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Abstract. This paper presents a novel solution to the metric reconstruction of
objects using any smart device equipped with a camera and an inertial measure-
ment unit (IMU). We propose a batch, vision centric approach which only uses the
IMU to estimate the metric scale of a scene reconstructed by any algorithm with
Structure from Motion like (SfM) output. IMUs have a rich history of being com-
bined with monocular vision for robotic navigation and odometry applications.
These IMUs require sophisticated and quite expensive hardware rigs to perform
well. IMUs in smart devices, however, are chosen for enhancing interactivity - a
task which is more forgiving to noise in the measurements. We anticipate, how-
ever, that the ubiquity of these “noisy” IMUs makes them increasingly useful in
modern computer vision algorithms. Indeed, we show in this work how an IMU
from a smart device can help a face tracker to measure pupil distance, and an
SfM algorithm to measure the metric size of objects. We also identify motions
that produce better results, and develop a heuristic for estimating, in real-time,
when enough data has been collected for an accurate scale estimation.
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1 Introduction
Obtaining a metric reconstruction of the 3D world is a problem that has largely been
ignored by the computer vision community when using monocular or multiple uncali-
brated cameras. This ignorance is well founded, Structure from Motion (SfM) [1] dic-
tates that a 3D object/scene can be reconstructed up to an ambiguity in scale. The vision
world, however, is changing. Smart devices (phones, tablets, etc.) are low cost, ubiqui-
tous and packaged with more than just a monocular camera for sensing the world. Even
digital cameras are being bundled with a plethora of sensors such as GPS (global posi-
tioning system), light intensity, and IMUs (intertial measurement units).

The idea of combining measurements of an IMU and a monocular camera to make
metric sense of the world has been well explored by the robotics community [2,3,4,5,6,7].
Traditionally, however, the community has focused on odometry and navigation which
requires accurate and as a consequence expensive IMUs while using vision largely in
a periphery manner. IMUs on modern smart devices, in contrast, are used primarily to
obtain coarse measurement of the forces being applied to the device for the purposes of
enhancing user interaction. As a consequence costs can be reduced by selecting noisy,
less accurate sensors. In isolation they are largely unsuitable for making metric sense of
the world.
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Fig. 1. Scale ambiguitiues can introduce detection ambiguities. These two toys are similar in
shape but vary greatly in size. How could a toy detector know the difference if they are not in the
same shot or share a common reference?

In this paper we explore an offline vision centric strategy for obtaining metric recon-
structions of the outside world using noisy IMUs commonly found in smart devices.
Specifically, we put forward a strategy for estimating everything about the world using
vision except scale. We rely only on the IMU for the scale estimate. The strength of
our strategy lies in the realisation that when the entire subject remains in the frame,
scale does not change over time. Assuming that IMU noise is largely uncorrelated and
there is sufficient motion during the collection of the video, we hypothesise that such
an approach should converge eventually towards an accurate scale estimate even in the
presence of significant amounts of IMU noise.

Applications in Vision: By enabling existing vision algorithms (operating on IMU
enabled digital cameras such as smart devices) to make metric measurements of the
world, they can be improved and new applications discovered. Figure 1 demonstrates
how the lack of metric scale not only introduces ambiguities in SfM style applications,
but in other common tasks in vision such as object detection. For example, a standard
object detection algorithm could be employed to detect a toy dinosaur in a visual scene.
However, what if the task is not only to detect the type of toy, but to disambiguate
between two similar toys that differ only in scale? Unless the shot contains both toys
(see right-most image in Figure 1) or some other reference object, there would be no
simple way visually to separate them. Similarly, a pedestrian detection algorithm could
know that a doll is not a person. In biometric applications an extremely useful biometric
trait for separating people is the scale of the head (e.g. pupil distance), which goes
largely unused by current facial recognition algorithms. Alternatively, a 3D scan of
an object using a smart device could be 3D printed to precise dimensions using our
approach combined with SfM algorithms.

