
Statistical Properties of Pseudo Random Sequences
and Experiments with PHP and Debian OpenSSL

Yongge Wang1 and Tony Nicol2

1 UNC Charlotte, USA
2 University of Liverpool, UK

yongge.wang@uncc.edu, tonynicol@inbox.com

Abstract. NIST SP800-22 (2010) proposed the state of the art statistical test-
ing techniques for testing the quality of (pseudo) random generators. However,
it is easy to construct natural functions that are considered as GOOD pseudo-
random generators by the NIST SP800-22 test suite though the output of these
functions is easily distinguishable from the uniform distribution. This paper pro-
poses solutions to address this challenge by using statistical distance based testing
techniques. We carried out both NIST tests and LIL based tests on the following
pseudorandom generators by generating more than 200TB of data in total: (1)
the standard C linear congruential generator, (2) Mersenne Twister pseudoran-
dom generator, (3) PHP random generators (including Mersenne Twister and Lin-
ear Congruential based), and (4) Debian Linux (CVE-2008-0166) pseudorandom
generator with OpenSSL 0.9.8c-1. As a first important result, our experiments
show that, PHP pseudorandom generator implementation (both linear congru-
ential generators and Mersenne Twister generators) outputs completely insecure
bits if the output is not further processed. As a second result, we illustrate the
advantages of our LIL based testing over NIST testing. It is known that Debian
Linux (CVE-2008-0166) pseudorandom generator based on OpenSSL 0.9.8c-1 is
flawed and the output sequences are predictable. Our LIL tests on these sequences
discovered the flaws in Debian Linux implementation. However, NIST SP800-22
test suite is not able to detect this flaw using the NIST recommended parameters.
It is concluded that NIST SP800-22 test suite is not sufficient and distance based
LIL test techniques be included in statistical testing practice. It is also recom-
mended that all pseudorandom generator implementations be comprehensively
tested using state-of-the-art statistically robust testing tools.

Keywords: pseudorandom generators, statistical testing, OpenSSL, the law of
the iterated logarithm.

1 Introduction

The weakness in pseudorandom generators could be used to mount a variety of attacks
on Internet security. Heninger et al [6] surveyed millions of TLS and SSH servers and
found out that 0.75% of TLS certificates share keys due to poor implementation of
pseudorandom generators. Furthermore, they were able to recover RSA private keys for
0.50% of TLS hosts and 0.03% of SSH hosts because their public keys shared non-
trivial common factors (due to poor implementation of pseudorandom generators), and

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 454–471, 2014.
© Springer International Publishing Switzerland 2014

Randomness Testing 455

DSA private keys for 1.03% of SSH hosts because of insufficient signature random-
ness (again, due to poor implementation of pseudorandom generators). It is reported
in the Debian Security Advisory DSA-1571-1 [3] that the random number generator
in Debian’s OpenSSL release CVE-2008-0166 is predictable. The weakness in Debian
pseudorandom generator affected the security of OpenSSH, Apache (mod_sl), the onion
router (TOR), OpenVPN, and other applications (see, e.g., [1]). These examples show
that it is important to improve the quality of pseudorandom generators by designing
systematic testing techniques to discover these weak implementations in the early stage
of system development.

Statistical tests are commonly used as a first step in determining whether or not a
generator produces high quality random bits. For example, NIST SP800-22 Revision
1A [12] proposed the state of art statistical testing techniques for determining whether
a random or pseudorandom generator is suitable for a particular cryptographic applica-
tion. In a statistical test of [12], a significance level α ∈ [0.001, 0.01] is chosen for each
test. For each input sequence, a P-value is calculated and the input string is accepted as
pseudorandom if P-value ≥ α. A pseudorandom generator is considered good if, with
probability α, the sequences produced by the generator fail the test. For an in-depth
analysis, NIST SP800-22 recommends additional statistical procedures such as the ex-
amination of P-value distributions (e.g., using χ2-test). In section 3, we will show that
NIST SP800-22 test suite has inherent limitations with straightforward Type II errors.
Furthermore, our extensive experiments (based on over 200TB of random bits gener-
ated) show that NIST SP800-22 techniques could not detect the weakness in the above
mentioned pseudorandom generators.

In order to address the challenges faced by NIST SP800-22, this paper designs a
“behavioristic” testing approach which is based on statistical distances. Based on this
approach, the details of LIL testing techniques are developed. As an example, we carried
out LIL testing on the flawed Debian Linux (CVE-2008-0166) pseudorandom generator
based on OpenSSL 0.9.8c-1 and on the standard C linear congruential generator. As we
expected, both of these pseudorandom generators failed the LIL testing since we know
that the sequences produced by these two generators are strongly predictable. How-
ever, as we have mentined earlier, our experiments show that the sequences produced
by these two generators pass the NIST SP800-22 test suite using the recommended pa-
rameters. In other words, NIST SP800-22 test suite with the recommended parameters
has no capability in detecting these known deviations from randomness. Furthermore,
it is shown that for several pseudorandom generators (e.g., the linear congruential gen-
erator), the LIL test results on output strings start off fine but deteriorate as the string
length increases beyond that which NIST can handle since NIST testing tool package
has an integer overflow issue.

The paper is organized as follows. Section 2 introduces notations. Section 3 points
out the limitation of NIST SP800-22 testing tools. Section 4 discusses the law of iterated
logarithm (LIL). Section 5 reviews the normal approximation to binomial distributions.
Section 6 introduces statistical distance based LIL tests. Section 7 reports experimental
results, and Section 8 contains general discussions on OpenSSL random generators.

