclusion pruning is applied i.e., if
the curInter is included in one of the v-exception sets of the property pi, the
selectedEp will contain only the curInter. Otherwise, all the v-exception sets of
the property pi are selected. For each selected v-exception set of the property pi,
all the maximal n-non keys using this v-exception set are discovered. To do so,
the current intersection (curInter) is intersected with the selected v-exception
sets of the property pi. If the new intersection (newInter) is bigger than 1 and
has not been seen before (Seen intersection pruning), then pi ∪ curNonKey is
stored in nvNkey. The instances of newInter are added in E for nvNkey using
the update function. If the number of exceptions for a given set of properties is
bigger than n, then this set is added to the nonKeySet. The algorithm is called
with the next property pi+1 (Line 16). When the exploration of an intersection
(newInter) is done, this intersection is added to SeenInter. Once, all the n-
non keys for the property pi have been found, nNonKeyFinder is called for the
property pi+1 with curInter and curNKey (Line 19), forgetting the property
pi in order to explore all the possible combinations of properties.

Table 3 shows the execution of nNonKeyFinder for the example presented
in Fig. 2(c) where PNK = {{d1:hasActor, d1:director, d1:releaseDate}}. We
represent the properties in Table 3 by p1, p2, p3 respectively.

Algorithm 1. nNonKeyFinder
Input: pi, curInter, curNKey, seenInter, nonKeySet, E, n
Output: nonKeySet: set of the non keys

1 uncheckedNonKeys ← unchecked({pi} ∪ curNKey,nonKeySet, PNK)
2 if uncheckedNonKeys �= ∅//PNK and Antimonotonic Pruning then
3 if (curInter ⊆ Ev

pi
s.t. Ev

pi
∈ Epi

) //Inclusion Pruning then
4 selectedEpi

← {{curInter}}
5 else
6 selectedEpi

← Epi

7 for each Ev
pi

∈ selectedEpi
do

8 newInter ← Ev
pi

∩ curInter

9 if (|newInter| > 1) then
10 if (newInter � k s.t. k ∈ seenInter) //Seen Intersection Pruning then
11 nvNKey ← {pi} ∪ curNKey
12 update(E, nvNKey, newInter)
13 if (|EnvNkey| > n) then
14 nonKeySet ← nonKeySet ∪ {nvNKey}
15 if ((i + 1) < # properties) then
16 nNonKeyFinder(pi+1, newInter, nvNKey, seenInter, nonKeySet, E, n)

17 seenInter ← seenInter ∪ {newInter}

18 if ((i + 1) < # properties) then
19 nNonKeyFinder(pi+1, curInter, curNKey, seenInter, nonKeySet, E, n)

SAKey: Scalable Almost Key Discovery in RDF Data 43

Table 3. nNonKeyFinder execution on the example of Fig. 2(c)

pi selectedEp Ev
p curInter curNkey seenInter nonKeySet E

p1 {1, 2} 1 {f1, . . . , f6} {} {} {{p1}} {(p1) : (f1, f2, f3)}
p2 {3} 3 {f1, f2, f3} {p1} {} {{p1}, {p1, p2}} {(p1) : (f1, f2, f3)

(p1, p2) : (f1, f2, f3)}
p3 {6} 6 {f1, f2, f3} {p1, p2} {} {{p1}, {p1, p2}} {(p1) : (f1, f2, f3)

(p1, p2) : (f1, f2, f3)}
p3 {6} 6 {f1, f2, f3} {p1} {{f1, f2, f3}} {{p1}, {p1, p2}} {(p1) : (f1, f2, f3)

(p1, p2) : (f1, f2, f3)}
p1 {1, 2} 2 {f1, . . . , f6} {} {{f1, f2, f3}} {{p1}, {p1, p2}} {(p1) : (f1, f2, f3)

(p1, p2) : (f1, f2, f3)}
. .

p3 {6} 6 {f2, f3, f6} {p2} {{f1, f2, f3} {{p1}, {p1, p2}, {(p1) : (f1, f2, f3)
{f2, f3, f4}} {p2, p3}} (p1, p2) : (f1, f2, f3)}

(p2, p3) : (f2, f6)}

5.3 Key Derivation

In this section we introduce the computation of minimal n-almost keys using
maximal (n+1)-non keys. A set of properties is a n-almost key, if it is not equal
or included to any maximal (n+1)-non key. Indeed, when all the (n+1)-non
keys are discovered, all the sets not found as (n+1)-non keys will have at most
n exceptions (n-almost keys).