Contributions: In this paper we make the following contributions.
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– We propose an elegant batch-style objective for recovering scale with a noisy IMU
and monocular vision. A strength of our approach is that it can be seamlessly inte-
grated with any existing vision algorithm that is able to obtain accurate SfM style
camera motion matrices, and the 3D structure of the object of interest up to an
ambiguity in scale and reference frame. (Section 3.2)

– A novel strategy for aligning video and IMU input on a smart device using gravity.
Most1 smart devices do not synchronise the IMU and video. If the IMU and video
inputs are not sufficiently aligned, we demonstrate that the scale estimate accuracy
in practice is severely degraded. A strength of our alignment strategy, which takes
advantage of gravity rather than removing it, is that it is independent of device and
operating system. (Section 3.4)

– Finally, we propose an approach for ascertaining in real-time when enough device
motion has occurred to ensure an accurate measure of scale can be obtained through
our method. (Section 3.5)

We demonstrate the utility of our approach for obtaining metric scale across a number
of visual tasks such as obtaining a metric reconstruction of a chessboard, estimating
pupil distance, and obtaining a metric 3D reconstruction of a toy dinosaur. This is the
first work of its kind, to our knowledge, to get such accurate (in all our experiments we
achieved scale estimates within 1− 2% of ground-truth) metric reconstructions using a
canonical smart device’s monocular camera and IMU.

2 Related Work

2.1 Non-IMU Methods

There are ways to obtain a metric understanding of the world using monocular vision
on a smart device that do not require an IMU. They all pivot on the idea of obtain-
ing a metric measurement of something already observed by the vision algorithm and
propogating the corresponding scale. There are a number of apps [8,9] which achieve
this using vision. However, they all require some kind of external reference in order to
estimate the metric scale factor of the vision, such as credit cards or knowing height of
the camera from the ground (assuming the ground is flat).

2.2 IMU Methods

Online Methods: Our paper in many ways overlaps with existing robotics literature
for combining monocular camera and IMU inputs. It differs in that many of these algo-
rithms are focussed on navigation and odometry, and so the algorithms must execute in
real-time.

Works by Jones et al. [6], Nützi et al. [2], Weiss et al. [3], and Li et al. [7] all
show how the camera motion of any visual SLAM (simultaneous localisation and map-
ping) algorithm can be fused with accelerometer and gyroscope measurements using a

1 We tested our proposed approach on both iOS and Android smart devices, neither of which
provided global timestamps for the video input.
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Kalman Filter. The IMU measurements (at 100Hz or more) are integrated to estimate
motion and errors are corrected each time the SLAM is updated (20Hz).

Weiss et al. [3] take the idea a step further by automatically detecting failures in the
SLAM output and use only the IMU until the SLAM algorithm recovers. The objectives
of Weiss’ work are similar to ours in that their implementation is modular to any SLAM
algorithm that provides position and orientation, and they assess the quality of the scale
estimate in their results.

Li et al. [7] account for rolling-shutter distortion that occurs in low quality cameras.
Unlike the above mentioned methods they do apply their approach to a smart device.
However, they still focus mainly on navigation, and the odometry. SLAM feature track-
ing, and sensor fusion are all tightly integrated and nonmodular.

Offline Methods: Offline methods are advantageous, as they do not require close in-
tegration with the vision algorithm when computing scale. They can often times give
more accurate estimates of scale, as they attempt to solve the problem using all the data
at the same time (i.e. in batch) unlike online methods. Offline methods have a further
advantage in that they allow a “plug and play” strategy for incorporating various object-
centric vision algorithms (e.g. face trackers, chessboard trackers, etc.) with little to no
modification.

