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Abstract. Multiple Sclerosis lesions influence the process of image anal-
ysis, leading to tissue segmentation problems and biased morphometric
estimates. With the aim of reducing this bias, existing techniques fill seg-
mented lesions as normal appearing white matter. However, due to lesion
segmentation errors or the presence of neighbouring structures, such as
the ventricles and deep grey matter structures, filling all lesions as white
matter like intensities is prone to introduce errors and artefacts. In this
paper, we present a novel lesion filling strategy based on in-painting tech-
niques for image completion. This technique makes use of a patch-based
Non-Local Means algorithm that fills the lesions with the most plausible
texture, rather than normal appearing white matter. We demonstrate
that this strategy introduces less bias and fewer artefacts and spurious
edges than previous techniques. The advantages of the proposed method-
ology are that it preserves both anatomical structure and signal-to-noise
characteristics even when the lesions are neighbouring grey matter and
cerebrospinal fluid, and avoids excess blurring or rasterisation due to the
choice of segmentation plane, and lesion shape, size and/or position.

1 Introduction

Multiple Sclerosis (MS) is an immune-mediated demyelinating disease affecting
both white matter (WM) and grey matter (GM). It is characterised pathologi-
cally by areas of inflammation, demyelination, axonal loss, and gliosis scattered
throughout the central nervous system. White matter plaques are relatively easy
to detect using current conventional MRI techniques, whereas grey matter le-
sions can be observed on double inversion recovery MRI [6]. MS plaques that
correspond to necrotic lesions appear on T1-weighted sequences as areas of low-
signal intensity compared with normal appearing white matter (NAWM), and
the active lesions are displayed with hyperintense signals [10]. From an image pro-
cessing perspective, these MS lesions influence tissue segmentation procedures,
resulting in the misclassification of GM and WM. Furthermore, other studies
have suggested that MS lesions may affect the estimation of segmentation pa-
rameters, resulting in a shift of tissue boundaries [4] and influencing subsequent
morphometric studies. Thus, there is a clear need to reduce the negative impact
that MS lesions have on image analysis procedures.
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Various techniques have been developed in recent years based on the concept
of in-painting T1 images [11,4,2]. In short, the process of T1 lesion in-painting is
based on filling a WM lesion region of interest (ROI) with synthetic estimates of
WDM-like intensities. Under the assumption that WM lesions are the ones that
most affect morphometric studies (i.e. GM lesions have a minor influence), the
process of lesion in-painting reduces the overall algorithmic bias. More specif-
ically, Sdika and Pelliter [11] presented three different in-painting algorithms.
The first, denoted basic in-painting and inspired by [12], consists of filling the
lesion ROI in an inner-radial manner using a Gaussian kernel average 3 x 3 x 3 of
the neighbouring intensities. The second, denoted local white matter in-painting
(LWMI), uses a priori information obtained from an image segmentation tech-
nique to iteratively fill the border of the lesions using a Gaussian kernel. Finally,
the global white matter in-painting (GWMI) method fills the MS lesions with
the mean intensity of the normal WM over the whole brain, meaning that all
lesions will have the same intensity regardless of their neighbourhood.

Later, Chard et al. [4] developed the LEAP (LEsion Automated Preprocess-
ing) technique, with the aims of: filling lesions as normal WM; reproducing the
WM noise characteristics; and avoiding operator intervention.

Subsequently, Battaglini et al.[2] presented a similar method based on re-
placing the lesion voxel intensities with values that are randomly sampled from
an intensity distribution that is measured from the surrounding WM and GM
voxels. This method is available as part of FSL [8]. In short, regardless of their
approach, the previously presented algorithms have been restricted to images of a
specific modality, require accurate lesion segmentations in boundary regions (e.g
periventricular lesions), can create shape gradients around the lesion ROI, and
are prone to errors in model fit when estimating the WM distribution properties.

More recently, Guizard et al.[7] calculated the most similar patches using
only the surrounding regions after prefilling the lesions with the average of the
intensities of the immediately surrounding healthy tissue. This prefilling com-
pletely biases the final results because the whole patch is used for calculating
the distance between the surrounding patch and the lesion patch.

