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Abstract. Magnetic resonance imaging (MRI) has become an essential
tool in the diagnosis and managing of Multiple Sclerosis (MS). Currently,
the assessment of MS is based on a combination of clinical scores and
subjective rating of lesion images by clinicians. In this work we present an
objective 5-way classification of MS disease subtype as well as a compar-
ison between three different approaches. First we propose two spatially
informed models, a Bayesian Spatial Generalized Linear Mixed Model
(BSGLMM) and a Log Gaussian Cox Process (LGCP). The BSGLMM
accounts for the binary nature of lesion maps and the spatial dependence
between neighboring voxels, and the LGCP accounts for the random
spatial variation in lesion location. Both improve upon mass univariate
analyses that ignore spatial dependence and rely on some level of ar-
bitrarily defined smoothing of the data. As a comparison, we consider
a machine learning approach based on multi-class support vector ma-
chine (SVM). For the SVM classification scheme, unlike previous work,
we use a large number of quantitative features derived from three MRI
sequences in addition to traditional demographic and clinical measures.
We show that the spatial models outperform standard approaches with
average prediction accuracies of up to 85%.

1 Introduction

Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of
the central nervous system that leaves behind scarred tissue in various regions
of the brain and the spinal cord. MS patients can be grouped into five distinct
clinical categories according to disease progression, which differs significantly
between these subtypes [3]. Currently, in the assessment of MS, MRI data is
to a large extent only used in a qualitative way to assess the dissemination
of lesions in space and time; the most common quantitative measure is ‘lesion
load’, the total lesion volume. Previous work on using lesion load for classification
have shown mixed results, see e.g. [12] and [9]. Other studies have shown that
conventional MRI measures have rather low predictive value and are therefore
poor indicators for determining the clinical outcomes in MS [8].
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Relapsing-remitting (RLRM) is the most common subtype of MS (70-80%
of all MS patients) and is characterized by episodes of acute relapses and peri-
ods of remission. Secondary progressive (SCP), primary progressive (PRP) and
progressive relapsing (PRL) forms of MS are comparatively rare and differ in
severity and progression of the disease. Clinically isolated syndrome (CIS) de-
scribes a singular instance of inflammatory demyelination. Patients with CIS
may or may not subsequently develop one of the other courses of MS.

We propose an objective classification of MS subtype using two spatially
informed approaches, a Bayesian spatial generalized linear mixed model (BS-
GLMM) on voxel-wise lesion maps and a Log Gaussian Cox process (LGCP)
model on lesion location data, and contrast our results with a classification
model based on support vector machine (SVM). In addition to traditional de-
mographic and clinical measures, the features for SVM include aspects of lesion
geometry, measured by Minkowski functionals, and statistics of the image in-
tensities within individual lesions. Each of these three approaches has relative
merits: The BSGLMM has the interpretability of a traditional regression model
but can only account for local spatial dependence; the LGCP doesn’t enjoy a
regression framework but explicitly accounts for (larger scale) spatial variation
in lesion location; and while the previous two only operate on a single type of
MRI image, the SVM uses a rich constellation of features from all available MRI
sequences. While our BSGLMM method is in press [4], the other two approaches
and such a detailed comparison of predictive accuracy are to our knowledge com-
pletely novel.

2 Methods

2.1 Bayesian Spatial Generalized Linear Mixed Model

As an extension of generalized linear mixed models, a spatial generalized linear
mixed model (BSGLMM) has covariates x(s) and coefficients B(s) that comprise
the systematic component, 1(s) = xT(s)3(s); here s € R3. The form of the
systematic component includes any combination of spatially constant or varying
covariates and coeflicients. For computational reasons [4], we use the probit
link function, ®~1. Let Y;(s;) € {0,1} denote a Bernoulli random variable for
subject 4, indicating the presence or absence of a lesion at voxel s;, and let
Pr[Y;(sj)=1] = p;(s;). Thus, the random, link and systematic components in
our BSGLMM are specified as

[Yi(s5)Ipi(s5)] ~ Bernoulli[p;(s;)], (1)
O HE[Y;(s;)pi(s)]} = ni(s;), (2)
ni(s;) =x; [a+ B(s;)] +w(s;)v. (3)

The parameters o and vy represent fixed effects, whereas the elements of 3(s;)
are spatially varying random effects and w(s;) is an optional spatially varying
covariate. The parameters a and « have flat, improper, uninformative priors and
B(s;) have zero-centered multivariate conditional autoregressive model (MCAR)
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priors. The full conditional posterior distribution of 3(s) is multivariate normal
with an improper, uninformative Wishart prior on the hyperparameter . By
Brook’s lemma, the joint posterior is therefore proportional to

m[BIZ] oc exp{~1/2 Y [B(si) = B(sy)] 71 B(si) — Blsy)lh, (@)

