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Abstract. Polygonal objects are prevalent in man-made scenes. Early
approaches to detecting them relied mainly on geometry while subse-
quent ones also incorporated appearance-based cues. It has recently been
shown that this could be done fast by searching for cycles in graphs of
line-fragments, provided that the cycle scoring function can be expressed
as additive terms attached to individual fragments. In this paper, we pro-
pose an approach that eliminates this restriction. Given a weighted line-
fragment graph, we use its cyclomatic number to partition the graph into
managebly-sized sub-graphs that preserve nodes and edges with a high
weight and are most likely to contain object contours. Object contours
are then detected as maximally scoring elementary circuits enumerated
in each sub-graph. Our approach can be used with any cycle scoring func-
tion and multiple candidates that share line fragments can be found. This
is unlike in other approaches that rely on a greedy approach to finding
candidates. We demonstrate that our approach significantly outperforms
the state-of-the-art for the detection of building rooftops in aerial images
and polygonal object categories from ImageNet.

1 Introduction

Polygonal objects ranging from fields and rooftops in aerial images to signs, furni-
ture, and facades in ground-level views are prevalent in man-made environments.
They have received much attention since the very beginning of the Computer
Vision field, starting with the Blocks World [35]. Many early approaches formu-
lated the problem of finding them in terms of perceptual grouping of edges that
exhibit the right geometry [21]. Over the years, it has become apparent that only
looking at edges was insufficient and that, to distinguish valid polygonal regions
from spurious ones, it was indispensable to also consider the pixels these edges
enclose [5].

Many recent algorithms do this by treating image edges or line fragments as
nodes of graphs whose cycles represent closed contours. Delineating polygonal
regions is then accomplished by finding those cycles that minimize an appro-
priate objective function. Even though the number of potential cycles can grow
very large even in moderately-sized graphs, this can be done efficiently when the
objective function can be written as a sum of terms, one for each edge of the
cycle [45,47]. However, this is limiting because using more complex non-linear
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(a) (b) (c) (d)

Fig. 1. Free-shape polygonal object detection: (a) Aerial image of a set of buildings and
(b) detected image line fragments that define the nodes of our line fragment graph and
their associated image regions. (c) Graph node and edge weights are used to quickly
prune the search space and focus on sub-regions likely to contain object contours.
Thicker line fragments and darker red highlights reflect larger node and edge weights
respectively, each line fragment highlighted by its maximum incident edge weight. (d)
We detect polygonal objects as high scoring circuits in the partitioned line fragment
graph. Detected rooftops are displayed in red. Best viewed in color.

objective functions, such as those based on kernel SVMs, is required in many
real-world scenarios. Furthermore, when looking for multiple objects, these ap-
proaches tend to rely on finding the best candidate, removing the corresponding
edges, and then finding the next one. This precludes finding shapes that share
edges, which is important in densely packed environments.

In this paper, we overcome these limitations using a graph search algorithm
that partitions the graph of line fragments into smaller ones using discriminative
node and edge weighting functions that encode how likely a line fragment or line
fragment pair is to belong to an object. We constrain the size of each sub-graph
using its easy to compute cyclomatic number [14] to limit the number of its
cycles. Object contours are then found as elementary circuits in each sub-graph.
As we show, for typical image, line-fragment graphs, object contours can be found
within relatively small-sized sub-graphs having only a few elementary circuits,
that can be enumerated efficiently. Fig. 1 illustrates our approach. In contrast
to previous methods, it lets us use generic shape and appearance cues to score
each cycle that are not restricted to linearly additive measures and can easily
generate multiple hypotheses that share some edges. As seen in our experiments,
this yields significantly better accuracy at no increase in computational cost.

We evaluate our approach for the detection of building rooftops in aerial im-
ages and other polygonal object categories from ImageNet [12], and explore the
use of Histogram of Oriented Gradients [11] and normalized color histogram rep-
resentations as cycle scoring objective functions, each of which are non-additive.
As seen in our experiments, our approach significantly outperforms recent polyg-
onal and free-shape object detection methods [47,43].