Both [14] and [11] derive the set of keys by iterating two steps: (1) computing
the Cartesian product of complement sets of the discovered non keys and (2)
selecting only the minimal sets. Deriving keys using this algorithm is very time
consuming when the number of properties is big. To avoid useless computations,
we propose a new algorithm that derives fast minimal n-almost keys, called key-
Derivation. In this algorithm, the properties are ordered by their frequencies in
the complement sets. At each iteration, the most frequent property is selected
and all the n-almost keys involving this property are discovered recursively. For
each selected property p, we combine p with the properties of the selected com-
plement sets that do not contain p. Indeed, only complement sets that do not
contain this property can lead to the construction of minimal n-almost keys.
When all the n-almost keys containing p are discovered, this property is elimi-
nated from every complement set. When at least one complement set is empty,
all the n-almost keys have been discovered. If every property has a different
frequency in the complement sets, all the n-almost keys found are minimal n-
almost keys. In the case where two properties have the same frequency, additional
heuristics should be taken into account to avoid computations of non minimal
n-almost keys.

Let us illustrate the key derivation algorithm throughout and ex-
ample. Let P= {p1, p2, p3, p4, p5} be the set of properties and
{{p1, p2, p3}, {p1, p2, p4}, {p2, p5}, {p3, p5}} the set of maximal n-non
keys. In this example, the complement sets of n-non keys are {{p1, p2, p4},
{p1, p3, p4}, {p3, p5},{p4, p5}}. The properties of this example are explored
in the following order: {p4, p1, p3, p5, p2}. Starting from the most frequent
property, p4, we calculate all the n-almost keys containing this property. The

44 D. Symeonidou et al.

selected complement set that does not contain this property is {p3, p5}. The
property p4 is combined with every property of this set. The set of n-almost
keys is now {{p3, p4}, {p4, p5}}. The next property to be explored is p1. The
selected complement sets are {p5} and {p3, p5}. To avoid the discovery of
non-minimal n-almost keys, we order the properties of the selected complement
sets, according to their frequency (i.e., {p5, p3}). To discover n-almost keys
containing p1 and p5, we only consider the selected complement sets that do
not contain p5. In this case, no complement set is selected and the key {p1, p5}
is added to the n-almost keys. p5 is locally suppressed for p1. Since there is an
empty complement set, all the n-almost keys containing p1 are found and p1 is
removed from the complement sets. Following these steps, the set of minimal
n-almost keys in the end will be {{p1, p5}, {p2, p3, p5}, {p3, p4}, {p4, p5}}.

Algorithm 2. keyDerivation
Input: compSets: set of complement sets
Output: KeySet: set of n-almost keys

1 KeySet ← ∅
2 orderedProperties = getOrderedProperties(compSets)
3 for each pi ∈ orderedProperties do
4 selectedCompSets ← selectSets(pi, compSets)
5 if (selectedCompSets == ∅) then
6 KeySet = KeySet ∪ {{pi}}
7 else
8 KeySet = KeySet ∪ {pi×keyDerivation(selectedCompSets)}
9 compSets = remove(compSets, pi)

10 if (∃ set ∈ compSet s.t. set == ∅) then
11 break

12 return KeySet

6 Experiments

We evaluated SAKey using 3 groups of experiments. In the first group, we demon-
strate the scalability of SAKey thanks to its filtering and pruning techniques. In
the second group we compare SAKey with KD2R, the only approach that dis-
covers composite OWL2 keys. The two approaches are compared in two steps.
First, we compare the runtimes of their non key discovery algorithms and second,
the runtimes of their key derivation algorithms. Finally, we show how n-almost
keys can improve the quality of data linking. The experiments are executed on
3 different datasets, DBpedia4, YAGO5 and OAEI 20136.