§i~Sj

where s;~s; indicates two neighboring voxels that share a common face. Note
that the degree of spatial regularization induced by the MCAR prior, as param-
eterized by X, is not fixed, but rather is estimated from the data. Our model
comprises 12 subject-specific covariates: clinical subtype (coded as five dummy
variables), sex, age, disease duration, seven EDSS subscores and PASAT score.
Additionally, the white matter probability map represents one spatially vary-
ing covariate that is shared by all subjects and accounts for gross differences
in lesion incidence over the brain. Leave-one-out-cross-validation (LOOCV) and
importance sampling is employed, as described in Section 2.2. See [4] for details.

Naive Bayesian Classifier. For comparison we also perform LOOCYV on a
naive Bayesian classifier. The full Ty binary lesion mask is used as feature vec-
tor and the classifier assumes mutual independence between each element (i.e.
voxel). The naive Bayesian classifier consists of a binomial model at each voxel
for each subtype, where we assign Jeffrey’s prior, i.e. Beta(0.5,0.5), to the con-
ditional probability of having a lesion at voxel j given a certain subtype.

2.2 Log Gaussian Cox Process

To better account for random spatial variation in the lesion data, we consider
summarizing each lesion with their center of mass. FSL’s cluster command was
used to find the center of mass of each lesion (order 6 connectivity) in MNT atlas
coordinates, on T; black-hole and Ts lesion masks. Sample size was slightly
reduced as some subjects had no lesions (T;: 232 and Ts: 248 data points).

Our model builds on the principles of a spatial Poisson process. A point pro-
cess X is a Poisson point process with (non-random) intensity \ : R3—R¥ if a)
N(B) ~ Poi(A(B)), B C R?, as long as A(B)= [, A(y)dy < oo; b) conditional
on N(B), the points in X are ii.d. with density A(y)/A(B). A generalization
of a Poisson process is a Cox process, where the Poisson intensity function is a
realization of a random field. Precisely, if A is a non-negative random field, then
X is a Cox process driven by A if X|X is an (inhomogeneous) Poisson process
with intensity A [10]. The special case of a Log Gaussian Cox process (LGCP)
is obtained by letting Y=1In A be a Gaussian random field, i.e. a random process
whose finite dimensional distributions are Gaussian, Y ~ GP{m(-),c(-,-)} [13].
The distribution of (X,Y") is completely determined by the mean and covariance
function: m(r) = E[Y (r)] and ¢(r, s) = Cov[Y (r), Y (s)]. The intensity function
of the LGCP is given by

A(r) = exp [m(r) +c(r,7) /2], ()
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where we assume that ¢(r, s) is isotropic and translation invariant with the form
c(r,s) = 0% exp [—||r — s|/°/a]. The exponential term represents the power cor-
relation function and § € [0,2], which for =1 gives an exponential and for
d=2 a Gaussian correlation; 0? denotes the variance and a>0 is a correlation
parameter.

Estimation of the scale a of the process is challenging. Thus, before fitting
the model, we use minimum contrast estimation to estimate (and fix) the scale «
and the exponent § via a fit of ¢(r, s) to the pair-correlation-function of all data
[11]. Benefits of the LGCP include its nonparametric nature and thus flexibility
in modeling spatial data, and its computational tractability resulting from its
relation to multivariate Gaussian distributions.

The posterior distribution is estimated via Markov chain Monte Carlo. We use
Bayes’ theorem and an importance sampling approach [5] to obtain leave-one-
out-cross-validation without running our sampler N times. An estimate of the
predictive probability that subject i is categorized as subtype g; is obtained from
a sample from the posterior, weighted to discount the (independent) contribution
of subject i to the likelihood.

2.3 Geometric Measures and SVM

The two previous spatial models require computationally intensive and carefully
tuned MCMC sampling procedures. To see if a simpler, machine learning ap-
proach could provide similar prediction accuracies we consider a SVM model
based on detailed geometric and texture features of three types of MRI lesion
data. We use Minkowski functionals to describe the geometry of each lesion.
In R3, Minkowski functionals are directly related to the geometric quantities
volume, surface area, mean breadth and Euler-Poincaré characteristic [2,7]. We
employ a radial basis function kernel and adopt an one-vs-one approach [1] for
multi-class classification problems based on pairwise classifiers, combined with
a majority voting scheme to make predictions.