456 Y. Wang and T. Nicol

2 Notations and Pseudorandom Generators

In this paper, N and R+ denotes the set of natural numbers (starting from 0) and the set
of non-negative real numbers, respectively. Σ = {0, 1} is the binary alphabet, Σ∗ is the
set of (finite) binary strings, Σn is the set of binary strings of length n, and Σ∞ is the
set of infinite binary sequences. The length of a string x is denoted by |x|. For strings
x, y ∈ Σ∗, xy is the concatenation of x and y, x � y denotes that x is an initial segment
of y. For a sequence x ∈ Σ∗ ∪Σ∞ and a natural number n ≥ 0, x |̀ n = x[0..n− 1] denotes
the initial segment of length n of x (x |̀ n = x[0..n − 1] = x if |x| ≤ n) while x[n] denotes
the nth bit of x, i.e., x[0..n − 1] = x[0] . . . x[n − 1].

The concept of “effective similarity” (see, e.g., Wang [14]) is defined as follows: Let
X = {Xn}n∈N and Y = {Yn}n∈N be two probability ensembles such that each of Xn and Yn

is a distribution over Σn. We say that X and Y are computationally (or statistically) indis-
tinguishable if for every feasible algorithm A (or every algorithm A), the total variation
difference between Xn and Yn is a negligible function in n.

Let l : N → N with l(n) ≥ n for all n ∈ N and G be a polynomial-time computable
algorithm such that |G(x)| = l(|x|) for all x ∈ Σ∗. Then G is a polynomial-time pseu-
dorandom generator if the ensembles {G(Un)}n∈N and {Ul(n)}n∈N are computationally
indistinguishable.

3 Limitations of NIST SP800-22

In this section, we show that NIST SP800-22 test suite has inherent limitations with
straightforward Type II errors. Our first example is based on the following observation:
for a function F that mainly outputs “random strings” but, with probability α, outputs
biased strings (e.g., strings consisting mainly of 0’s), F will be considered as a “good”
pseudorandom generator by NIST SP800-22 test though the output of F could be dis-
tinguished from the uniform distribution (thus, F is not a pseudorandom generator by
definition). Let RANDc,n be the sets of Kolmogorov c-random binary strings of length
n, where c ≥ 1. That is, for a universal Turing machine M, let

RANDc,n = {x ∈ {0, 1}n : if M(y) = x then |y| ≥ |x| − c} . (1)

Let α be a given significance level of NIST SP800-22 test and R2n = Rn
1 ∪ Rn

2 where

Rn
1 ⊂ RAND2,2n and |Rn

1| = 2n(1 − α)
Rn

2 ⊂ {0nx : x ∈ {0, 1}n} and |Rn
2| = 2nα.

Furthermore, let fn : {0, 1}n → R2n be an ensemble of random functions (not necessar-
ily computable) such that f (x) is chosen uniformly at random from R2n. Then for each
n-bit string x, with probability 1−α, fn(x) is Kolmogorov 2-random and with probabil-
ity α, fn(x) ∈ Rn

2. Since all Kolmogorov 2-random strings are guaranteed to pass NIST
SP800-22 test at significance level α (otherwise, they are not Kolmogorov 2-random by
definition) and all strings in Rn

2 fail NIST SP800-22 test at significance level α for large
enough n, the function ensemble { fn}n∈N is considered as a “good” pseudorandom gen-
erator by NIST SP800-22 test suite. On the other hand, a similar proof as in Wang [14]

Randomness Testing 457

can be used to show that that R2n could be efficiently distinguished from the uniform
distribution with a non-negligible probability. Thus { fn}n∈N is not a cryptographically
secure pseudorandom generator.

The above example shows the limitation of testing approaches specified in NIST
SP800-22. The limitation is mainly due to the fact that NIST SP800-22 does not fully
realize the differences between the two common approaches to pseudorandomness def-
initions as observed and analyzed in Wang [14]. In other words, the definition of pseu-
dorandom generators is based on the indistinguishability concepts though techniques
in NIST SP800-22 mainly concentrate on the performance of individual strings. In this
paper, we propose testing techniques that are based on statistical distances such as root-
mean-square deviation or Hellinger distance. The statistical distance based approach is
more accurate in deviation detection and avoids above type II errors in NIST SP800-22.
Our approach is illustrated using the LIL test design.

4 Stochastic Properties of Long Pseudorandom Sequences

The law of the iterated logarithm (LIL) describes the fluctuation scales of a random
walk. For a nonempty string x ∈ Σ∗, let

S (x) =
|x|−1∑

i=0

x[i] and S ∗(x) =
2 · S (x) − |x|√|x|

where S (x) denotes the number of 1s in x and S ∗(x) denotes the reduced number of 1s
in x. S ∗(x) amounts to measuring the deviations of S (x) from |x|

2 in units of 1
2

√|x|.
The law of large numbers states that, for a pseudo random sequence ξ, the limit of

S (ξ |̀ n)
n is 1

2 , which corresponds to the frequency (Monobit) test in NIST SP800-22 [12].
But it states nothing about the reduced deviation S ∗(ξ |̀ n). It is intuitively clear that, for
a pseudorandom sequence ξ, S ∗(ξ |̀ n) will sooner or later take on arbitrary large values
(though slowly). The law of the iterated logarithm (LIL), which was first discovered by
Khinchin [7], gives an optimal upper bound

√
2 ln ln n for the fluctuations of S ∗(ξ |̀ n).

It is shown in [13] that p-random sequences satisfy common statistical laws such as
the law of the iterated logarithm. Thus it is reasonable to expect that pseudorandom
sequences produced by pseudorandom generators satisfy these laws also.

5 Normal Approximations to Slil

In this section, we provide several results on normal approximations to the function
S lil(·) that will be used in following sections. The DeMoivre-Laplace theorem is a nor-
mal approximation to the binomial distribution, which states that the number of “suc-
cesses” in n independent coin flips with head probability 1/2 is approximately a normal
distribution with mean n/2 and standard deviation

√
n/2. We first review a few classical

results on the normal approximation to the binomial distribution.