The execution time of each experiment corresponds to the average time of 10
repetitions. In all experiments, the data are stored in a dictionary-encoded map,
4 http://wiki.dbpedia.org/Downloads39
5 http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
6 http://oaei.ontologymatching.org/2013

http://wiki.dbpedia.org/Downloads39
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://oaei.ontologymatching.org/2013

SAKey: Scalable Almost Key Discovery in RDF Data 45

where each distinct string appearing in a triple is represented by an integer. The
experiments have been executed on a single machine with 12GB RAM, processor
2x2.4Ghz, 6-Core Intel Xeon and runs Mac OS X 10.8.

6.1 Scalability of SAKey

SAKey has been executed in every class of DBpedia. Here, we present the
scalability on the classes DB:NaturalP lace, DB:BodyOfWater and DB:Lake
of DBpedia (see Fig. 3(b) for more details) when n = 1. We first compare the
size of data before and after the filtering steps (see Table 4), and then we run
SAKey on the filtered data with and without applying the prunings (see Table 5).

Data Filtering Experiment. As shown in Table 4, thanks to the filtering
steps, the complete set of n-non keys can be discovered using only a part of
the data. We observe that in all the three datasets more than 88% of the sets
of instances of the initial map are filtered applying both the singleton filtering
and the v-exception set filtering. Note that more than 50% of the properties are
suppressed since they are single 1-almost keys (singleton filtering).

Table 4. Data filtering results on different DBpedia classes

class # Initial sets # Final sets # Singleton sets # Ev
p filtered Suppressed Prop.

DB:Lake 57964 4856(8.3%) 50807 2301 78 (54%)
DB:BodyOfWater 139944 14833(10.5%) 120949 4162 120 (60%)
DB:NaturalP lace 206323 22584(11%) 177278 6461 131 (60%)

Prunings of SAKey. To validate the importance of our pruning techniques, we
run nNonKeyFinder on different datasets with and without prunings. In Table 5,
we show that the number of calls of nNonKeyFinder decreases significantly using
the prunings. Indeed, in the class DB:Lake the number of calls decreases to half.
Subsequently, the runtime of SAKey is significantly improved. For example, in
the class DB:NaturalP lace the time decreases by 23%.

Table 5. Pruning results of SAKey on different DBpedia classes

class without prunings with prunings
Calls Runtime Calls Runtime

DB:Lake 52337 13s 25289 (48%) 9s
DB:BodyOfWater 443263 4min28s 153348 (34%) 40s
DB:NaturalP lace 1286558 5min29s 257056 (20%) 1min15s

To evaluate the scalability of SAKey when n increases, nNonKeyFinder
has been executed with different n values. This experiment has shown that
nNonKeyFinder is not strongly affected by the increase of n. Indeed, allow-
ing 300 exceptions (n=300) for the class DB:NaturalP lace, the execution time
increases only by 2 seconds.

46 D. Symeonidou et al.

KD2R SAKey
class triples instances prop. Runtime Runtime
DB:Lake 409016 9438 111 outOfMem. 8s
DB:BodyOfWater 1068428 34000 200 outOfMem. 37s
DB:NaturalP lace 1604348 49913 243 outOfMem. 1min10s
Y A:Building 114783 54384 17 26s 9s
Y A:SportsSeason 83944 17839 35 2min 9s
DB:Website 8506 2870 66 13min 1s
DB:Mountain 115796 12912 124 191min 11s

(a) nNonKeyFinder on DB:NaturalP lace (b) nNonKeyFinder in different classes

Fig. 3. nNonKeyFinder runtime for DBpedia and YAGO classes

6.2 KD2R vs. SAKey: Scalability Results

In this section, we compare SAKey with KD2R in two steps. The first experi-
ment compares the efficiency of SAKey against KD2R in the non key discovery
process. Given the same set of non keys, the second experiment compares
the key discovery approach of KD2R against the one of SAKey. Note that,
to obtain the same results from both KD2R and SAKey, the value of n is set to 1.