2 Related Work

Early approaches detected shapes in images using perceptual saliency criteria
to group image edgels [20,33,39]. An iterative optimization method to group
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image edgels based on local curvature and curvature variation was proposed in
[39]. Similar ideas were explored in [20,33] that investigated measures such as
co-curvilinearity and co-circularity for perceptual grouping. Spectral methods
for grouping the elements of the resulting edgel graph [34,36,38] and probabilis-
tic approaches useful for incorporating more global dependencies [10,13,16] and
edgel detection uncertainty [9] have also been proposed. While useful for find-
ing dominant shapes in images, these methods have largely focused on shape
saliency and less on finding objects of a particular shape.

Voting methods based on the Hough Transform can be used to detect image
contours of a specific shape [2,3,24,28]. With these approaches, each edgel votes
for its shape parameters and shape instances are detected as peaks in the result-
ing hypothesis voting space. The Hough Transform has been demonstrated for
the detection of simple shapes including lines, circles, and rectangles [24,28] and
regular polygons whose edges inscribe a circle [3]. It has also been applied for
the detection of arbitrary shapes [2], but becomes computationally prohibitive
for complex shapes involving many parameters.

To overcome these limitations many methods have been proposed that lever-
age annotated images to learn models of object shape [4,8,7,19,25,32,40]. Statis-
tical shape models define flexible and rich representations capable of efficiently
modeling and detecing objects with a complex geometry. Initial approaches de-
fined holistic or “top-down” models that incorpated global object shape statis-
tics [4,8,7], a prevalent example being the Active Shape Model [8] that leverages
dominant modes of object shape variation to define a deformable object tem-
plate. More recent methods utilize local models of object geometry and learn a
grammar of object parts that are individually detected in the image and then
fused in a bottom-up fashion [19,25,32,40]. Although versatile, these methods
have largely focused on modelling object shape and less on appearance.

Segmentation-driven detection methods comprise an alternative class of tech-
niques that exploit image region or appearance cues to generate object hypoth-
esis obtained from a bottom-up segmentation of the image [43,17,6,37,26]. [17,6]
form object region hypothesis from multiple figure-ground image segmentations
each obtained using either varying segmentation parameters or with different
foreground seed locations. Similarly, [43] employs several hierarchical image seg-
mentations computed across various image representations and grouping criteria.
These methods largely focus on deriving category-independent region proposals,
however, which although related is a different problem than what we address in
this paper. Also, most of them do not account for region geometry.

Recent methods have focused on finding polygonal or free-shape objects using
both object shape and appearance [44,46]. [46] extends the branch-and-bound
method of [27] to find k-sided bounding polygons with a bag-of-words appearance
model [41]. Similarly, [44] proposes a branch-and-cut algorithm to efficiently find
the best scoring free-shape object region. While efficient, these methods rely on
a linearly additive objective function. Yet many measures of interest involve
non-additive scoring functions and therefore cannot be used in conjunction with
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these methods. In contrast, our approach can be employed for polygonal object
detection with any scoring function.

Probably the closest approach to ours is the ratio-contour algorithm [45,47,48]
and related approaches that formulate salient boundary detection as finding min-
imum cost cycles in a graph [5,15,29]. Finding the minimum cost cycle of a graph,
however, can only be done efficiently when the scoring function can be written as
a sum of terms, one for each edge of the cycle [45]. Furthermore, when searching
for multiple objects, these approaches employ a greedy optimization. Each sub-
sequent solution is found by removing the previous best solution from the search
space, which precludes finding shapes with common nodes or edges. In contrast,
our approach enables the use of generic shape and appearance measures beyond
linearly additive ones and can easily generate multiple, overlapping hypotheses.

3 Polygonal Object Detection

Our goal is to find polygonal objects of arbitrary complexity. We start from line
fragments and treat these fragments as nodes of a graph whose edges encode
geometric relationships. Cycles in this graph define polygonal shapes that enclose
an image region. Our problem then amounts to finding the best possible such
cycles in terms of a suitable objective function. We are particularly interested
in finding elementary circuits, i.e., connected cycles whose vertices have degree
two, as these generally correspond to well defined object boundaries that are each
comprised of a single simple cycle1. In general, this is difficult because, even in
relatively small graphs, the number of potential cycles can be exceedingly large.
For a fully connected graph with n nodes, the number of elementary circuits can
grow faster than 2n [23], which is computationally prohibitive for most real life
applications. In this section, we first describe our graph construction approach
in more detail. We then outline our graph-partitioning algorithm to efficiently
search the potentially large space of all possible graph cycles.