In the field of computer graphics, structurally aware in-painting algorithms
are common, with many of these algorithms permitting a user to simply erase an
unwanted portion of an image without any previous knowledge about its compo-
sition. These techniques attempt to fill regions by synthesising plausible textural
matches from the remainder of the image [5,9,1]. In doing so, these algorithms,
commonly used for scratch removal, photo restoration, and object/text removal,
are agnostic to the structure of the input image. The most successful techniques
for in-painting in computer graphics, here denoted as exemplar-based methods,
attempt to fill the unknown ROI by simply copying content from the observed
part of the images [9] under some constraints. This class of methods commonly
divide the image into a large number of small sub-images, or patches, followed by
either a patch-search method [5], or the use of the Non-Local Means algorithm
[3]. Finally, the intensities can be synthesised using either pixel- or patch-based
textures from the most similar patch.
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In this work, we formulate a task-specific patch-search algorithm for the pur-
pose of filling MS lesions. The proposed algorithm presents two main advantages:
first, due to its general formulation, the proposed algorithm is able to fill any
type of MR image modality that has a non-local structure. Furthermore, due
to its contextual nature, the proposed algorithm is also more robust to over-
segmentation of the lesion ROI, thus reducing the accuracy requirements when
manually or automatically defining the in-painting region of interest.

2 Method

The proposed lesion filling technique can be described in three main steps: (1)
estimating the patch with the most similar neighbourhood structure, (2) synthe-
sising the intensity from the best patch, (3) followed by a buffing step through
the application of a minimal kernel-based convolution over the filled region.

First, we assume that we have a grayscale-valued image I*, X X Y x Z,
previously corrected for intensity inhomogeneity, and a well-defined lesion mask
L. The filled image I can then be defined as I(p) = I*(p) ¥p ¢ L(p), and as
I(p) = F(p) Vp € L(p), where p denotes the voxel location (z,y, z) in the image
I and F(p) is the function that synthesises the intensity of voxel p. We define
§2, as a search region of size W3 voxels around voxel p. Within the region £2, we
define a cubic target patch T(p) of size w® voxels, centred at a voxel p which is
on the boundary of the lesion, and a search patch S(q) of size w® voxels, centred
in ¢, with w < W and g € 2 and g € L.

Given w and W, we propose to replace (or fill) the voxel intensity I*(p) with
the intensity I*(q) if S(g) is the most similar patch to T'(p), under the constraint
that ¢ is within the search region (2, outside the lesion region £ and that q # p.
Formally, a temporary estimate I(p) for all p € £ can be generated by finding

I(p) = I(§) with:

qg= arg min D (T(p),S(q)) (1)
VqeR2|(g#p)N(gEL)

where the distance D between two patches T and S is equal to

Yiermnjesiaiiiec @) —1(7))?

D(T(p),S(q)) = ) (2)

K
Here, where & is the cardinality of the set {i € T(p) Aj € S(q) | {i,j} € L},
i.e. the number of voxels within the patches T'(p) and S(¢) that are not in the
lesion region. Note that while the denominator x? favours patches with more
information, an extra hard constraint is necessary to avoid situations where
only a few voxels have matching intensities. Thus, by defining a as the minimum
required percentage of the patch size we can formally define the hard constraint
k > aw® (i.e. the cardinality of the set {i € T(p) Aj € S(q) | {i,7} & L} has
to be more than a% of the patch size). If this constraint is satisfied, then the p
is removed from the set £, otherwise, p remains in £. This process is repeated
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Fig. 1. Algorithm schema that illustrates two different iterations, with the voxels in or-
ange denoting the ones respecting the hard constraint &£ > cw?®. In short, the proposed
method moves the search patch S, centred at g, within {2, until it finds the location ¢
where S(§) and T'(p) are the most similar.

until £ = (), i.e., every voxel p initially in £ has an estimate I(p). This iterative
process results in an inwards filling of the voxels in £ as depicted in Fig. 1.

Finally, when £ = (), F(p) can then be estimated by buffing the estimates
of T (p) using a convolution operation F = C x I, where C is a minimal 6-
neighbourhood clique (cross-shape) kernel with its centre voxel set to 1 and
all other voxels set to K. The kernel C is then normalised so that the kernel
density sums to 1.