For model evaluation we carry out stratified k-fold cross-validation, where k is
determined by the number of elements in the smallest class. In our case, one group
(PRL) consists only of ten subjects, thus k=10. Within each cross-validation fold,
a parameter optimization via grid search is performed and different parameter sets
are evaluated by means of (nested) cross-validation. Along with demographic and
clinical covariates, the full feature set includes the Euler-Poincaré characteristic,
and, mean, median, maximum, minimum and standard deviation across the whole
brain for lesion volume, surface area and mean breadth. In addition, we include the
fraction of gray matter (GM) volume to whole brain volume as well as total, mean,
median and standard deviation of intra-lesion intensities. In order to encode spatial
information about the location of individual lesions, we also look at splitting these
whole brain measures according to 13 regions of interest (ROI’s) based on white
matter (WM) track segmentations. All features are centered and normalized to
zero mean and unit variance.
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Model evaluation. The predictive performance of all models is estimated by
computing the confusion matrix. The average accuracy is given by the mean of
the diagonal elements. Due to the large discrepancy in the number of RLRM
subjects (173 out of 250) with respect to other subtypes, the average accuracy is
more representative of total performance than the overall accuracy. (Note that
chance level of average accuracy is 20%.)

Data. The full data set used for our analysis consists of 250 subjects scanned on
a 1.5T Siemens Avanto scanner, collecting T1-weighted (T7), To-weighted (Ts)
and T;-weighted Gd-enhanced (T;1-Gd) images; native resolution is 0.9766 x
0.9766 x 3.0mm?>. White matter lesion masks for T black-hole, T and T;-Gd
images were created in native space by a semi-automatic procedure [6]. Each
scan was then affine registered to MNI space at 1 x 1 x Imm? resolution using
trilinear interpolation, and thresholded at 0.5 to retain binary values. All patients
have been categorized into one of the five MS subgroups following the current
diagnostic standard (cf. McDonald criteria). Patient specific covariates include
sex, age, disease duration, the seven subscores of the Expanded Disability Status
Scale (EDSS) and the Paced Auditory Serial Addition Test (PASAT) score.

3 Results

Figure 1 shows the empirical lesion probabilities (left) and the estimated mean
posterior probabilities (right) from our BSGLMM. Lesion incidence for CIS (top
panel) differs significantly from the other subtypes. This is likely due to the fact
that CIS patients have the lowest lesion load. A sagittal slice of standardized pa-
rameter estimates of PASAT and total EDSS score is given in Figure 2 (top left
and right). PASAT scores are negatively and EDSS scores are positively corre-
lated with lesion occurrence throughout regions of high lesion counts, reflecting
higher levels of disability (lower PASAT and higher EDSS scores correspond to
more severe MS). Note the strong positive correlation of EDSS scores with lesion
occurrence in the minor and major forceps (indicated by arrows). In comparison,
Figure 3 shows an axial slice of the mean posterior for the LGCP.

With respect to SVM, an exhaustive combinatorial search across all features is
computationally infeasible. Instead we consider a subset of possible feature com-
binations which are guided by the magnitude of weights of the support vectors.
The best performance was obtained by using GM volume, Ty median volume
split into WM ROI’s, whole brain summaries for standard deviation of T'; mean
breadth, the median of Ty mean breadth, and T; and T;-Gd total intra-lesion
intensities, alongside demographic and clinical covariates; resulting in an aver-
age accuracy of 47.8% (Table 2). A feature set containing GM volume by lobar
ROT’s, T; and Ty lesion count and lesion volume by WM ROI’s, but exclud-
ing any demographic or clinical covariates yields a value of 39.4% for average
accuracy. This is well above chance level and indicates that not the covariates
but instead the information contained in MRI data is predominantly driving
the predictions. Furthermore, the relevance of different geometry and intensity
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Fig. 2. Statistical significance maps for
PASAT and EDSS (top). Arrows indicate
minor and major forceps; T template
with empirical counts overlaid (bottom).
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Fig.1. BSGLMM: Comparison of the
empirical probabilities (left) and the
estimated mean posterior probabilities
(right) for all subtypes [4].

Fig. 3. LGCP: Axial slice of mean poste-
rior probabilities for all subtypes

based features varies depending on which groups are involved in the classifica-
tion. For instance, maximum T, lesion area is very significant in RLRM vs. PRP,
and T; maximum lesion area and mean breadth are prominent in three out of
four classifiers concerning RLRM. In general, a comparison across all SVM pair-
wise classifiers indicates that median and maximum measures of lesion volume,
area and mean breadth for a single lesion are often more meaningful than other
features, and that the Euler-Poincaré characteristic is more significant than a
simple lesion count.