3.1 Graph Construction

As discussed above, our first step is to extract line fragments and use them to
build graphs such as the one of Fig. 2. As polygonal outlines should be evaluated
not only according to their geometry but also to the color and texture of the
area they enclose, we take our line fragments to be straight segments extracted
using a hough-style algorithm from the boundaries of Maximally Stable Extremal
Regions (MSERs) [30]. We find MSERs using a combined edge and intensity
image whose edge scores are computed with the method of [1] as described in [42].
This results in a better over-segmentation of the image that more faithfully
respects its underlying contours.

The detected image line fragments define the nodes of our graph. Each line
fragment is oriented in a clockwise direction along the boundary of its associated

1 Elementary circuits can contain self-intersections, however, this can be easily checked
during their enumeration.
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Fig. 2. Line fragment graph. Line segments are shown for two neighboring image re-
gions colored according to their associated region that define the nodes of the graph.
Each line fragment is oriented in a clockwise direction and we instantiate directed
edges between nearby line fragments of compatible orientation, displayed as dashed,
black arrows. Elementary circuits in the graph correspond to closed polygonal image
contours whose image regions all lie within the same contour.

MSER region and we instantiate directed edges between nearby line fragments
of compatible orientation, as illustrated in Figure 2. The distance between two
directed lines is defined as the minimum distance between the head and tail
endpoints of each line. In our implementation, we declare two lines as nearby if
their distance is within 50 pixels of one another. A pair of lines are of a compatible
orientation if they are nearby and their minimum head-tail distance is less than
their head-head and tail-tail distances. Elementary circuits in the graph define
closed polygonal outlines that enclose their respective MSERs. The large number
of cycles in this graph is in general prohibitive making exact search difficult. In
what follows, we outline an efficient search algorithm for addressing this hard
optimization problem.

3.2 Graph-Partition Search Algorithm

More formally, let I be an image and {vi}Ni=1 the detected line fragments in I. To
formulate our search problem we define a weighted, directed graph G = 〈V,E〉
whose nodes are the detected line fragments vi ∈ V and directed edges eij ∈ E
are defined between nearby line fragments. The node and edge weight functions,
u(v) : V → R and w(e) : E → R, encode how likely a line fragment or pair of
line fragments is to belong to an object contour that are learned from labeled
object contours as described in Section 3.4.

Each elementary circuit c ∈ G defines a closed, polygonal outline. Let f(c)
be a scoring function that represents the likelihood that c truly is the outline
of an object. We wish to find the image circuit or set of image circuits c∗ that
maximize f :

c∗ = argmaxc∈Gf(c). (1)

In the special case of additive scoring functions defined over sums of the node
and edge weights, u and w, this maximum can be computed in polynomial time
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[45,47]. Yet, there are many scoring functions of interest that are non-additive.
For such functions finding the globally optimal solution of Eq. 1 is difficult.
Instead, we propose to find local optima over a partitioning of the line fragment
graph to result in an efficient search algorithm and address this challenging
optimization problem. We first provide a brief overview of cycle space graph
theory that we use to obtain an upper bound on the number of cycles in a graph
and then present our graph-partition search algorithm.

Consider a spanning tree T of G. For each non-tree edge e ∈ G let ce be the
path connecting the endpoints of e in T . ce is an elementary circuit of G, also
referred to as a fundamental circuit. Together the ce form a basis for the cycle
space of G [14]. Let c ∈ {0,±1}|E| define a cycle in G such that each entry of c
is ±1 if the corresponding directed edge in G belongs to it and is 0 otherwise2.
Any cycle c can be expressed as a linear combination of the fundamental circuits
ce:

c = Cex, (2)

where Ce ∈ {0,±1}|E| × {0,±1}m, each column of Ce is a fundamental circuit
ce of G and x ∈ {0,±1}m are the coefficients of c. m = |E| − |V | + 1 is the
cyclomatic number of G and is the dimension of its cycle space.