Definition 1. The normal density function with mean μ and variance σ is defined as

f (x) =
1

σ
√

2π
e−

(x−μ)2
2σ2 ; (2)

458 Y. Wang and T. Nicol

For μ = 0 and σ = 1, we have the standard normal density function ϕ(x) and the
standard normal distribution function Φ(x):

ϕ(x) =
1√
2π

e−
x2

2 and Φ(x) =
∫ x

−∞
ϕ(y)dy (3)

The following DeMoivre-Laplace limit theorem is derived from the approximation
theorem on page 181 of [4].

Theorem 1. For fixed x1, x2, we have

lim
n→∞ Prob

[
x1 ≤ S ∗(ξ |̀ n) ≤ x2

]
= Φ(x2) − Φ(x1). (4)

The growth speed for the above approximation is bounded by max{k2/n2, k4/n3} where
k = S (ξ |̀ n) − n

2 .

In this paper, we only consider tests for n ≥ 226 and x2 ≤ 1. That is, S ∗(ξ |̀ n) ≤√
2 ln ln n. Thus k = S (ξ |̀ n) − n

2 �
√

n
2 S ∗(ξ |̀ n) ≤ √2n ln ln n/2. Hence, we have

max
{

k2

n2 ,
k4

n3

}
= k2

n2 =
(1−α)2 ln ln n

2n < 2−22

By Theorem 1, the approximation probability calculation errors in this paper will
be less than 2−22 which is negligible. Unless stated otherwise, we will not mention the
approximation errors in the remainder of this paper.

6 Snapshot LIL Tests and Random Generator Evaluation

The distribution S lil defines a probability measure on the real line R. Let R ⊂ Σn be a
set of m sequences with a standard probability definition on it. That is, for each x0 ∈ R,
let Prob[x = x0] = 1

m . Then each set R ⊂ Σn induces a probability measure μRn on R by
letting

μRn (I) = Prob [S lil(x) ∈ I, x ∈ R]

for each Lebesgue measurable set I on R. For U = Σn, we use μU
n to denote the corre-

sponding probability measure induced by the uniform distribution. By definition, if Rn

is the collection of all length n sequences generated by a pseudorandom generator, then
the difference between μU

n and μRn
n is negligible.

By Theorem 1, for a uniformly chosen ξ, the distribution of S ∗(ξ |̀ n) could be ap-
proximated by a normal distribution of mean 0 and variance 1, with error bounded by
1
n (see [4]). In other words, the measure μU

n can be calculated as

μU
n ((−∞, x]) � Φ(x

√
2 ln ln n) =

√
2 ln ln n

∫ x

−∞
φ(y
√

2 ln ln n)dy. (5)

Figure 1 shows the distributions of μU
n for n = 226, · · · , 234. For the reason of conve-

nience, in the remaining part of this paper, we will use B as the discrete partition of the
real line R defined by

{(∞, 1), [1,∞)} ∪ {[0.05x − 1, 0.05x − 0.95) : 0 ≤ x ≤ 39} .

Randomness Testing 459

Fig. 1. Density functions for distributions μU
n with n = 226, · · · , 234

Table 1. The distribution μU
n induced by S lil for n = 226, · · · , 234 (due to symmetry, only distribu-

tion on the positive part of real line R is given)

226 227 228 229 230 231 232 233 234

[0.00, 0.05) .047854 .048164 .048460 .048745 .049018 .049281 .049534 .049778 .050013
[0.05, 0.10) .047168 .047464 .047748 .048020 .048281 .048532 .048773 .049006 .049230
[0.10, 0.15) .045825 .046096 .046354 0.04660 .046839 .047067 .047287 .047498 .047701
[0.15, 0.20) .043882 .044116 .044340 .044553 .044758 .044953 .045141 .045322 .045496
[0.20, 0.25) .041419 .041609 .041789 .041961 .042125 .042282 .042432 .042575 .042713
[0.25, 0.30) .038534 .038674 .038807 .038932 .039051 .039164 .039272 .039375 .039473
[0.30, 0.35) .035336 .035424 .035507 .035584 .035657 .035725 0.03579 .035850 .035907
[0.35, 0.40) .031939 .031976 .032010 .032041 .032068 .032093 .032115 .032135 .032153
[0.40, 0.45) .028454 .028445 .028434 .028421 .028407 .028392 .028375 .028358 .028340
[0.45, 0.50) .024986 .024936 .024886 .024835 .024785 .024735 .024686 .024637 .024588
[0.50, 0.55) .021627 .021542 .021460 .021379 .021300 .021222 .021146 .021072 .020999
[0.55, 0.60) .018450 .018340 .018234 .018130 .018029 .017931 .017836 .017743 .017653
[0.60, 0.65) .015515 .015388 .015265 .015146 .015032 .014921 .014813 .014709 .014608
[0.65, 0.70) .012859 .012723 .012591 .012465 .012344 .012227 .012114 .012004 .011899
[0.70, 0.75) .010506 .010367 .010234 .010106 .009984 .009867 .009754 .009645 .009541
[0.75, 0.80) .008460 .008324 .008195 .008072 .007954 .007841 .007733 .007629 .007530
[0.80, 0.85) .006714 .006587 .006466 .006351 .006241 .006137 .006037 .005941 .005850
[0.85, 0.90) .005253 .005137 .005027 .004923 .004824 .004730 .004640 .004555 .004474
[0.90, 0.95) .004050 .003948 .003851 .003759 .003672 .003590 .003512 .003438 .003368
[0.95, 1.00) .003079 .002990 .002906 .002828 .002754 .002684 .002617 .002555 .002495

[1.00,∞) .008090 .007750 .007437 .007147 .006877 .006627 .006393 .006175 .005970

With this partition, Table 1 lists values μU
n (I) on B with n = 226, · · · , 234. Since μU

n (I) is
symmetric, it is sufficient to list the distribution in the positive side of the real line.