3 Validation

The proposed method has been evaluated both qualitatively and quantitatively.
All our experiments use the following untuned empirically defined parameters:
W = 21 for the search region {2, w = 5 for the T" and S patch size, a = 0.1,
and I = 0.4. For the sake of comparison, two publicly available lesion filling
algorithms, the method by Chard et al. [4], here denoted as ION, and the method
by Battaglini et al. [2], denoted as FSL, were used for comparison purposes.

The proposed method has been applied over two datasets. The first dataset
comes from the public database BrainWeb (http://www.bic.mni.mcgill.ca/
brainweb/) and it is used for a qualitative analysis only. The second dataset
is composed of 104 patients with secondary progressive MS (age range: 30 — 61
years) and it is used for a qualitative and quantitative analysis. Each patient
was scanned at baseline and at 24 months, resulting in a total of 208 scans. The
MRI data used here was collected using a single 1.5-T MRI scanner (General
Electric, Milwaukee, WI, USA) and analysed (quality control and manual lesion
segmentation) by two trained raters. Appropriate quality assurance procedures,
involving regular scanning of control subjects with no known neurological deficit
and phantoms, were undertaken in keeping with departmental policy. The follow-
ing sequences were acquired: 2D T1W Spin Echo (SE) (TE=15ms, TR=550ms,
in-plane pixel spacing: 0.9375 x 0.9375 mm, out-of-plane: 3 mm), T2W Dual Fast
SE (TE=20ms and 80ms,TR=2500ms,voxel size: 0.9375 x 0.9375 x 3 mm) and
3D TIWGE (TE=5ms,TR=15ms,T1=450ms, 0.976 x 0.976 x 1.5 mm).


http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
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T1 Lesion ROI

Proposed

Fig. 2. The coronal, axial and zoomed views of the original T1 image and the lesions
mask (LROI), followed by the results with FSL, ION and the proposed methodology.
Note the introduction of WM-like intensity in the missegmented caudate region (3”1
zoomed view) using the FSL and ION methods.

3.1 Qualitative Analysis

In this evaluation, we compare the different methods for filling the lesions on a
MS patient in two situations: with £ defined as the manually-segmented lesion
mask (LROI), and with a dilated version of the same mask (DROI). Fig. 2
and 3 show the results obtained using the original mask and the dilated mask
respectively. The results show that the proposed method not only preserves
better the boundaries of the underlying neighbouring structures (ventricles and
WM/GM boundary), but also reduces artefacts and spurious rasterisation due to
lesion shape, size and position and due to the choice of imaging plane for manual
segmentation. Furthermore, as the proposed method is context aware, it is also
able to cope with situations when the human rater erroneously segments a non-
pathological region of interest, e.g. the third zoomed region in both Fig. 2 and 3
shows that the caudate nucleus was mislabelled as an MS lesion. This structure

T1 Lesion ROI

Proposed

Fig. 3. The coronal, axial and zoomed views of the original T1 image and the dilated
lesions mask (DROI), followed by the results with FSL, ION and the proposed method-
ology. Note the introduction of noisy samples using the FSL method and sharp contrast
boundaries with the ION method.
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was correctly preserved using the proposed technique but not using both the
ION and FSL techniques. Furthermore, the proposed method was also applied to
images from different modalities (see Fig. 4), demonstrating the generalisability
and agnosticism to the type of image acquisition. The same parameters were
used for all modalities.