While any cycle can be expressed as a linear combination of cycle basis, for a
directed graph not all linear combinations of cycle basis produce a valid graph
cycle. Let X = {x ∈ {0,±1}m | Cex is a cycle in G} define the set of valid cycle
coefficients. Our search problem can be re-expressed in terms of the cycle space
of G as,

x∗ = argmaxx∈Xf(Cex). (3)

Eq. 3 defines our problem in its most general form, in that it allows for the
maximization of any scoring function f . Finding an exact solution, however, is
difficult and would require time exponential in m. Moreover, although m can be
used to obtain an upper bound on the number of cycles in a graph, a graph’s cycle
space can span generic cycles beyond elementary circuits. Instead, we propose
an approximate solution based on a partitioning of the line fragment graph and
restrict our search to elementary circuits that can be found efficiently for each
sub-graph using [23].3

A key insight behind our approach is that object contours are typically con-
tained within relatively small sized sub-graphs of the line fragment graph. Our
goal is then to partition the graph into smaller sub-graphs that are most likely
to contain object contours. Unlike other approximate search methods, most
of which are based on a greedy merging of high scoring contour fragements
[10,13,16], we prune weak edges so as to preserve the flexibility for the remain-
ing fragments to re-form cycles according to more generic measures. This is
accomplished by using the node and edge weight functions u and w to itera-
tively preserve nodes and edges with a high weight and discard those with a

2 For ease of notation, we use c to denote both elementary circuits and generic graph
cycles.

3 When enumerating elementary circuits, we additionally constrain our search to ones
that do not contain intersecting line fragments or graph edges.
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low one. This results in an efficient search algorithm that operates on a set
G′ = {Gi = 〈Vi, Ei〉}Pi=1, Vi ⊆ V and Ei ⊆ E, of P small-sized sub-graphs ob-
tained by a partitioning of G that retains nodes and edges with a large weight.

We can then re-express the original optimization of Eq. 1 with respect to this
partitioning and enumerate the cycles of G as those of each of its sub-graphs,

c∗approx = argmaxc∈G′f(c). (4)

The worst-case complexity of our algorithm is O(2mmax), where mmax is the
cyclomatic number of the largest sized sub-graph. Although this already repre-
sents a significant savings for mmax � m, the resulting algorithm can still be
restrictive. Thankfully the number of elementary circuits in a typical line frag-
ment sub-graph is significantly smaller than 2mmax and they can be enumerated
rather efficiently4.

Our graph search algorithm is summarized as Algorithm 1. The node weight
function u is first used to prune low-scoring nodes from the graph whose weight is
below a threshold μ. The edge weight function w is then recursively thresholded
to divide G into P sub-graphs each having a cyclomatic number of at most
mmax, such that the lowest scoring edges are removed from the graph. Together
μ and mmax define the parameters to our search algorithm that can be used
to tradeoff computational cost with approximation quality. As evidenced in our
experiments, our graph-partition based search algorithm results in empirically
good solutions using generic weight measures while maintaining a relatively low
computational cost.

3.3 Cycle Scoring Functions

The cycle scoring functions are used to model the global appearance and shape
of an object and select the most promising cycles. We employ a Histogram of
Oriented Gradients (HOG) representation in combination with a Support Vector
Machine (SVM) classifier to define our cycle scoring function. Provided labeled
object contours, we learn a HOG-SVM cycle scoring function for each object
class as

fHOG(c) =
∑

i

αiK(Ψ(ci), Ψ(c)), (5)

where ci are circuit support vectors learned from training data and αi their
corresponding weights, and K(·) is a pre-specified kernel or similarity function.
Ψ(c) is a HOG appearance vector computed over its rectangular extent in the
image, found by orienting c about its dominant orientation and normalizing it
to a canonical scale.

The HOG-SVM scoring function cannot be decomposed over edge weights of
G, particularly in the case of non-linear kernel functions. In fact, even for a linear
kernel function, as it is scaled and oriented about each cycle, the HOG cycle

4 In our experiments, setting mmax = 40 resulted in approximately 3k elementary
circuits per image on average.
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Algorithm 1. Graph-Partition Search Algorithm

Input: An image I , line fragment graph G = 〈V,E〉, cycle score function f(c) :
{0, 1}|E| → R, and node and edge weight functions u(v) : V → R and w(e) : E → R.