Jung and Taylor [4] present an offline method to fuse IMU and camera data in batch
using spline approximations, with only a handful of camera frames being used to es-
timate the camera trajectory. Like previous online works the focus of this work was
on recovering odometry. We believe one of the core motivations for the use of splines
was to reduce computational requirements. Splines allow the data to be broken up into
“epochs”, reducing the dimensionality of the final problem, however this also reduces
the resolution. This causes problems if the camera is moving too quickly.

Skoglund et al. [5] propose another offline method that enhances an SfM problem by
including IMU data in the objective. The camera and IMU are high quality and secured
to a custom rig. The IMU motion is first integrated so that its trajectory can be compared
with that of the camera’s. Unlike with smart devices, the high quality of sensors allows
this to be done without introducing too many compounding errors. An estimation of
scale is obtained but is not the central focus of the work.

Tanskanen et al. [10] demostrate a pipeline for real-time metric 3D reconstruction,
however they never discuss the accuracy of the metric scale estimation. Finite segments
of large motions are detected heuristically and estimates for the displacement measured
by the IMU and by the camera are compared. An estimation of the scene scale is ob-
tained by executing a batch least squares which minimises the difference between these
two displacement estimates. This is accurate enough to help increase the robustness of
the 3D reconstruction but the accuracy of the dimensions of the final model is unclear.

3 Recovery of Scale

Using SfM (Structure from Motion) algorithms, or algorithms tailored for specific ob-
jects (such as chessboards, faces, cars) we can determine the 3D camera pose and scene
accurately up to scale. This section describes a batch, vision centric approach which,
other than the camera, only uses a smart device’s IMU to estimate the metric scale. All
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that is required from the vision algorithm is the position of the center of the camera,
and its orientation in the scene.

3.1 In One Dimension

The scale factor from vision units to real units is time invariant and so with the cor-
rect assumptions about noise, an estimation of its value should converge to the correct
answer with more and more data. Let us consider the trivial one dimensional case

argmin
s

η{s∇2pV −DaI} (1)

s.t. s > 0,

where pV is the position vector containing samples across time of the camera in vision
units, aI is the metric acceleration measured by the IMU, ∇2 is the discrete temporal
double deriviative operator, and D is a convolutional matrix that antialiases and down-
samples the IMU data. Scale by definition must be greater than zero, we include this
here to remain general to the method used to solve the problem. η{} is some penalty
function; the choice of η{} depends on the noise of the sensor data. This could com-
monly be the �2-norm2, however we remain agnostic to entertain other noise assump-
tions. Downsampling is necessary since IMUs and cameras on smart devices typically
record data at 100 Hz and 30 Hz, respectively. Blurring before downsampling reduces
the effects of aliasing.

The approach here allows us to be modular with the way camera motion is obtained
and allows us to compare accelerations rather than positions. This idea differs from
work such as [11] and [10] which incorporates the scale estimation into an SfM algo-
rithm by comparing the position of the camera with the position integrated from IMU
data (prone to drift and compounding errors).

Equation 1 makes the following assumptions: (i) measurement noise is unbiased and
Gaussian (in the case that η{} is �2-norm2), (ii) the IMU only measures acceleration
from motion, not gravity, (iii) the IMU and camera samples are temporally aligned and
have equal spacing. In reality, this is not the case. First, IMUs (typically found in smart
devices) have a measurement bias that is variant to temperature [12]. Second, accelera-
tion due to gravity is omnipresent. However, most smart device APIs provide a “linear
acceleration” which has gravity removed. Third, smart device APIs provide a global
timestamp for IMU data but timestamps on video frames are relative to the begining
of the video, and so we cannot trivially obtain their alignment. These timestamps do
reveal, however, that the spacing between samples in all cases is uniform with little
variance. Subsection 3.3 describes the method used to temporally align the data.

These facts allow us to modify our assumptions: (i) when used over a period of 1-2
minutes IMU noise is Gaussian and has a constant bias, (ii) the “linear acceleration”
provided by device APIs is sufficiently accurate, (iii) the IMU and camera measure-
ments have been temporally aligned and have equal spacing.