In order to evaluate a pseudorandom generator G, first choose a list of testing points
n0, · · · , nt (e.g., n0 = 226+t). Secondly use G to generate a set R ⊆ Σnt of m sequences.
Lastly compare the distances between the two probability measures μRn and μU

n for n =
n0, · · · , nt.

A generator G is considered “good”, if for sufficiently large m (e.g., m ≥ 10, 000), the
distances between μRn and μU

n are negligible (or smaller than a given threshold). There
are various definitions of statistical distances for probability measures. In our analysis,
we will consider the total variation distance [2]

d(μRn , μ
U
n) = sup

A⊆B

∣∣∣μRn (A) − μU
n (A)
∣∣∣ (6)

460 Y. Wang and T. Nicol

Hellinger distance [5]

H(μRn ||μU
n) =

1√
2

√√∑

A∈B

(√
μRn (A) −

√
μU

n (A)

)2
(7)

and the root-mean-square deviation

RMSD(μRn , μ
U
n) =

√√∑
A∈B
(
μRn (A) − μU

n (A)
)2

|B| . (8)

7 Experimental Results

As an example to illustrate the importance of LIL tests, we carried out both NIST
SP800-22 tests [9] and LIL tests on the following commonly used pseudorandom bit
generators: The standard C linear congruential generator, Mersenne Twister generators,
PHP web server random bit generators (both MT and LCG), and Debian (CVE-2008-
0166) random bit generator with OpenSSL 0.9.8c-1. Among these generators, linear
congruential generators and Debian Linux (CVE-2008-0166) pseudorandom genera-
tors are not cryptographically strong. Thus they should fail a good statistical test. As
we expected, both of these generators failed LIL tests. However, neither of these gen-
erators failed NIST SP800-22 tests which shows the limitation of NIST SP800-22 test
suite.

It should be noted that NIST SP800-22 test suite [9] checks the first 1,215,752,192
bits (�145MB) of a given sequence since the software uses 4-byte int data type for
integer variables only. For NIST SP800-22 tests, we used the parameter α = 0.01 for all
experiments. For each pseudorandom generator, we generated 10, 000×2GB sequences.
The results, analysis, and comparisons are presented in the following sections.

7.1 The Standard C Linear Congruential Generator

A linear congruential generator (LCG) is defined by the recurrence relation

Xn+1 = aXn + c mod m

where Xn is the sequence of pseudorandom values, m is the modulus, and a, c < m.
For any initial seeding value X0, the generated pseudorandom sequence is ξ = X0X1 · · ·
where Xi is the binary representation of the integer Xi.

Linear congruential generators (LCG) have been included in various programming
languages. For example, C and C++ functions drand48(), jrand48(), mrand48(), and
rand48() produce uniformly distributed random numbers on Borland C/C++ rand()
function returns the 16 to 30 bits of

Xn+1 = 0x343FD · Xn + 0x269EC3 mod 232.

LCG is also implemented in Microsoft Visual Studio, Java.Util.Random class, Borland
Delphi, and PHP. In our experiments, we tested the standard linear congruential gener-
ator used in Microsoft Visual Studio.

Randomness Testing 461

In our experiments, we generated 10, 000× 2GB sequences by calling Microsoft Vi-
sual Studio stdlib function rand() which uses the standard C linear congruential gen-
erator. Each sequence is generated with a 4-byte seed from www.random.org [11].
For the 10, 000 × 2GB sequences, we used a total of 10, 000 × 4-byte seeds from
www.random.org. The rand() function returns a 15-bit integer in the range [0, 0x7FFF]
each time. Since LCG outputs tend to be correlated in the lower bits, we shift the re-
turned 15 bits right by 7 positions. In other words, for each rand() call, we only use the
most significant 8 bits. This is a common approach that most programmers will do to
offset low bit correlation and missing most significant bits (MSB).

Since linear congruential generator is predictable and not cryptographically strong,
we expected that these 10,000 sequences should fail both NIST SP800-22 tests and LIL
tests. To our surprise, the collection of 10,000 sequences passed NIST SP800-22 [9]
testing with the recommended parameters. Specifically, for the randomly selected 10
sequences, all except one of the 150 non-overlapping template tests passed the NIST
test (pass ratio = 0.965). In other words, these sequences are considered as random by
NIST SP800-22 testing standards. On the other hand, these sequences failed LIL tests
as described in the following.

Table 2. Total variation and Hellinger distances for Standard C LCG

n 226 227 228 229 230 231 232 233 234

d .061 .097 .113 .156 .176 .261 .324 .499 .900
H .064 .088 .126 .167 .185 .284 .387 .529 .828

RMSD .004 .006 .008 .010 .011 .017 .021 .031 .011

Based on snapshot LIL tests at points 226, · · · , 234, the corresponding total variation
distance d(μcLCG

n , μU
n), Hellinger distance H(μcLCG

n ||μU
n), and the root-mean-square de-

viation RMSD(μcLCG
n , μU

n) at sample size 1000 are calculated and shown in Table 2. It
is observed that at the sample size 1000, the average distance between μcLCG

n and μU
n is

larger than 0.10 and the root-mean-square deviation is large than 0.01. It is clear that
this sequence collection is far away from the true random source.