n-non key Discovery. In Fig. 3(a), we compare the runtimes of the non key
discovery of both KD2R and SAKey for the class DB:NaturalP lace. Starting
from the 10 most frequent properties, properties are added until the whole set
of properties is explored. We observe that KD2R is not resistant to the number
of properties and its runtime increases exponentially. For example, when the
50 most frequent properties are selected, KD2R takes more than five hours to
discover the non keys while SAKey takes only two minutes. Moreover, we notice
that SAKey is linear in the beginning and almost constant after a certain size
of properties. This happens since the class DB:NaturalP lace contains many
single keys and unlike KD2R, SAKey is able to discover them directly using
the singleton sets pruning. In Fig. 3(b), we observe that SAKey is orders of
magnitude faster than KD2R in classes of DBpedia and YAGO. Moreover,
KD2R runs out of memory in classes containing many properties and triples.

n-almost key Derivation. We compare the runtimes of the key derivation of
KD2R and SAKey on several sets of non keys. In Fig. 4(a), we present how
the time evolves when the number of non keys of the class DB:BodyOfWater
increases. SAKey scales almost linearly to the number of non keys while the time
of KD2R increases significantly. For example, when the number of non keys is
180, KD2R needs more than 1 day to compute the set of minimal keys while
SAKey less than 1 minute. Additionally, to show the efficiency of SAKey over
KD2R, we compare their runtimes on several datasets (see Fig. 4(b)). In every
case, SAKey outperforms KD2R since it discovers fast the set of minimal keys.

In the biggest class of DBpedia, DB:Person (more than 8 million triples,
9 hundred thousand instances and 508 properties), SAKey takes 19 hours to
compute the n-non keys while KD2R cannot even be applied.

SAKey: Scalable Almost Key Discovery in RDF Data 47

Class # non keys # keys KD2R SAKey
DB:Website 9 44 1s 1s
Y A:Building 15 34 1s 1s
Y A:SportsSeason 22 175 2s 1s
DB:Lake 50 480 1min10s 1s
DB:Mountain 49 821 8min 1s
DB:BodyOfWater 220 3846 > 1 day 66s
DB:NaturalP lace 302 7011 > 2 days 5min

(a) KeyDerivation on DB:BodyOfWater (b) KeyDerivation on different classes

Fig. 4. KeyDerivation runtime for DBpedia and YAGO classes

6.3 Data Linking with n-Almost Keys

Here, we evaluate the quality of identity links that can be found using n-almost
keys. We have exploited one of the datasets provided by the OAEI’13. The
benchmark contains one original file and five test cases. The second file is taken
from the first test case. Both files contain DBpedia descriptions of persons and
locations (1744 triples, 430 instances, 11 properties). Table 6 shows the results
when n varies from 0 to 18. In Table 6(a), strict equality is used to compare
literal values while in Table 6(b), the Jaro-Winkler similarity measure is used.
The recall, precision and F-measure of our linking results has been computed
using the gold-standard provided by OAEI’13.

Table 6. Data Linking in OAEI 2013

exceptions Recall Precision F-Measure
0, 1, 2 25.6% 100% 41%
3, 4 47.6% 98.1% 64.2%
5, 6 47.9% 96.3% 63.9%

7, ..., 17 48.1% 96.3% 64.1%
18 49.3% 82.8% 61.8%

exceptions Recall Precision F-Measure
0, 1, 2 64.4% 92.3% 75.8%
3, 4 73.7% 90.8% 81.3%
5, 6 73.7% 90.8% 81.3%

7, ..., 17 73.7% 90.8% 81.3%
18 74.4% 82.4% 78.2%

(a) Data Linking using strict equality (b) Data Linking using similarity measures

In both tables, we observe that the quality of the data linking improves when
few exceptions are allowed. As expected, when simple similarity measures are
used, the recall increases while the precision decreases, but overall, better F-
measure results are obtained. As shown in [11],using keys to construct complex
similarity functions to link data, such as [13], can increase even more the recall.
Therefore, linking results can be improved when n-almost keys are exploited by
sophisticated data linking tools.

7 Conclusion
In this paper, we present SAKey, an approach for discovering keys on large RDF
data under the presence of errors and duplicates. To avoid losing keys when data
are “dirty”, we discover n-almost keys, keys that are almost valid in a dataset.
Our system is able to scale when data are large, in contrast to the state-of the
art that discovers composite OWL2 keys. Our extensive experiments show that

48 D. Symeonidou et al.

SAKey can run on millions of triples. The scalability of the approach is validated
on different datasets. Moreover, the experiments demonstrate the relevance of
the discovered keys.

