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Abstract. Category-level object detection, the task of locating object
instances of a given category in images, has been tackled with many al-
gorithms employing standard color images. Less attention has been given
to solving it using range and depth data, which has lately become read-
ily available using laser and RGB-D cameras. Exploiting the different
nature of the depth modality, we propose a novel shape-based object
detector with partial pose estimation for axial or reflection symmetric
objects. We estimate this partial pose by detecting target’s symmetry,
which as a global mid-level feature provides us with a robust frame of
reference with which shape features are represented for detection. Re-
sults are shown on a particularly challenging depth dataset and exhibit
significant improvement compared to the prior art.

Keywords: Object detection, 3D computer vision, Range data, Partial
pose estimation.

1 Introduction

The recent advances in the production of depth cameras have made it easy to
acquire depth information of scenes in the form of RGB-D images or 3D point
clouds. The depth modality, which is inherently different than color and intensity,
is lately being employed to solve many kinds of computer vision problems, such
as object recognition [12], object detection [7,26], pose estimation [24,1] and
segmentation [25].

Owing to the growing research interest, several datasets that include depth in-
formation have also been publicly released [11,9,26], allowing to evaluate different
algorithms requiring this kind of data. Like image databases for appearance-
based detection (e.g., [5]), the Berkeley category-level 3D object dataset [9]
contains a high variability of objects in different scenes and under many view-
points. Together with available bounding box annotations this dataset is per-
fectly suitable for the task of object category detection.

Considering the available depth data, we propose to tackle the category-level
object detection problem of symmetric objects. While this may seem limiting, a
quick look around reveals the extent to which symmetry is present in our lives,
and it may come as no surprise that most of the objects in the Berkeley category-
level 3D object dataset [9] and in the Washington’s RGB-D Object Dataset [11]
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are symmetric as well. Our proposed detector therefore attempts to exploits sym-
metry to provide partial pose estimation and then constructs a representation
that is based on this estimation. More specifically, once partial pose estimation is
obtained from the symmetry, we construct a feature vector by processing surface
normal angles and bins that are both calculated relative to the estimated partial
pose. In what follows we discuss the relevant background (Section 2) followed by
an elaborate description of our suggested algorithm (Section 3) and comparative
results to previous methods (Section 4).

2 Background

2.1 Employing the Depth Modality

The depth modality has been applied to most kinds of computer vision problems,
even more so following the release of the Kinect camera. This kind of data, in
contrast to plain RGB, enables a much easier calculation of various things such
as the separation of foreground from background (by thresholding distances),
floor detection and removal (by finding the dominant plane in the scene [1]),
segmentation of non-touching objects (by identifying and removing the floor
[1]), or the estimation of surface normals and curvature (e.g., by fitting planes
to 3D points in small neighborhoods [22]).

In previous studies, depth images were often treated as intensity images [26,9],
allowing them to be used with previous algorithms requiring regular images.
Exploiting surface normals as well, Hinterstoisser et al. [8] recently suggested a
combined similarity measure by considering both image gradients and surface
normals. This was done to combine the qualities of color with depth, as strong
edges are prominent mostly on object silhouettes, whereas the normals make
explicit the shape between silhouettes.

2.2 RGB-D Category-Level Object Detection

Object detection in color images has been a subject of research for many years.
With the introduction of depth data to the field new challenges emerge such as
how to properly use this kind of data, or how it may be used in conjunction with
RGB data to combine the spatial characteristics of both channels.

A baseline study by Janoch et al. [9] employed the popular part-based detector
by Felzenszwalb et al. [6]. Taking object’s parts into account, this model is
a variant of the HoG algorithm [4] that combines a sliding window approach
together with a representation based on histograms of edge orientations. This
detector was employed by running it on depth images while treating them as
intensity images. The results indicated that applying this algorithm to color
images always gives better results than applying it over depth images, though it
is important to note that sometimes database objects have no depth information
associated with them (see Figure 1), which gives a somewhat unfair advantage to
color-based algorithms. Tang et al. [27] also uses the HoG formulation, but with
histograms of surface normals that are characterized by two spherical angles.
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Fig. 1. An example of a color and depth image pair from the Berkeley category-level
3D object dataset [9]. The cup, bottle and monitor at the border of the color image are
almost completeley missing in the depth image due to a smaller field of view. Significant
information is also missing from the monitor screen in the center (dark blue depicts
missing depth information).