Fig. 2. Density functions for distributions μcLCG
n with n = 226, · · · , 234 (first) and LIL curves for

the standard C LCG (second) for 10,000×2GB strings

The first picture in Figure 2 shows that the distributions of μcLCG
n for n = 226, · · · , 234

are far away from the expected distribution in Figure 1. Furthermore, the second picture
in 2 shows the LIL-test result curves for the 10,000 sequences. For a good random
bit generator, the LIL curves should be distributed within the y-axis interval [−1, 1]

462 Y. Wang and T. Nicol

through the entire x-axis according to the normal distribution. For example, a good
curve should look like the third picture in the following Figure 3. However, LIL curves
for the standard C LCG generated sequences in the second picture of Figure 2 start
reasonably well but deteriorate as the string length increases.

7.2 Mersenne Twister Generators

Mersenne Twister (MT) is a pseudorandom generator designed by Matsumoto and
Nishimura [8] and it is included in numerous software packages such as R, Python, PHP,
Maple, ANSI/ISO C++, SPSS, SAS, and many others. The commonly used Mersenne
Twister MT19937 is based on the Mersenne prime 219937 − 1 and has a long period of
219937 − 1. The Mersenne Twister is sensitive to the seed value. For example, too many
zeros in the seed can lead to the production of many zeros in the output and if the seed
contains correlations then the output may also display correlations.

In order to describe the pseudorandom bit generation process MT19937, we first
describe the tempering transform function t(x) on 32-bit strings. For x ∈ Σ32, t(x) is
defined by

y1 := x ⊕ (x >> 11)
y2 := y1 ⊕ ((y1 << 7) AND 0x9D2C5680)
y3 := y2 ⊕ ((y2 << 15) AND 0xEFC60000)
t(x) := y3 ⊕ (y3 >> 18)

Let x0, x2, · · · , x623 ∈ Σ32 be 32× 624 = 19968 bits seeding values for the MT19937
pseudorandom generator. Then the MT19937 output is the sequence t(x624)t(x625)t(x626)
· · · where for k = 0, 1, 2, 3, · · · , we have x624+k = x397+k ⊕ (xk[0]xk+1[1..31]) A and A is
the 32 × 32 matrix

A =

(
0 I31

a31 (a30, · · · , a0)

)

with a31a30 · · · a0 = 0x9908B0DF. For a 32 bit string x, xA is interpreted as multiplying
the 32 bit vector x by matrix A from the right hand side.

Using the source code provided in Matsumoto and Nishimura [8], we generated
10, 000 × 2GB sequences. The collection of these sequences passed NIST SP800-22
[9] test with the recommended parameters. The following discussion shows that these
sequences have very good performance in LIL testing also. Thus we can consider these
sequences passed the LIL test.

Based on snapshot LIL tests at points 226, · · · , 234, the corresponding total variation
distance d(μMT19937

n , μU
n), Hellinger distance H(μMT19937

n ||μU
n), and the root-mean-square

deviation RMSD(μMT19937
n , μU

n) at sample size 1,000 (resp. 10,000) are calculated and
shown in Table 3. In Table 3, the subscript 1 is for sample size 1,000 and the subscript
2 is for sample size 10,000.

Figure 3 shows the distributions of μMT19937
n for n = 226, · · · , 234 where the curves

are plotted on top of the expected distribution in Figure 1. Furthermore, the third picture
in Figure 3 shows the LIL-test result curves for the 10,000 sequences. The plot in the
third picture of Figure 3 is close to what we are expecting for a random source.

Randomness Testing 463

Table 3. Total variation and Hellinger distances for MT19937

n 226 227 228 229 230 231 232 233 234

d1 .057 .068 .084 .068 .063 .075 .073 .079 .094
H1 .056 .077 .072 .069 .065 .083 .074 .080 .081

RMSD1 .004 .004 .005 .004 .004 .005 .005 .005 .006
d2 .023 .025 .026 .021 .020 .025 .026 .027 .020
H2 .022 .022 .024 .021 .021 .026 .024 .023 .020

RMSD2 .001 .002 .002 .001 .001 .002 .002 .002 .001

Fig. 3. Density functions for distributions μMT 19937
n at n = 226, · · · , 234 with 1000 (first) and 10,000

(second) strings and LIL plot for Mersenne Twister MT19937 with 10,000×2GB strings (third)

7.3 PHP Web Server Random Bit Generators

PHP is a server side processing language and its random number generator is very
important for guaranteeing Web server security. In the experiments, we installed an
Apache web server together with PHP v5.3.5. By default, PHP supports rand(), which
is a linear congruential random bit generator, and m_rand() which is a Mersenne Twister
random bit generator. The random bit outputs from these two generators are tested in the
experiments. By modifying php.ini script in PHP 5.3, one may also use the OpenSSL
pseudorandom generator via the openssl_random_pseudo_bytes() function call.

PHP Mersenne Twister. In Section 7.2, we showed that the output of the correctly im-
plemented Mersenne Twister pseudorandom generators has very good performance and
passes both the NIST and LIL testing. However, if the Mersenne Twister in PHP imple-
mentation is not properly post-processed, it generates completely non-random outputs.
This is illustrated by our experiments on the PHP Mersenne Twister implementation.

Since the PHP server script is slow in generating a large amount of pseudorandom
bits, we only generated 6 × 2GB random bit strings from hte PHP Mersenne Twister
m_rand() function call. It is estimated to take 2 years for our computer to generate
10, 000×2GB random bit strings since each 2GB sequence takes 90 minutes to generate.

As discussed earlier, it is expected that LIL values stay within the interval [−1, 1].
However, LIL curves for the 6 PHP MT generated sequences display a range from 0 to
-2000. This indicates that these sequences are overwhelmed with zeros which get worse
as the sequence gets longer.