For simplicity we let the acceleration of the vision algorithm, aV = ∇2pV . Given
the modified assumptions we introduce a bias factor into the objective

argmin
s,b

η{saV −D(aI − 1b)} . (2)
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Note we also omit the s > 0 constraint from Equation 1 as it unnecessarily complicates
the objective. If a solution to s is found that violates this constraint the solution can be
immediately discounted.

3.2 In Three Dimensions

In the following subsection we consider the case where the smart device is moving
and rotating in 3D space. Most SfM algorithms will return the position and orientation
of the camera in scene coordinates, and IMU measurements are in local, body-centric
coordinates. To compare them we need to orient the acceleration measured by the cam-
era with that of the IMU. We define the acceleration matrix such that each row is the
(x, y, z) acceleration for each video frame

AV =

⎛
⎜⎝

ax1 ay1 az1
...

...
...

axF ayF azF

⎞
⎟⎠ =

⎛
⎜⎝

Φᵀ
1
...

Φᵀ
F

⎞
⎟⎠ . (3)

Then we rotate the vectors in each row to obtain the body-centric acceleration mea-
sured by the vision algorithm

ÂV =

⎛
⎜⎝

Φᵀ
1R

V
1

...
Φᵀ
FR

V
F

⎞
⎟⎠ (4)

where F is the number of video frames, RV
n is the orientation of the camera in scene

coordinates at the nth video frame.
Similarly to AV , we form an N × 3 matrix of IMU accelerations, AI , where N is

the number of IMU measurements.
We also need to ensure that IMU measurements are spatially aligned with the camera

coordinate frame. Since the camera and IMU are on the same circuit board, this is an
orthogonal transformation, RI , that is determined by the API used by the smart device
[13,14]. We use the rotation to find the IMU acceleration in local camera coordinates.

This leads to the following objective, noting that antialiasing and downsampling have
no effect on constant bias

argmin
s,b

η{s · ÂV + 1⊗ bᵀ −DAIRI} . (5)

3.3 Temporal Alignment

Temporal alignment is important for accurate results - Figure 7 shows that scale esti-
mation is not possible without it. Equations 2 and 5 assume that the camera and IMU
measurements are temporally aligned. This subsection describes a method to determine
the delay between the signals and thus align them for processing.

The optimum alignment between two signals can be found by first calculating their
cross-correlation. The cross-correlation is then normalised by dividing each of its ele-
ments by the number of elements from the original signals that were used to calculate
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it. The index of the maximum normalised cross-correlation value is chosen as the delay
between the signals.

Before aligning the two signals, an initial estimate of the biases and scale can be
obtained using Equation 5. These values can be used to adjust the acceleration signals
in order to improve the results of the cross-correlation. The optimisation and alignment
are alternated until the alignment converges.
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Fig. 2. Showing the result of the normalised cross-correlation of the camera and IMU signals.
Blue-solid line: camera acceleration scaled by initial solution. Red-dashed line: IMU acceleration.
The delay that gives the best alignment here is approximately 40 samples.

3.4 Gravity as a Friend

The above method for finding the delay between two signals can struggle with smaller
motions when data is particularly noisy. Reintroducing gravity has two advantages: (i)
it behaves as an anchor to significantly improve the robustness of the alignment, (ii)
allows us to remove the black box gravity estimation built in to smart devices with
IMUs.

Instead of comparing the estimated camera acceleration and linear IMU acceleration,
we add the gravity vector, g, back into the camera acceleration and compare it with the
raw IMU acceleration (which already contains gravity). Grabity is oriented, much like
the vision acceleration, with the IMU acceleration before superimposing

Ĝ =

⎛
⎜⎝

gᵀRV
1

...
gᵀRV

F

⎞
⎟⎠ . (6)

Since the accelerations are in the camera reference frame the reintroduction of grav-
ity essentially captures the pitch and roll of the smart device. The red dashed line in
Figure 3 shows that the gravity component is of relatively large magnitude and low
frequency. This can improve the robustness of the alignment dramatically.