3.2 Quantitative Analysis

In this second experiment, we want to quantitatively assess which method pro-
duces the most realistic patch. In order to do so, the 208 images were filled with
the corresponding lesion mask. We computed the normalised entropy inside the
filled lesions and the gradient magnitude at the edge of the filled lesions (|VI]).
The normalised entropy provides a measure of the tissue homogeneity inside the
filled lesions, where a small entropy means that all lesions are filled with clustered
intensity values. On the other side, |VI| provides information on the presence
of discontinuities at the boundary of the lesion, with small values meaning a
soft, transition between real and synthetic intensities and high values show the
presence of spurious image gradients at the edge of the region. Furthermore, in
order to test the robustness of the filling procedure to the oversegmentation of
the MS lesions, the manually segmented lesions were dilated with a cubic (26
connection) kernel. A boundary ROI (BROI) was obtained by an XOR, operation
between the lesion mask and the dilated lesion mask. As this boundary ROI is
outside the lesion area, i.e. it contains only non-pathological tissues (WM, GM
or CSF), it will be used to assess the error in the synthesis process. We used the
mean square error (MSE) to measure the difference between the synthetic values
and the real values within the BROI region, with a smaller MSE meaning more
realistic synthetic intensities in the BROI.

In short, Table 1 shows the results of two experiments: first, using the LROI
as filling ROI, we estimate the entropy in the LROI region after lesion filling
and also the gradient magnitude |VI| at the edge of the LROI. Second, we fill
the lesions using the DROI as a filling ROI, and calculate again the gradient at
the edge of the DROI and also the MSE between the synthetic values and the
real values within the BROI region.

Table 1. Results from the quantitative analysis, with the mean (std) and t-test (against
the proposed method) over all the 208 subjects of the LROI region entropy and the
gradient magnitude |VI| at the edge of the LROI, followed by the mean squared error
(MSE) in the BROI region and the gradient at the boundary of the DROI region.

FSL ION Proposed

Entropy 0.2 (0.03) p=0.13 0.09 (0.02) p<0.001 0.19 (0.03)
|VI|Lror (x1072) 6.1 (0.9) p=0.47 7.9 (1.3) p<0.001 6.1 (0.9)
MSEgror (x107%) 15.9 (6.1) p<0.001 69.3 (27.4) p<0.001 5.9 (1.7)
|VI|pror (x1072) 6.5 (0.8) p<0.001 9.9 (1 (0.7)

LROI

DROI

PRy

4) p<0.001 6.0
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Fig. 4. Lesion filling results on different modalities using the ”severe” MS phantom
from the BrainWeb dataset. First row, the T1 and the lesion filled T1 (a — b), the T2
and the lesion filled T2 (¢ — d), and the PD and the lesion filled PD (e — f). Second
row, the lesions mask over each different modality image (a, ¢ and e), and the ground
truth for each different modality image (b, d and f).

4 Discussion and Conclusion

In this paper, we propose a new and robust multi-modality lesion filling technique
that relies on a non-local patch match strategy. The method shows improved
results compared to previously published publicly available methods.

The presented method requires less prior information than previous methods,
as it only needs a roughly defined lesion ROI mask. Conversely, the FSL method
requires a precisely drawn lesion mask and the ION method requires an accurate
skull stripping methodology.

Furthermore, the proposed method is not only less affected by the lack of
contrast between tissues, as it fills the lesion ROI with the most similar non-
local patches and not according to a class-specific intensity model, but at the
same time more robust to the location of the lesions, i.e. previous algorithms
have problems with lesions located close to non white matter regions.

The NL-Means models usually use a weighted averaging of the best-matched
patches, rather than using the best match. In our testing, we found that weighted
averaging can introduce edge blurring and an artificially low SNR.

Lastly, manual lesion editing is still the gold standard for lesion masking in
MS, with the accuracy of the rater and the choice of segmentation plane being
sources of bias. By exploiting contextual information, the proposed algorithm
has been shown to be more robust to lesion over-segmentation than previously
published techniques. Thus, it would be interesting to see if the proposed method
can be used in conjunction with a highly sensitive automatic lesion detection
methodology, thus removing rater bias from the analysis process. If the lesions
are under-segmented, there is the possibility for our method to fill the segmented
lesion ROI with lesion-like intensities, but a mask dilation can avoid this problem.

Although, Guizard’s method [7] also used NL-means strategy, the two
algorithms are different. Guizard’s method searches the similar patches in
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surrounding regions, having fewer potential patches to fill the lesion. It uses the
whole patch and prefills the lesions with an average intensity, introducing bias
and make the method less robust in the presence of under or over-segmentation.
Future work will explore a scaling/rotation invariant extension of the patch
search technique, multi-time-point filling and model parameter optimisation.
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