Since several previous algorithms require prior segmentation [2,21], Kim et
al. [10] alleviate such requirement by detecting a small set of segmentation hy-
potheses. A part-based model generalized to 3D is used together with HoG fea-
tures and other 3D features of the segmented objects. This scheme results in a
feature vector containing both color features and 3D features, which gives bet-
ter results in most categories. Depth information was also used for object size
estimation [23,9] and to combine detector responses from different views [13].

Regardless of the color or depth features employed, an important issue of ob-
ject detection is the treatment of object pose. A robust detector must be general
enough to capture its sought-after object at different poses, and there are dif-
ferent ways of doing so. The näıve way, as shared by most detectors, is to rely
on machine-learning classifiers to be able to generalize diverse training data.
However, machine-learning methods have limitations (like any other method)
and cannot always be expected to generalize well. In order to achieve better
results some try and provide the learning algorithm with ”easier” examples to
learn from. This is done by estimating the object’s pose prior to the classification
phase [15], and using it to align the object to a canonical pose or to calculate fea-
tures in relation to the estimation. For example, Tang et al.[27] sought detection
by estimating the pose using the centroid of normal directions, but unfortunately
with no improvement to detection results.

2.3 Symmetry Detection

Symmetry is a phenomenon occurring abundantly in nature. Extensive research
has been done trying to detect all kinds of symmetry in both 2D [18] and 3D [17].
Complete symmetry detection (including the detection of multiple types of sym-
metry and across multiple objects in an image) is a hard problem due to the
different types of symmetry found in nature. For this reason, research is usu-
ally focused on specific symmetries, ranging from rigid translation [29] and
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reflection [16,19], to non-rigid symmetry [20] and curved glide reflection [14]
(which is a combination of reflection and translation relative to a curve).

Proposed symmetry detection methods may also be classified as solving for
either partial or global symmetries. While an image containing various symmetric
objects is likely to contain a great deal of local symmetries, the image itself may
not necessarily be globally symmetric. Partial symmetry detection entails finding
the symmetric parts of the image, in contrast to global symmetry detection in
which all of the image pixels are expected to participate. More formally, global
symmetry, being a special case of partial symmetry [17], is characterized by a
transformation that maps the entire data to itself, while for partial symmetry a
sought-after transformation maps only part of the data to itself.

Considered somewhere between global and local, images of segmented sym-
metric objects may contain only object points, but under various viewpoints
some of the data will have no visible symmetric counterpart. Working with this
kind of data, a shape reconstruction algorithm by Thrun et al. [28] detects sym-
metry by employing a probabilistic model to score hypothetical symmetries. This
way, several types of symmetry are found, including point reflection, plane re-
flection, and axial symmetry. The several types are found efficiently by taking
into account the relations between symmetry types, as the existence of some
symmetries entails the existence of others as well.

3 Partial Pose Invariant Detector

Considering the abundance of symmetric objects, a robust detection of symmetry
may prove a valuable mid-level feature for many computer vision tasks. Here,
we propose to use it for object detection in depth data, and the overview below
is followed by a detailed account of the calculations.

We first observe that when a complete estimation of an object’s pose is given,
one may improve detector performance. The target can be aligned to match
a given model, or alternatively a richer representation may be obtained using
the pose estimation as a reference. Indeed, a quick and accurate estimation
prior to the detection process is not an easy task. Still, seeking to benefit from
such information, we propose to estimate the object’s pose at least partially, by
exploiting its symmetry properties.