Parameters: Node weight threshold μ and sub-graph cyclomatic number threshold
mmax.
Output: Object contours c∗.

Initialize C = ∅.
if cyclomatic number of G > mmax then

τ = mine∈E w(e).
V ′ = {v ∈ V |u(v) ≥ μ}.
E′ = {eij ∈ E|(vi, vj ∈ V ′) ∧ (w(eij) > τ )}.
Define G′ = 〈V ′, E′〉.
for each connected component Gi of G

′ do
ci = GraphPartitionSearch(Gi, f, u, w, μ,mmax)
Add ci to C.

end for
else

Enumerate elementary circuits C in G using [23].
end if

if initial call to GraphPartitionSearch then
c∗ = argmaxc∈Cf(c).

else
c∗ = C.

end if

Return: c∗.

feature is non-additive. The HOG representation has been widely applied for
rectangular subwindow search [11,18]. In this work, we extend it for polygonal
object detection. This can offer distinct advantages over the commonly used
additive measures based on a bag-of-words [47], particularly for polygonal object
classes whose shape is a discriminative cue.

In addition to HOG, we also consider a normalized color histogram feature,
that for each RGB channel bins the color values within the cycle and normalizes
each histogram to sum to one, and a bag-of-words representation as in [47]
except with a Radial Basis Function (RBF) kernel. Similar to HOG, these define
non-additive image measures that can be exploited by our approach.

3.4 Node and Edge Weight Functions

The node and edge weight functions encode how likely a line-fragment or line-
fragment pair belong to an object that we use to guide the partitioning of the
graph into meaningful sub-graphs. We use RBF-kernel SVMs to learn the node
and edge weight functions from labeled line fragments and line fragment pairs
based on their local geometry and appearance. A line fragment is labeled as
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Fig. 3. Precision-recall curves for building rooftop detection. Results are displayed for
the different settings of our approach and the baselines. The HOG and color RBF
measure achieves the best performance, significantly outperforming the baselines and
linear bag-of-words. Best viewed in color.

positive if it lies along the boundary of a ground-truth object instance and
negative otherwise. Similarly, a pair of adjacent line fragments are labeled as
positive if they both lie on the object boundary, and as negative if one lies on
the boundary and the other does not.

We characterize the local appearance of a line fragment using a HOG de-
scriptor computed over its scale and orientation normalized MSER region. We
additionally use MSER color histogram features computed separately over both
RGB and YCbCr channels and the MSER stability. For line pairs we compute
a HOG descriptor over the scale and orientation normalized region defined by
the combination of their MSERs and the absolute difference between their color
histograms. Local geometry is then encoded using the angle and relative distance
between adjacent lines as in [15]. The feature vector of a single line fragment
or line fragment pair is then formed by concatenating its features into a single
vector provided as input to the SVM.

4 Experiments

In this section, we demonstrate our approach for the purpose of detecting polyg-
onal objects in man-made environments. We first consider the detection of build-
ing rooftops in aerial images. While there is an extensive literature on this topic
(e.g., for a survey see [31]), in this paper we focus on techniques that detect
rooftops as cycles in line segment graphs [5,22] and compare to the state-of-
the-art graph cycle detection method [47]. We then demonstrate our approach
for more generic object detection using ImageNet [12]. In what follows, we first
discuss our datasets, experimental setup and baselines, and then present our
results.
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Fig. 4. Rooftop Detection. Rooftop detections obtained by our approach and the base-
lines are displayed at a 50% recall rate. Correct detections are shown in green and
false ones in red. Our approach significantly outperforms the baselines. Unlike bag-
of-words, HOG not only encodes object appearance but also its global shape which
can offer a better description of the polygonally shaped rooftops in these images and
likely accounts for its better performance over ratio-contour. Additionally, false detec-
tions result in missed rooftops for ratio-contour, that do not degrade the recall of our
approach even when using a bag-of-words scoring function. Best viewed in color.