If the alignment of the vision scene with gravity is already known, it can simply be
added to the camera acceleration vectors before estimating the scale. However, to keep
our method general we extend the above objectives to include the gravity term

argmin
s,b,g

η{sÂV + 1⊗ bT + Ĝ−DAIRI} (7)

where g is linear in Ĝ.
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Fig. 3. The large, low frequency motions of rotation through the gravity field helps anchor the
temporal alignment. Blue solid line: IMU acceleration with gravity removed. Red dashed line:
raw IMU acceleration measuring gravity.

Note that Equation 7 does not attempt to constrain gravity to its known constant
value. This is addressed by alternating between solving for {s,b} and g separately
where g is normalised to its known magnitude when solving for {s,b}. This is iterated
until the scale estimation converges.

3.5 Classifying Useful Data

When recording video and IMU samples offline it is important to know when one has
sufficient samples. We classify which parts of the signal are useful by ensuring it con-
tains enough excitation. This is achieved by centering a window at sample, n, and com-
puting the spectrum through short time Fourier analysis. A sample is classified as useful
if the amplitude of certain frequencies is above a chosen threshold.

The selection of the frequency range and threshold is investigated in the experiments
in Section 4.1. Note that the minimum size of the window is limited by the lowest
frequency one wishes to classify as useful.

4 Experiments

In the following experiments, sensor data is collected from iOS and Android devices
using custom built applications. The applications record video while logging IMU data
at 100Hz to a file. These files are then processed in batch as described in the exper-
iments. For all the experiments, the cameras’ intrinsic calibration matrices have been
determined beforehand, and the camera is pitched and rolled at the beginning of each
sequence to help temporal alignment of sensor data (Section 3.4).

The choice of η{} depends on the assumptions of the noise in the data. In many
cases we obtained good empirical performance with the �2-norm2 penalty (Equation 8.
However, we also explored alternate penalty functions such as the grouped-�1-norm that
are less sensitive to outliers. We obtain camera motion in three different ways: (i) track a
chessboard of unknown size, (ii) use pose estimation of a face-tracking algorithm [15],
(iii) use the output of an SfM algorithm.
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4.1 Chessboard Experiments

On an iPad, we assess the accuracy of the of scale estimation described in Section 3.2
and the types of trajectories that produce the best results. Using a chessboard allows us
to be agnostic from objects and obtaining the pose estimation from chessboard corners
is well researched. We used OpenCV’s findChessboardCorners and solvePnP functions.

The trajectories in these experiments were chosen in order to test the number of
axes that need to be excited, the trajectories that work best, the frequencies that help
the most, and the required amplitude of the motions. They can be placed into the four
following categories (shown in Figure 4):

(a) Orbit Around: The camera remains the same distance to the centroid of the object
while orbiting around,

(b) In and Out: The camera moves linearly toward and away from the object,
(c) Side Ways: The camera moves linearly and parallel to the object’s plane,
(d) Motion 8: The camera follows a figure of 8 shaped trajectory - in or out of plane.

(a) Orbit Around (b) In and Out (c) Side Ways (d) Motion 8

Fig. 4. The above diagrams show the different categories of trajectories. The accuracies of differ-
ent combinations of these trajectories are assessed. In each case, the camera is is always looking
at the subject.

Different sequences of the four trajectories were tested. The use of different penalty
functions, and thus different noise assumptions, is also explored. Figure 5 shows the
accuracy of the scale estimation when we choose the �2-norm2 (Equation 8). Figure 6
shows the results when we choose the grouped-�1-norm (Equation 9). There is an obvi-
ous overall improvement when using the grouped-�1-norm, suggesting that a Gaussian
noise assumption is not strictly observed.