By checking the rand.c code in PHP 5.3.27, it seems that programmers are prepared
to make arbitrary changes with arbitrary post-processing. In particular, for the PHP
Mersenne Twister, it will output an integer in the range [0, 0x7FFFFFFF] each time
while the source code in Matsumoto and Nishimura [8] that we used in Section 7.2

464 Y. Wang and T. Nicol

outputs an integer in the range [0, 0xFFFFFFFF] each time. This difference is not re-
alized by some PHP implementers as illustrated in the following comments of PHP
rand.c. Thus it is important to use the LIL test to detect these weak implementations.

/* Melo : hmms . . randomMT () r e t u r n s 32 random b i t s . . .

* Yet , t h e p r e v i o u s php_rand on ly r e t u r n s 31 a t most .

* So I p u t a r i g h t s h i f t t o l o o s e t h e l s b . I t * seems *
* b e t t e r t h a n c l e a r i n g t h e msb .

* Update :
* I t a l k e d wi th Cokus v i a e m a i l and i t won ’ t r u i n

* t h e a l g o r i t h m * /

The experiments show that all of 6 PHP Mersenne Twister generated sequences fail
NIST SP800-22 tests, illustrating the effect of users not accommodating the limitations
of the PHP 31 bit implementation.

PHP Linear Congruential Generator. Since it is slow to generate a large amount of
random bits using PHP script, we only generated 6 × 2GB sequences using the PHP
rand() function call (similarly, it is estimated to take 2 years for our computer to gener-
ate 10, 000× 2GB random bits). All of the sequences have similar LIL curves as shown
in the first picture of Figure 4. The second picture in Figure 4 shows that the distri-
butions of μphpLCG

n at n = 226, · · · , 234 are far away from the expected distribution in
Figure 1. One may also compare the second picture in Figure 4 against the density dis-
tributions by the standard C linear congruential generator in Figure 2. In summary, the
PHP implementation of the linear congruential generator comprehensively failed NIST
and LIL tests.

Fig. 4. LIL curves for PHP LCG generated sequences (first) and density functions for distributions
μphpLCG

n (second) of 6 × 2GB PHP LCG sequences with n = 226, · · · , 234

7.4 Flawed Debian’s OpenSSL package

It is reported in Debian Security Advisory DSA-1571-1 [3] that the random num-
ber generator in Debian Linux (CVE-2008-0166) pseudorandom generator based on
OpenSSL 0.9.8c-1 is predictable since the following line of code in md_rand.c has
been removed by one of its implementors.

MD_Update(&m, buf , j) ; /* p u r i f y c o m p l a i n s * /

Randomness Testing 465

Note that the code MD_Update(&m,buf,j) is responsible for adding the entropy into
the state that is passed to the random bit generation process from the main seeding
function. By commenting out this line of codes, the generator will have small number
of states which will be predictable.

We generated 10, 000 × 2GB sequences using this version of the flawed Debian
OpenSSL with multi-threads (the single thread results are much worse). The snapshot
LIL test result for this flawed Debian OpenSSL implementation is shown in Figure
5, where the first picture is for the sample size of 1,000 and the second picture is for
the sample size of 10,000. In particular, Figure 5 shows the distributions of μDebian

n for
n = 226, · · · , 234 where the curves are plotted on top of the expected distribution in
Figure 1. As a comparison, we carried out snapshot LIL test on the standard OpenSSL
pseudorandom generator [10]. We generated 10, 000 × 2GB sequences using the stan-
dard implementation of OpenSSL (with single thread). The snapshot LIL test result for
this standard OpenSSL implementation is shown in Figure 6, where the first picture is
for the sample size of 1,000 and the second picture is for the sample size of 10,000. In
particular, Figure 6 shows the distributions of μOpenS S L

n for n = 226, · · · , 234 where the
curves are plotted on top of the expected distribution in Figure 1.

The results in Figures 5 and 6 indicate that the flawed Debian pseudorandom genera-
tor has a very large statistical distance from the uniform distribution while the standard
OpenSSL pseudorandom generator has a smaller statistical distance from the uniform
distribution. In other words, statistical distance based LIL tests could be used to detect
such kinds of implementation weakness conveniently.

While the Debian Linux implementation of openSSL pseudorandom generator fails
the LIL test obviously, the experiments show that the collection of the 10,000 sequences
passed the NIST SP800-22 testing with the recommended parameters.

Fig. 5. Density functions for distributions μDebian
n with n = 226, · · · , 234

Fig. 6. Density functions for distributions μOpenS S L
n with n = 226, · · · , 234

466 Y. Wang and T. Nicol

7.5 Summary of Experiments

As a summary, Table 4 lists the results of both NIST SP800-22 testing and LIL testing
on commonly used pseudorandom generators. In the table, we listed the expected testing
results for MT19937 as “pass” since MT19937 was designed to be k-distributed to
32-bit accuracy for every 1 ≤ k ≤ 623. In other words, the output of MT19937 is
uniformly distributed and should pass all statistical tests even though the output is not
cryptographically strong. The results in Table 4 show that the LIL testing techniques
always produce expected results while NIST SP800-22 test suite does not.

Table 4. NIST SP800-22 and LIL testing results

Generator NIST SP800-22 LIL expected result
Standard C LCG pass fail fail
MT19937 pass pass pass
PHP LCG fail fail fail
PHP MT19937 fail fail fail
flawed Debian openSSL pass fail fail
standard openSSL pass pass pass

8 General Discussion on OpenSSL Random Generators

It is noted in [1] that the serious flaws in Debian OpenSSL had not been noticed for
more than 2 years. A key contributor to this problem was the lack of documentation
and poor source code commenting of OpenSSL making it very difficult for a maintainer
to understand the consequences of a change to the code. This section provides an anal-
ysis of the OpenSSL default RNG. We hope this kind of documentation will help the
community to improve the quality of OpenSSL implementations.