4.1 Datasets

We use two datasets to evaluate our approach. The first consists of 65 aerial
images of rural scenes containing several building rooftops many of which exhibit
a fairly complex polygonal geometry. Each image is of size 1000 × 750 pixels.
An example is shown in Figure 1. The second includes images from 10 different
object categories from ImageNet [12]. They are sign, screen, remote control,
cleaver, computer mouse, ipod, wine bottle, mug, beer bottle, and lampshade. We
selected around 100 images per category, which were randomly split into equal-
sized training and testing sets. We manually labeled the ground-truth contours
of the objects in each image.

4.2 Experimental Setup and Baselines

We experiment with both additive and non-additive cycle scoring functions: a
linear and RBF-kernel SVM using bag-of-words (BOW) features, which we refer
to as L-BOW and K-BOW in our experiments and linear and RBF-kernel
SVM with HOG and RGB color features referred to as L-HOG&RGB and
K-HOG&RGB. Of these, L-BOW is the only additive one. For bag-of-words,
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Table 1. Average precision on ImageNet. The average precision of each method is
shown along with the mean average precision (mAP) across each category of ImageNet.
Our approach results in a significant improvement over the baselines and linear bag-
of-words.

Method/Category sign screen remote cleaver mouse ipod wine mug beer l-shade mAP

RC-BOW [47] 0.37 0.43 0.42 0.06 0.10 0.27 0.08 0.16 0.15 0.05 0.21
SS-HOG&RGB [43] 0.35 0.43 0.46 0.30 0.37 0.38 0.47 0.38 0.47 0.34 0.39

L-BOW 0.42 0.25 0.60 0.32 0.26 0.38 0.29 0.15 0.17 0.17 0.30
K-BOW 0.47 0.30 0.54 0.34 0.33 0.40 0.36 0.19 0.27 0.32 0.35

L-HOG&RGB 0.49 0.49 0.63 0.42 0.50 0.32 0.47 0.20 0.34 0.49 0.44
K-HOG&RGB 0.54 0.59 0.64 0.47 0.54 0.41 0.58 0.27 0.40 0.51 0.49

we used SIFT keypoint descriptors and a dictionary containing 500 visual words
computed with k-means. The cycle SVMs are trained from labeled samples found
with our graph search algorithm. Cycles having an overlap greater than 60% with
the ground-truth are labeled as positive and those with less than 50% overlap as
negative. The percent overlap between two contours is computed as the area of
their intersection divided by that of their union. For our graph search algorithm,
we use a conservative node weight threshold of μ = −1 and only disregard
nodes that are highly unlikely to belong to an object and we cross-validate
mmax with values mmax = 10, 15, 20, 25, 30, 35, 40 using 5-fold cross-validation
on the training data.

We compare our approach with the state-of-the-art free shape object detection
method–ratio-contour [47]. The ratio-contour algorithm is limited to additive
measures, such as bag-of-words feature counts or area. We therefore evaluate it
using a bag-of-words feature representation as described in [47] with the same
MSER line fragments used by our approach, referred to as RC-BOW in our
experiments. For multiple object detection, ratio-contour applies a greedy search
that removes the optimal cycle from the graph and then is re-run to find the next
one. In practice, we run it on each image until it cannot find anymore cycles.
We also compare to the selective search algorithm of [43] as it is a representative
approach that provides a similar or favorable performance to many of the recent
segmentation-driven detection techniques [43], referred to as SS in our experi-
ments. We use the code provided by the authors with the ‘Fast’ setting of their
approach that resulted in a manageable number of object region hypothesis, on
average 5.5k per image, and scored its regions using an K-HOG&RGB SVM
classifier as this was our best performing scoring function.

We evaluate the baselines and each setting of our approach using precision-
recall curves where detection accuracy is measured by the percentage overlap
between the detected and ground-truth contours. As in previous work, a detec-
tion is considered to be correct if the detection accuracy is greater than 50%.

4.3 Results

Rooftop Dataset: Figure 3 displays the precision-recall curves for each method
on this dataset. Our approach with the HOG and color RBF scoring function
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consistently yields the best performance. Unlike bag-of-words, HOG encodes
both global shape and appearance which is important for detecting polygonal
objects. Additionally color helps avoid false detections such as those belonging to
grass or dark shadow regions. When only using bag-of-words, introducing a non-
linear kernel function also results in a significant improvement. Ratio-contour,
however, is limited to a linear bag-of-words classifier, and cannot take advantage
of non-additive scoring functions.