Even though complete pose invariance is highly desired, in practice many
objects rarely appear in all possible poses. For example, looking from a human’s
point of view, surfaces of tables are usually visible but bottoms of cars are
rarely so. In such cases (and many others), even partial knowledge regarding
symmetry may supply most of the pose information of objects observed from
likely viewpoints. Figure 2 presents such cases for one selected class of objects.

As it happens, many objects, including almost all of the objects in both Berke-
ley’s category dataset [9] and Washington’s RGB-D Object Dataset [11], are
highly symmetric. Thus, we limit our scope to working with objects with reflec-
tion symmetry over a plane and note that axial symmetrical objects are also
plane symmetric [28]. Using the detected reflection symmetry plane a reference
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Fig. 2. Typical examples of chair poses. If the symmetry of these chairs (in this case,
about a reflection plane) is known, most pose variability in these examples may be
accounted for. Indeed, when viewed from a typical viewpoint, the pose of a chair varies
by rotation about an axis normal to the floor. This uncertainty is removed once the
chair symmetry plane is known.

frame is constructed, and estimated surface normals [22] are represented as 2
angles based on the known partial pose. The normals are grouped inside bins
calculated relative to the complete reference frame and a feature vector is con-
structed using this resultant histograms.

To conveniently leverage the advantages of depth data mentioned in section 2
we scan the space with a fixed-size 3D box sliding over the cloud of points in
space. This is done in an efficient manner, without considering empty parts of
space, places that are too far away from the camera or those containing just
a small batch of nearby points. For each box the best symmetry plane passing
through the box’s center is found, and features are calculated using the data
points inside the box. This is followed by a classification of the resultant feature
vector using SVM. Since several boxes are usually classified as containing the
same object, nearby detections are removed using a non-maximum suppression
process. In the next sections we describe the calculations performed for every
3D box, consisting of the symmetry detection process and the computation of
the features and feature vector used for classification.

3.1 Symmetry Plane Detection and the Reference Frame

Taking into account every relevant box in space greatly simplifies the symmetry
plane detection task. If it contains the target object, most points inside the
box are likely to belong to that object, while the number of outliers is usually
not too great, a property that distinguishes range data from intensity/color
data. More importantly, scanning the entire space, we are assured that some
box will have its center point coincide with the sought-after symmetry plane.
Since a plane can be represented with a point and a normal, only the normal
remains to solve for. Be that as it may, we assume that points are generated from
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Fig. 3. Points with no visible symmetric partners are colored blue in the rightmost
image of the two examples. The points are identified by the process described in the
text, given the symmetry plane depicted in the 3rd image (in which points are colored
according to their side of the plane). The RGB-D image for the right example is taken
from the RGB-D People Dataset [26].

a perspective imaging device (from a single viewpoint), so the corresponding
symmetric point of many inlier points (or even all of them) is simply not visible.
These points are first identified following a scoring strategy that ranks every
possible reflection plane normal. For that purpose, the 2 angles comprising the
normal’s spherical representation1 are quantized and the best pair is chosen using
a score penalizing symmetric point pairs (relative to the candidate plane) with
non-symmetric surface normals (in contrast to Thrun et al. [28]). The formal
details follow below.

Prior to calculating a score for a candidate symmetry plane, we first deal with
the inlier points without symmetric partners. Self occlusion dictates that when
observing an object from one side of the symmetry plane, most of the visible
inlier points that are observed will be the ones that share the same side with the
camera. For the same reason, inlier points that are observed on the other side
should all have visible symmetric points in the camera’s side (as portrayed by
the ”lady” object in Figure 3). Knowing this, we find these points on the closer
side of the candidate plane with no partners on the farther side and disregard
them from the score calculation. To do so we rely on surface normals, observing
that a point x on a surface with an estimated surface normal [22] nx is visible
from viewpoint pv if [22]:

nx · (pv − x) > 0. (1)

Consequently, we look for points whose symmetric partner has a surface normal
that points away from the camera. A point x with estimated normal nx is re-
flected over a candidate symmetry plane with center point p and normal np by:

x̃ = x− 2 · np · dx, (2)

where dx is the signed distance between the point x and the plane. Correspond-
ingly, x’s normal is reflected as well by:

ñx = nx − 2 · np · dn, (3)

1 A normal’s magnitude is always 1 and thus only its direction should be represented.
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(a) (b)

Fig. 4. Determining a reflection score for point x using its reflection x̃, the closest
point y is found (a), then the point is scored according to the distance d and normal
difference α (b)

where nx is the normal we wish to reflect and dn is the signed distance between
the normal’s head and the candidate plane, centered at the camera’s axes origin
with normal np. Thus x has no symmetric partner if:

ñx · (pv − x̃) ≤ 0. (4)

Following that, each point is assigned a point reflection score that measures
the ”wellness” of its reflection. An observed point y with normal ny closest to
x̃ (and in the same side) is found using a kd-tree data structure and the score
of x is determined by:

xscore = d+ w · α, (5)

where d is the distance between x̃ and y, α is the angle between ñx and ny

(see Figure 4), and w is a weighing factor. A lower value implies good symmetry
and the best plane is chosen as the one that minimizes the mean score of all the
contributing points 2.

In order to have a complete reference frame for the symmetry plane we endow
np with another unit length reference vector r that lies on the plane. It is chosen
to be on the verge of visibility according to equation 1, and to be directed
upwards. Summarizing these constraints we get:

1. ‖r‖ = 1 (r is of unit length)
2. r · (pv − p) = 0 (r is on the verge of visibility)
3. r · np = 0 (r is on the symmetry plane)
4. r · [0, 1, 0] ≤ 0 (r points up3)

Therefore, we calculate r with:

r = np × (pv−p)
‖pv−p‖ , (6)

2 Points from the farther side to the camera, and closer side points for which equation
4 does not hold.

3 Working relative to the Kinect camera’s coordinates (in which the y axis points
down) the ”up” direction is defined as the negative y direction.
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and complete the reference frame by calculating the third orthonormal vector:

i = np × r. (7)

Examples of detected symmetry together with a complete reference frame may
be seen in Figure 5 for two objects from the chair category.

Fig. 5. The detected symmetry plane and reference frame of two chairs. The vector
np is the normal of the detected plane (blue), r points up (green), and i is the cross
product of the two vectors (red).

3.2 Feature Vector Construction

Our feature vector for the purpose of detecting objects with varying pose is
based on histograms of normals that are accumulated into angular bins that are
created relative to the reference frame. Our representation of normal directions
is relative only to the estimated symmetry.

For every point in the box we use a representation of the surface normal based
on two angles. However, instead of representing normals with regular spherical
coordinates (that will depend on r) we use two angles that are independent of
our choice of reference frame. Let x be a cloud point with surface normal nx,
and let x̄ and n̄x be their projections on the symmetry plane (p,np). The first
angle θ ∈ [0, π] we use is the one between the normal nx and the plane normal
np:

θ = cos−1(nx · np). (8)

The second angle φ ∈ [0, 2π) in our representation is the signed angle between
the projected normal n̄x and the vector connecting the box center p with the
projected point x̄:

φ = cos−1( n̄x

‖n̄x‖ · p−x̄
‖p−x̄‖ ). (9)

This is then followed by an addition of π depending on the direction of n̄x

relative to direction vector:

direction = np · p−x̄
‖p−x̄‖ . (10)

These two angles supply us with a representation that depends only on the
estimated symmetry plane. We selected this particular representation of surface
normals because it is fixed under different poses of an object.
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The normals, represented using the above two angles, are accumulated in
histograms based on the spatial location of their points. In order to be robust to
variations of the arbitrarily chosen r vector a given box is divided into spatio-
angular bins based on distance from the symmetry plane together with angular
distance from r, as can be seen in Figure 6. Each bin is associated with two
1D histograms for the angles described above, which are then normalized and
concatenated to form the feature vector that is then classified using RBF-kernel
SVM [3].