Figure 7 illustrates the architecture of the OpenSSL RNG. It consists of a 1023 byte
circular array named statewhich is the entropy pool from which random numbers are
created. state and some other global variables are accessible from all threads. Crypto
locks protect the global data from thread contention except for the update of state as
this improves performance. Locked access, direct access to data from threads, and the
mapping of global to local variables (e.g., state_num to st_num, md to local_md)
are illustrated in Figure 7.
state is the entropy pool that is a declared array of of 1023+ MD_DIGEST_SIZE

bytes. However the RNG algorithm only uses state[0..1022] in a circular manner.
There are two index markers state_num and state_index on state which mark
the region of state to be accessed during reads or updates. md is the global message
digest produced by the chosen one-way hash function which defaults to SHA1 making
MD_DIGEST_LENGTH = 20. md is used and updated by each thread as it seeds the RNG.

Each thread maintains a count of the number of message digest blocks used during
seeding. This counter is copied to the global md_count enabling other threads to read it
as another entropy source. The global variable entropy records the entropy level of the
entropy pool. This value is checked when generating random numbers to ensure they
are based on sufficient entropy. initialized is a global flag to indicating seed status.
If not initialized, entropy collection and seeding functions are called.

Randomness Testing 467

Fig. 7. High Level view of OpenSSL RNG

8.1 OpenSSL Entropy Collection

Entropy data is required to seed the RNG. OpenSSL caters for a number of entropy
sources ranging from its default source through to third party random bit generators.
This section discusses the OpenSSL library-supplied entropy collection process. Once
entropy data is collected, it is passed to ssleay_rand_add or ssleay_rand_seed to
be added into the RNG’s entropy pool.
RAND_poll is the key entropy collection function. Default entropy data sources for

Windows installations are illustrated in Figure 8. A check is made to determine the
operating system and if Windows 32 bit, ADVAPI32.DLL, KERNEL32.DLL and NE-
TAPI32.DLL are loaded. These libraries include Windows crypto, OS, and network
functions. Following is an overview of the default entropy collection process.

1. Collect network data using netstatget(NULL, L“LanmanWorkstation”, 0,
0, &outbuf). By using LanmanWorkstation, it returns a STAT_WORKSTATION_0
structure in outbuf containing 45 fields of data including: time of stat collection,
number of bytes received and sent on LAN, number of bytes read from and written
to disk etc. Each field is estimated as 1 byte of entropy. netstatget is also called
with LanmanServer to obtain another 17 bytes of entropy in STAT_SERVER_0.

2. Collect random data from the cryptographic service provided by ADVAPI32. Use
the default cryptographic service provider in hProvider to call CryptGenRandom
and obtain 64 bytes of random data in buff. the RAND_add function is passed 0
as the entropy estimate despite this data coming from an SHA-based crypto RNG
so presumably the OpenSSL programmer does not trust this source. An attempt is
made to access the processor’s on-chip RNG and if successful 64 bytes of random
data are passed to RAND_addwith a 100% entropy value.

468 Y. Wang and T. Nicol

Fig. 8. OpenSSL entropy sources on Windows

3. Get entropy data from Windows message queue, 4-byte foreground window handle,
and 2-byte cursor position. However, dynamically tracing these operations identi-
fied an OpenSSL coding error discussed in Section 8.2.

4. Get kernel-based entropy data by taking a snapshot of the heap status then walk-
ing the heap collecting entropy from each entry. Similarly walk the process list,
thread list and module list. The depth that each of the four lists is traversed is deter-
mined as follows: the heap-walk continues while there is another entry and either
the good flag is false OR a timeout has not expired AND the number or iterations
has not exceeded a max count. This ensures loop termination in a reasonable time.
However, setting the good flag is suspicious as it is set if random data is retrieved
from the Microsoft crypto library or from the hardware DRNG. This is odd as zero
was assigned as the entropy value for the crypto library numbers and data from the
DRNG may be unavailable yet the good flag is still set which limits the amount of
kernel data collected.

5. Add the state of global physical and virtual memory. The current process ID is also
added to ensure that each thread has something different than the others.

8.2 Potential Bugs in OpenSSL Entropy Collection

4 1 8 . CURSORINFO c i ;
4 1 9 . c i . c b S i z e = s i z e o f (CURSORINFO) ;
4 2 0 . i f (c u r s o r (& c i))
4 2 1 . RAND_add(& c i , c i . cbSize , 2) ;

In above OpenSSL code, a static trace implies that all 20 bytes of CURSOR_INFO are
added into the entropy pool as ci.cbsize is set to the size of the CURSORINFO struc-
ture. The programmer has decided that this data is worth an entropy value of 2 which

Randomness Testing 469

is passed to RAND_add. However, a dynamic code trace shows that ci.cbsize is set to
zero after the call to cursor(&ci), where cursor is defined as:

3 9 5 . c u r s o r = (GETCURSORINFO) Ge tProcAddres s (use r , " G e t C u r s o r I n f o ") ;

user is the DLL module handle containing function GetCursorInfo.GetCursorInfo
that returns true on success and ci.cbsize is initialized to sizeof (CURSORINFO)
before the call. However, MSDN does not promise to maintain the fields in this struc-
ture on return yet the OpenSSL code relies on it. Our experiments show the ci.cbsize is
zero yet is attributed an entropy value of 2.
RAND_add calls ssleay_rand_add. The local variables in ssleay_rand_add are

shown in the following.

s t a t i c i n t s s l e a y _ r a n d _ a d d (c o n s t vo id * buf , i n t num , doub le add)
{
i n t i , j , k , s t _ i d x ;
long md_c [2] ;
u n s i g n e d c h a r loca l_md [MD_DIGEST_LENGTH] ;
EVP_MD_CTX m;
i n t d o _ n o t _ l o c k ;

According to the code, the ssleay_rand_add function increments the global entropy
value by 2 if there is not enough current entropy. However, in the Windows environment,
the ci.cbsize is always 0 yet it has 2 bytes of entropy added and if timing causes this
to happen multiple times due to other threads also incrementing the entropy counter,
there could potentially be a situation where there is substantially less entropy than that
reported. Specifically, once the entropy threshold of 32 is reached, entropy is no longer
updated.