Furthermore, even when using the same linear bag-of-words scoring func-
tion, our approach still outperforms ratio-contour. This is due to ratio-contour’s
greedy nature. False detections can result in missed detections. This is illus-
trated by Figure 4 that displays the detections obtained by our approach along
with those of ratio-contour on a set of representative images. Compared with the
combined HOG and color scoring function, linear bag-of-words results in many
more false detections. These are often higher scoring than cycles correspond-
ing to true object contours, which for ratio-contour results in deleted building
rooftop hypotheses. By contrast, our approach is not affected by this problem.

Our approach also outperforms selective search both in detection accuracy
and quality, for which example detections are also displayed in Figure 4. This
is in part due to our use of geometry for forming region hypothesis resulting in
cleaner polygonal outlines, but can also be attributed to our use of discriminative,
category-specific node and edge weight functions that help to quickly reduce and
focus region hypothesis to those likely to be an object and increase accuracy.

ImageNet Dataset: Table 1 shows the average precision obtained for each
one of the 10 ImageNet categories we have worked with. The corresponding
precision-recall curves are displayed in Figure 5. Our approach achieves the best
performance using a HOG and color RBF classification function and yields a
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Fig. 5. Precision-recall curves on Imagenet. The results for the different settings of
our approach and the baselines are shown for each category. Our approach obtains a
significant improvement over the baselines and linear bag-of-words across all categories.
Best viewed in color.
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Fig. 6. Polygonal object detection with ImageNet. The detections obtained by our ap-
proach with the combined HOG and color RBF scoring function and the baselines are
shown for example images from each category at 50% recall. Correct detections are
shown in green and false ones in red. The baselines result in many false and missed
detections that are significantly reduced with our approach. Best viewed in color.

significant improvement over the baselines, especially ratio-contour and linear
bag-of-words, once again demonstrating the importance of non-additive measures
like HOG. However, even for linear bag-of-words our approach exhibits a higher
average precision than ratio-contour, which further illustrates the advantages of
our graph search algorithm and suggests that it is a better way to prune the
graph than relying on greedy search. We outperform selective search on 8 of the



330 X. Sun, C.M. Christoudias, and P. Fua

10 datasets, with the exception of mug and beer bottle, as MSER detection was
unreliable on these datasets, ratio-contour being similarly affected.

The detections returned by both our approach and the baselines on a set of
example images from each category are shown in Figure 6. Ratio-contour suffers
from significantly more false and missed detections than our approach. This is
in part because for many of these categories, shape is an informative cue that
bag-of-words does not capture and in part because of the greedy nature of the
ratio-contour algorithm, which is not well suited to the detection of multiple
objects. Selective search also results in more false detections and it often detects
noisy object contours as it does take into account their geometry.

The computational requirements of our algorithm are comparable to those
of ratio-contour. The rooftop dataset contains fairly large images that produce
dense line-fragment graphs. For large graphs, ratio-contour is also costly and in
fact takes longer than our approach. To process the rooftop dataset on one core
of an Intel(R) Xeon(R) CPU @ 2.90 GHz, ratio-contour took 2 to 3 minutes
per image on average, whereas our approach took about 1 minute. By contrast,
for the ImageNet images of size 500× 375, both our approach and ratio-contour
took about 8 seconds per image on average.

5 Conclusion

This paper presented a graph-cycle based object localization algorithm that
unlike previous approaches can exploit generic shape and appearance cues for
polygonal object detection. We use the cyclomatic number to define an efficient
graph-patition search algorithm and detect object boundaries as maximum scor-
ing elementary circuits in a partitioned, image line fragment graph whose sub-
graphs preserve high-scoring node and edge weights. Our graph search algorithm
can be used with any cycle scoring function to detect multiple polygonal objects
in an image. We evaluated our approach for the detection of building rooftops
in aerial images and other polygonal object categories from ImageNet. On these
datasets, our approach achieved a significant improvement over the baselines due
to its ability to leverage non-additive scoring functions that go beyond local mea-
sures of shape and appearance, and to consider multiple overlapping, hypotheses.
Interesting avenues of future work include a broader exploration of cycle scoring
functions and the use of alternative graph-cycle optimization strategies.
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