η�2{X} =

F∑
i=1

‖xi‖22 (8)

η�2�1{X} =

F∑
i=1

‖xi‖2 (9)

where X = [x1, . . . ,xF ]
ᵀ (10)

Both Figures 5 and 6 show that, in general, it is best to excite all axes of the smart
device. The most accurate scale estimation was achieved by combination of In and Out
(b) and Sideways (c) motion (along both the x and y axes) and is shown in Figure 8.
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Excitation (s)

# Motions Frequency (Hz) X Y Z

1 b + c(X and Y axis) ~1 20 30 45
2 b + c(X and Y axis) ~1.2 35 25 70
3 b + c(X and Y axis) ~0.8 10 7 5
4 b + c(X and Y axis) ~0.7 10 10 10
5 b ~0.75 0 0 160
6 b + c(X and Y axis) ~0.8 5 3 4
7 b + c(X and Y axis) ~1.5 7 6 4
8 a(X and Y axis) + b 0.4-0.8 30 30 47
9 b + d(in plane) ~0.8 50 50 10

Fig. 5. The percentange error in scale estimations for different motions on an iPad. Linear trajec-
tories produce more accurate estimations. Labelled according to Figure 4.

Excitation (s)

# Motions Frequency (Hz) X Y Z

1 b + c(X and Y axis) ~0.8 10 7 5
2 b + c(X and Y axis) ~0.7 10 10 10
3 b + c(X and Y axis) ~0.8 5 3 4
4 b + c(X and Y axis) ~1.5 7 6 4
5 b + c(X and Y axis) ~1 20 30 45
6 b ~0.75 0 0 160
7 b + c(X and Y axis) ~1.2 35 25 70
8 a(X and Y axis) + b 0.4-0.8 30 30 47
9 b + d(in plane) ~0.8 50 50 10

Fig. 6. The same sequences in Figure 5 are used to estimate scale using the group L1
norm. Overall improvement suggests a non-Gaussian noise distribution. Labelled according to
Figure 4.

Fig. 7. The scale estimation converges (with the addition of data) to the ground truth over time
for b + c motions in all axes. For completeness we also show the error when the camera and IMU
signals are not temporally aligned.
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Fig. 8. The sequence b + c(X,Y) excites multiple axes which increases the accuracy of scale
estimations. Blue solid line: scaled camera acceleration. Red dashed line: IMU acceleration. For
completeness we highlight, in shaded areas, the segments that are classified as useful motions.

Figure 7 shows the estimate of scale as a function of the length of the sequence used.
It shows that scale estimate improves with the addition of new data to have an error of
less than 2% with just 55 seconds of motion. This method does not focus on odometry,
thus removing the risk of divergence that can occur when integrating accelerometer
data.

From these observations, we build a real-time heuristic for knowing when enough
data has been collected. Upon inspection of the results shown in Figure 5 we can con-
struct the following criteria for sufficiently accurate results: (i) all axes should be excited
with (ii) more than 10 seconds of motions of amplitude larger than 2ms−2.

(a) 7.0s, ±63.0mm (b) 10.0s, ±51.4mm (c) 12.0s, ±43.3mm (d) 14.0s, ±8.6mm

(e) 30.0s, ±5.4mm (f) 40.0s, ±4.0mm (g) 50.0s, ±0.6mm (h) 68.0s, ±0.2mm

Fig. 9. Circles show the variance in the pupil distance estimation over time. True pupil distance
is 62.3mm; final estimated pupil distance is 62.1mm (0.38% error).