In our future work, we plan to define a way to automatically set the value of
n, in order to ensure the quality of a n-almost key. Allowing no exceptions might
be very strict in RDF data while allowing a huge number of exceptions might
end up to many false negatives. We also aim to define a new type of keys, the
conditional keys which are keys valid in a subset of the data.

SAKey is available for download at https://www.lri.fr/sakey.

Acknowledgments. This work is supported by the ANR project Qualinca
(QUALINCA-ANR-2012-CORD-012-02).

References

1. Arasu, A., Ré, C., Suciu, D.: Large-scale deduplication with constraints using dedu-
palog. In: ICDE, pp. 952–963 (2009)

2. Atencia, M., Chein, M., Croitoru, M., Jerome David, M.L., Pernelle, N., Saïs, F.,
Scharffe, F., Symeonidou, D.: Defining key semantics for the rdf datasets: Experi-
ments and evaluations. In: ICCS (2014)

3. Atencia, M., David, J., Scharffe, F.: Keys and pseudo-keys detection for web
datasets cleansing and interlinking. In: ten Teije, A., Völker, J., Handschuh, S.,
Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez,
N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 144–153. Springer, Heidelberg (2012)

4. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2003)

5. Ferrara, A., Nikolov, A., Scharffe, F.: Data linking for the semantic web. Int. J.
Semantic Web Inf. Syst. 7(3), 46–76 (2011)

6. Heise, A., Jorge-Arnulfo, Q.-R., Abedjan, Z., Jentzsch, A., Naumann, F.: Scalable
discovery of unique column combinations. VLDB 7(4), 301–312 (2013)

7. Hu, W., Chen, J., Qu, Y.: A self-training approach for resolving object coreference
on the semantic web. In: WWW, pp. 87–96 (2011)

8. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algo-
rithm for discovering functional and approximate dependencies. The Computer
Journal 42(2), 100–111 (1999)

9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations. The IBM Research
Symposia Series, pp. 85–103 (1972)

10. Nikolov, A., Motta, E.: Data linking: Capturing and utilising implicit schema-level
relations. In: Proceedings of Linked Data on the Web workshop at WWW (2010)

11. Pernelle, N., Saïs, F., Symeonidou, D.: An automatic key discovery approach for
data linking. J. Web Sem. 23, 16–30 (2013)

12. Recommendation, W.: Owl2 web ontology language: Direct semantics. In: Motik,
B., Patel-Schneider, P.F., Grau, B.C. (eds.), W3C (October 27, 2009),
http://www.w3.org/TR/owl2-direct-semantics

13. Saïs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method
for data reconciliation. Journal on Data Semantics 12, 66–94 (2009)

http://www.w3.org/TR/owl2-direct-semantics

SAKey: Scalable Almost Key Discovery in RDF Data 49

14. Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: Gordian: efficient and scalable
discovery of composite keys. In: VLDB, pp. 691–702 (2006)

15. Song, D., Heflin, J.: Automatically generating data linkages using a domain-
independent candidate selection approach. In: Aroyo, L., Welty, C., Alani, H.,
Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part
I. LNCS, vol. 7031, pp. 649–664. Springer, Heidelberg (2011)

16. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links
on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 650–665. Springer, Heidelberg (2009)

17. Wang, D.Z., Dong, X.L., Sarma, A.D., Franklin, M.J., Halevy, A.Y.: Functional
dependency generation and applications in pay-as-you-go data integration systems.
In: WebDB (2009)

	SAKey: Scalable Almost Key Discovery in RDF Data
	1 Introduction
	2 Related Work
	3 Data
Model
	4 Preliminaries
	4.1 Keys with Exceptions
	4.2 Discovery of n-Almost Keys from n-non Keys

	5 The SAKey Approach
	5.1 Preprocessing Steps
	5.2 n-Non Key Discovery

	5.3 Key Derivation

	6 Experiments
	6.1 Scalability of SAKey
	6.2 KD2R vs. SAKey: Scalability Results
	6.3 Data Linking with n-Almost Keys

	7 Conclusion
	References