8.3 Seeding the RNG

To seed the RNG, RAND_add is called and the collected entropy data, its length and an
entropy estimate are passed in as function parameters. For flexibility, this function is
a wrapper for the actual entropy addition function to enable alternatives to be chosen
by RAND_get_rand_method so the function binding is dynamic through a pointer to
meth->add. RAND_get_rand_method returns the addresses of the preferred functions.
For example, it checks for an external device and if not found it returns the address
of the default functions in a structure of type RAND_METHOD which holds pointers to
the functions. Of the five functions now available, RAND_add() calls meth->add()
which in this case (default) points to the physical function ssleay_rand_add. Study-
ing ssleay_rand_add reveals that the entropy data passed to it is hashed directly into
the RNG’s state.

s t a t i c vo id s s l e a y _ r a n d _ a d d (c o n s t vo id * buf , i n t num , doub le add)

A byte buffer buf of length num containing data, ideally from a good entropy source,
is passed to this function to be mixed into the RNG. add is the entropy value of the
data in buff estimated by the programmer. For system generated entropy, the value
is not calculated but presumably estimated by the OpenSSL developers. RAND_add is
available to the caller to add more or better entropy if required. In a summary, Figure 9
describes the seeding flowchart for OpenSSL random number generators.

470 Y. Wang and T. Nicol

Fig. 9. Seeding the OpenSSL Random Number Generator

OpenSSL provides a second function ssleay_rand_seed to seed the RNG, but this
simply calls ssleay_rand_add, providing the buffer size as the entropy value, i.e., it
assumes 100% entropy.

8.4 OpenSSL Documentation Error

If a user requests secure random numbers but the entropy is inadequate, an error mes-
sage is generated pointing them to: http://www.openssl.org/support/faq.html. The FAQ
under “Why do I get a ‘PRNG not seeded’ error message?” states: “As of version 0.9.5,
the OpenSSL functions that need randomness report an error if the random number
generator has not been seeded with at least 128 bits of randomness”. Yet in the code,
entropy is defined in rand_lcl.h as 32 (bytes) which is 256 bits.

9 Conclusion

This paper proposed statistical distance based LIL testing techniques. This technique
has been used to identify flaws in several commonly used pseudorandom generator
implementations that have not been detected by NIST SP800-22 testing tools. It is con-
cluded that the LIL testing technique is an important tool and should be used for statisti-
cal testing. We also provided a detailed documentation on OpenSSl random generators
and described several potential attacks.

http://www.openssl.org/support/faq.html

Randomness Testing 471

References

1. Ahmad, D.: Two years of broken crypto: debian’s dress rehearsal for a global pki compro-
mise. IEEE Security & Privacy 6(5), 70–73 (2008)

2. Clarkson, J.A., Adams, C.R.: On definitions of bounded variation for functions of two vari-
ables. Tran. AMS 35(4), 824–854 (1933)

3. Debian. Debian security advisory dsa-1571-1,
http://www.debian.org/security/2008/dsa-1571

4. Feller, W.: Introduction to probability theory and its applications, vol. I. John Wiley & Sons,
Inc., New York (1968)

5. Hellinger, E.: Neue begründung der theorie quadratischer formen von unendlichvielen verän-
derlichen. J. für die reine und angewandte Mathematik 136, 210–271 (1909)

6. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your ps and qs: Detec-
tion of widespread weak keys in network devices. In: Proc. 21st USENIX Security Sympo-
sium, vol. 2 (2012)

7. Khinchin, A.: Über einen satz der wahrscheinlichkeitsrechnung. Fund. Math. 6, 9–20 (1924)
8. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uni-

form pseudo-random number generator. ACM TOMACS 8(1), 3–30 (1998)
9. NIST. Test suite (2010), http://csrc.nist.gov/groups/ST/toolkit/rng/

10. OpenSSL. Openssl implementation from http://www.openssl.com/
11. RANDOM.ORG. Random.org, http://www.random.org/
12. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel,

M., Banks, D., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite for Random and Pseudo-
random Number Generators for Cryptographic Applications. NIST SP 800-22 (2010)

13. Wang, Y.: Resource bounded randomness and computational complexity. Theoret. Comput.
Sci. 237, 33–55 (2000)

14. Wang, Y.: A comparison of two approaches to pseudorandomness. Theoretical computer
science 276(1), 449–459 (2002)

http://www.debian.org/security/2008/dsa-1571
http://csrc.nist.gov/groups/ST/toolkit/rng/
http://www.openssl.com/
http://www.random.org/

	Statistical Properties of Pseudo Random Sequences and Experiments with PHP and Debian OpenSSL
	1 Introduction
	2 Notations and Pseudorandom Generators
	3 Limitations of NIST SP800-22
	4 Stochastic Properties of Long Pseudorandom Sequences
	5 Normal Approximations to Slil

	6 Snapshot LIL Tests and Random Generator Evaluation
	7 Experimental Results
	7.1 The Standard C Linear Congruential Generator
	7.2 Mersenne Twister Generators
	7.3 PHP Web Server Random Bit Generators

	7.4 Flawed Debian’s OpenSSL package
	7.5 Summary of Experiments

	8 General Discussion on OpenSSL Random Generators
	8.1 OpenSSL Entropy Collection
	8.2 Potential Bugs in OpenSSL Entropy Collection
	8.3 Seeding the RNG
	8.4 OpenSSL Documentation Error

	9 Conclusion
	References