4.2 Measuring Pupil Distance

In this experiment, we test our method’s ability to accurately measure the distance be-
tween one’s pupils with an iPad. Using a facial landmark tracking SDK [15], we can
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(a) 10.0s, ±75.3mm (b) 16.0s, ±64.8mm (c) 24.0s, ±3.1mm (d) 50.0s, ±1.8mm

(e) 60.0s, ±0.7mm (f) 75.0s, ±0.2mm (g) 85.0s, ±1.6mm (h) 115.0s, ±0.7mm

Fig. 10. Tracking errors can throw the estimation of scale, but removal of these outliers [16] helps
the estimation recover. The true pupil distance is 62.8mm; the final estimated pupil distance is
63.5mm (1.1% error).

obtain the camera pose relative to the face and locations of facial landmarks (with local
variations to match the indiviual). We assume that, for the duration of the sequence, the
face keeps the same expression and that the head remains still. To reflect this, the facial
landmark tracking SDK was modified to solve for only one expression in the sequence
rather than one at each video frame.

Due to the motion blur that the cameras in smart devices are prone to, the pose
estimation from the face tracking algorithm can drift and occasionally fail. These er-
rors violate the Gaussian noise assumptions. Improved results were obtained using a
grouped-�1-norm, but we found in practice even better performance could be obtained
through the use of an outlier detection strategy [16] (see Appendix A) in conjunction
with the canonical �2-norm2 penalty. It is this strategy we use for the remainder of the
experiments in this paper.

Figure 9 shows the deviation of the estimated pupil distance from the true value
at selected frames from a video taken on an iPad. With only 68 seconds of data, our
algorithm can measure pupil distance with sufficient accuracy. Figure 10 shows a sim-
ilar sequence for a different person. It can be observed that the face tracking, and thus
pose estimation, drifts occasionally. In spite of this, the scale estimation is still able to
converge over time.

4.3 3D Scanning

In the final experiment, SfM is used to obtain a 3D scan of an object using an Android
smart phone. The estimated camera motion from this is used to evaluate the metric scale
of the vision coordinates. This is then used to make metric measurements of the virtual
object which are compared with those of the original.

The results of these 3D scans can be seen in Figure 11 where a basic model was
obtained using VideoTrace [17]. The dimensions estimated by our algorithm are within
1% of the real values. This is sufficiently accurate to help a toy classifier disambiguate
the two dinosaur toys shown in (Figure 1).
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(a) Measuring the real Rex: 184mm (b) Measuring the virtual Rex: 0.5653 units =
182.2mm (estimated scale = 322.23)

Fig. 11. The real length of Rex (a) is compared with the length of the 3D reconstruction scaled
by our algorithm (b). Sequence recorded on an Android smart phone.

5 Conclusion

This paper has presented a batch technique for obtaining the metric scale of the SfM
like output from a vision algorithm using only the IMU on a smart device with less
than 2% error. We have made three main contributions that make this possible. First,
we realised that by comparing the acceleration of the camera in vision units with the
acceleration of the IMU (which we know to be metric), we can find the optimum scale
factor to minimise their difference. Second, we have described a method to align sensor
measurements which do not have a common timestamp origin (typical on smart device
platforms) that uses acceleration from gravity to help anchor the alignment. Finally, we
have formed a heuristic to estimate when enough useful data has been collected to make
an accurate measurement of metric scale.
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A Outlier Detection

In practice, the output of different tracking algorithms can produce noise which violates
the Gaussian noise assumption, Figure 12 shows how tracking errors cause spikes in the
acceleration measured by tracking a face. After obtaining an initial estimate of scale,
Generalised ESD (extreme Studentised deviate) [16] is used to detect samples whose
errors do not follow a Gaussian assumption. These samples are excluded and a new
scale estimation is obtained. This method requires only two iterations. Generalised ESD
takes two parameters: the sensitivity of outlier detection, α, and an upper bound of the
number of outliers to detect, k. In our experiments, the performance of this method was
not sensitive to the tuning of these parameters.

Fig. 12. A comparision of the acceleration measured by the IMU and that estimated by the visual
tracking. Outliers violating a Gaussian error assumption have been detected and removed by
Generalised ESD. Blue solid line: scaled camera acceleration. Red dashed line: IMU acceleration.
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