(a) (b) (c) (d)

Fig. 6. Boxes are divided into spatio-angular bins (b). Each point is associated with
two angles, depicted in (c) and (d).

4 Experimental Results

We evaluate our proposed approach over the Berkeley category-level 3D object
dataset [9] that exhibits significant variations in terms of objects and poses. The
dataset supplies basic object annotations in the form of 2D bounding boxes that
we use for the evaluation of detector performance. However, our detector requires
training examples in the form of fix-sized 3D bounding boxes in space. To this
end we extended the provided annotations and added the 3D center point of
every annotated object4.

Object detection algorithms incorporating depth information may be grouped
in two categories, either working with depth only, or combining depth and color.
The former allows to understand the strength of the depth modality in itself
(for object detection), while the latter better leads to an understanding of the

4 Supplementary information, including our annotations, will be available at
http://www.cs.bgu.ac.il/~icvl

http://www.cs.bgu.ac.il/~icvl
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role depth plays in relation to color (appearance) and the interaction between
the two modalities. Seeking to properly compare the two groups of detectors,
it is important to note that not only the latter contains more information, but
also that depth-only detectors suffer an intrinsic disadvantage in this particular
dataset, since objects’ depth information is sometimes completely missing due
to the smaller field of view of Kinect’s depth camera compared to its color
camera, or due to imaging artifacts resulting in pixels with no depth information
(see Figure 1 again). For these reasons we compare our results to algorithms
employing only depth information.

Detection results for the different categories in the dataset are presented in
Figure 7 and compared to the depth-only baseline by Janoch et al. [9]. As can
be seen, our proposed approach displays a significant improvement for all ob-
ject categories other than monitors. We note that previous results obtained by
algorithms using both color and depth achieve better performance but are not
considered here for their reliance on different (and richer) sensory data.

Fig. 7. Average precision of depth-only algorithms over the Berkeley category-level 3D
object dataset [9]. Our method presents significant improvement for most categories
except for the monitor class.

Finally, examples of true and false positives over selected categories are illus-
trated in Figure 8 (for chairs) and Figure 9 (for cups).
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(a) (b)

Fig. 8. Examples of true positives (a) and false positives (b) of chairs. As can be seen,
chairs with different poses and different geometry are successfully detected, while scenes
with chair-like geometry may lead to false detection. Such structures may be induced
by couches, toilets, monitors placed on desks, or desks placed next to walls.

(a) (b) (c)

Fig. 9. Examples of true positives (a) and false positives (b) of cups. Cups with different
shapes and poses are detected, and cup-like structures may lead to false detections.
Red rectangles mark the precise locations of hallucinated cups, and as can be seen, may
be induced by bottles, mice, bowl-parts, or corners of walls, drawers or speakers. The
red curves in (c) illustrate a cross-sections of a cup, a bowl, and a corner (respectively,
from top to bottom), portraying the large simmilarity between shapes.

5 Conclusions and Future Work

The current availability of depth cameras has made depth information easily
accessible, with many possibilities for new and exciting directions of research.
The unique properties of this kind of information raises the question of how
to properly exploit it. Focusing on object detection from depth-only data, we
addressed this question with an object detector involving pose estimation. Since
a complete and accurate pose estimation would be too expensive for a sliding
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window detector, we compute a partial pose based on symmetry, a property that
is robust as a mid-level and global feature over object’s points. The obtained
symmetry, detected using surface normals, may account for most of the pose
variations of many objects, and is leveraged by a specially crafted feature vector
consisting of angular binning and histograms of surface normals. Our approach
does not require registration and can be used when only depth information
is present (as is the case for most depth cameras). Under such conditions it
exhibits significant improvement in performace compared to previous depth-only
detection algorithms.

Much work can be done to continue and build on this framework. The symme-
try detection process can be made better and more suitable for this kind of data,
in which most points are inliers, and outliers usually lie on the box’s borders.
Incorporating the proposed approach together with color gradients is likely to
present further improvement for cases where a registered pair of color and depth
images are available.
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