Tables 1-6 show confusion matrices for all models. A comparison of classifica-
tion performance reveals the superiority of the spatial approaches. The naive
Bayesian approach is only slightly above chance level and although SVM is do-
ing better, it does not reach satisfactory levels. The BSGLMM shows strong
prediction results with an average accuracy of 78.3% for T; and 82.3% for To
data. As can be seen from Tables 3 and 4, misclassification predominantly occurs
in the CIS subtype. These patients tend to have fewer and smaller lesions than
those correctly classified.



Spatial Modelling of MS for Disease Subtype Prediction 803

Table 1. Naive Bayes (T2): overall & av- Table 2. best SVM feature set: overall

erage accuracy: 0.552 & 0.245. & average accuracy: 0.560 & 0.478.
CIS RLRM PRP SCP PRL CIS RLRM PRP SCP PRL
CIS 0.000 1.000 0.000 0.000 0.000 CIS 0.818 0.182 0.000 0.000 0.000
RLRM 0.046 0.757 0.017 0.093 0.087 RLRM 0.162 0.584 0.058 0.081 0.116
PRP 0.077 0.769 0.000 0.077 0.077 PRP 0.000 0.231 0.308 0.231 0.231
SCP  0.023 0.744 0.023 0.070 0.140 SCP  0.023 0.093 0.116 0.581 0.186
PRL  0.000 0.600 0.000 0.000 0.400 PRL 0.000 0.400 0.200 0.300 0.100

Table 3. BSGLMM (T1): overall & av- Table 4. BSGLMM (T3): overall & av-

erage accuracy: 0.654 & 0.783. erage accuracy: 0.748 & 0.823.
CIS RLRM PRP SCP PRL CIS RLRM PRP SCP PRL
CIS 1.000 0.000 0.000 0.000 0.000 CIS 1.000 0.000 0.000 0.000 0.000
RLRM 0.348 0.598 0.030 0.024 0.000 RLRM 0.238 0.713 0.006 0.043 0.000
PRP 0.083 0.000 0.917 0.000 0.000 PRP 0.083 0.000 0.917 0.000 0.000
SCP  0.216 0.054 0.027 0.703 0.000 SCP  0.162 0.000 0.054 0.784 0.000
PRL 0.100 0.100 0.100 0.000 0.700 PRL  0.200 0.000 0.000 0.100 0.700

Table 5. LGCP (T,): overall & average Table 6. LGCP (T2): overall & average

accuracy: 0.753 & 0.510. accuracy: 0.895 & 0.851.
CIS RLRM PRP SCP PRL CIS RLRM PRP SCP PRL
CIS  0.250 0.375 0.125 0.125 0.125 CIS  0.800 0.000 0.100 0.100 0.000
RLRM 0.056 0.850 0.069 0.019 0.006 RLRM 0.040 0.913 0.029 0.006 0.012
PRP 0.167 0.333 0.333 0.083 0.083 PRP 0.000 0.154 0.769 0.077 0.000
SCP  0.071 0.119 0.119 0.667 0.024 SCP  0.023 0.047 0.000 0.884 0.047
PRL 0.111 0.222 0.111 0.111 0.445 PRL 0.000 0.000 0.111 0.000 0.889

The LGCP does not consider any covariates which, per se, should make it
harder to do predictions. Regarding the T; data, it performs well on the largest
subtype (RLRM) but has difficulty with the much smaller groups (CIS, PRP)
which in part can be attributed to the small number of data points available for
these subtypes, i.e. there are only eight CIS patients with T; lesions. However,
in case of Ts data, predictions are much more accurate, resulting in overall and
average accuracies of 89.5% and 85.1% respectively. Among the three models
considered here, the LGCP is also the closest to a generative model for lesion
data, i.e. when simulating new data, it would give much more realistic predic-
tions than the BSGLMM for instance, which assumes independent lesion data
conditional on (spatially regularized) coefficients.
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4 Discussion and Conclusion

In contrast to standard methods, the Bayesian spatial models presented here
exploit the spatial structure of MS lesion maps and take into account the binary
nature of lesion data without an arbitrary smoothing parameter. The BSGLMM
explicitly includes covariates and spatially varying coefficients and is able to
provide spatial information, e.g. estimates for the spatially varying effects of
age, sex, disease duration, EDSS and PASAT, which current empirical methods
cannot. We have demonstrated that MRI scans of MS lesions contain more in-
formation about the specific subtype of the disease than is currently utilized in
clinical assessments. To our knowledge this is the first attempt to build spatially
informed models. A future extension of the LGCP is a marked point process
which allows for the inclusion of lesion specific features as additional marks.
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