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Abstract. Accurate segmentation of the hippocampus from infant MR brain 
images is a critical step for investigating early brain development. Unfortunate-
ly, the previous tools developed for adult hippocampus segmentation are not 
suitable for infant brain images acquired from the first year of life, which often 
have poor tissue contrast and variable structural patterns of early hippocampal 
development. From our point of view, the main problem is lack of discrimina-
tive and robust feature representations for distinguishing the hippocampus from 
the surrounding brain structures. Thus, instead of directly using the predefined 
features as popularly used in the conventional methods, we propose to learn the 
latent feature representations of infant MR brain images by unsupervised deep 
learning. Since deep learning paradigms can learn low-level features and then 
successfully build up more comprehensive high-level features in a layer-by-
layer manner, such hierarchical feature representations can be more competitive 
for distinguishing the hippocampus from entire brain images. To this end, we 
apply Stacked Auto Encoder (SAE) to learn the deep feature representations 
from both T1- and T2-weighed MR images combining their complementary in-
formation, which is important for characterizing different development stages 
of infant brains after birth. Then, we present a sparse patch matching method 
for transferring hippocampus labels from multiple atlases to the new infant 
brain image, by using deep-learned feature representations to measure the inter-
patch similarity. Experimental results on 2-week-old to 9-month-old infant 
brain images show the effectiveness of the proposed method, especially com-
pared to the state-of-the-art counterpart methods. 

1 Introduction 

During the first year of life, human brains undergo rapid tissue growth and postnatal 
development. The ability to accurately characterize structural changes from MR im-
ages during this period is indispensable for shedding new light upon the exploration 
of brain development and also the early detection of neurodevelopmental disorders. In 
many imaging-based early brain development studies, hippocampus is of particular 
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learning features. Finally, we present a sparse patch matching method for transferring 
hippocampal labels from multiple atlases [5] to each new infant brain image, by using 
deep-learned feature representations for measuring inter-patch similarity. In experi-
ments, we have comprehensively evaluated the performance of our method on 10 
infant brain subjects acquired from 2-week-old to 9-month-old, obtaining much better 
results than the state-of-the-art counterpart methods.  

2 Method 

2.1 Learning Hierarchical Feature Representation by SAE 

Our goal here is to use a deep learning technique to infer the intrinsic feature repre-
sentation for any 3D image patch in the infant MR images. We assume T1- and T2-
weighed MR images of same subject are already aligned.1 Thus, from all training 
images of different subjects, we can collect a set of paired patches, such as ܰ pairs of ݈ ൈ ݈ ൈ ݈ image patches2, with each pair including a ݈ ൈ ݈ ൈ ݈ patch from T1-weighted 
MRI and another ݈ ൈ ݈ ൈ ݈ patch from T2-weighted MRI. Then, we arrange each pair 
into a column vector, i.e., ݔറ௡ א ܴ௅ , ݊ ൌ 1, … , ܰ , where ܮ ൌ ݈ ൈ ݈ ൈ ݈ ൈ 2 . In the 
following, we will describe how to use SAE to learn the intrinsic hierarchical feature 
representation for each ݔറ௡, by first introducing a single-layer auto encoder (AE).  

Single-layer AE: AE consists of two components: the encoder and the decoder. The 
encoder step seeks for a nonlinear mapping to project the high-dimensional observed 
data (input units) ݔറ௡ into a low-dimensional code (feature representation). The de-
coder step aims to recover the observed data (input units) from the low-dimensional 
code with minimal reconstruction error. Specifically, in the encoder step, given the 
observed data ݔറ௡ , the AE maps it to an ܯ -dimensional activation vector, ሬ݄റ௡ ൌሾ݄௡ሺ݉ሻሿ௠ୀଵெ , ሬ݄റ௡ א ܴெ ܯ , ൏ ܮ , through a deterministic mapping, i.e., ሬ݄റ௡ ൌߪሺݔࢃറ௡ ൅ ሬܾറଵሻ , where the weight/mapping matrix ࢃ א ܴெൈ௅  and the bias vector ሬܾറଵ א ܴெ  are the encoder parameters. Here, ߪ is the logistic sigmoid function, i.e., ߪሺܽሻ ൌ ሺ1 ൅ exp ሺെܽሻሻିଵ . It is worth noting that the activation vector ሬ݄റ௡  in the 
hidden layer (with ܯ nodes) is considered as the low-dimension feature representa-
tion for the input high-dimension observed data ݔറ௡. In the decoder step, the activa-
tion vector ሬ݄റ௡  is then decoded to a vector ݔොറ௡ א ܴ௅ , which approximately recon-
structs the input observed data ݔറ௡  by another deterministic mapping, i.e.,  ݔොറ௡ ൌߪሺ்ࢃ ሬ݄റ௡ ൅ ሬܾറଶሻ ൎ ்ࢃ റ௡, whereݔ א ܴ௅ൈெ is the transpose of matrix ࢃ and ሬܾറଶ א ܴ௅ 
is the bias vector.  

Sparse constraint upon the ܯ hidden nodes in AE can often lead to a small set of 
more interpretable features. By regarding the ݉-th hidden node as being “active” if 
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2 We use a random sampling strategy to collect image patches in a bounding box that covers all 

possible locations of hippocampus.  
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Next, we extract the intensity values from both T1- and T2-weighted MRI within 
each image patch, and further obtain the deep-learned feature representation (i.e., the 
low-dimension activation vector in the middle layer of SAE) through the encoder 
component of SAE. Here, we use റ݂௦ሺݒሻ to denote the deep-learned feature represen-
tation for the target image patch, and further arrange all deep-learned feature repre-
sentations of all atlas image patches into a matrix ࡭ (column by column). To achieve 
robust hippocampus segmentation, we further enforce the sparsity constraint upon the 
weighting vector ߙറ௩ ൌ ሾߙ௩ሺ݌, ሻሿ௨ୀଵ,…,|Գሺ௩ሻ|; ௣ୀଵ,…,௉ݑ , where each element in ߙറ௩  de-
notes the contribution of label carried by a particular atlas image patch in label fusion. 
Thus, our goal finally turns to finding the optimal weighting vector ߙറ௩ that can mi-
nimize the difference between the target feature representation റ݂௦ሺݒሻ and the linearly 
combined feature representation ߙ࡭റ௩ from all atlas image patches. The overall ener-
gy function can be defined as below:   

റ௩ߙ  ൌ arg minఈሬሬറೡ ଵଶ ฮ റ݂௦ሺݒሻ െ റ௩ฮଶଶߙ࡭ ൅ .റ௩ԡଵ       sߙԡߤ t. റ௩ߙ  ൐ 0 (3) 

where ߤ controls the strength of sparsity constraint on the weighing vector  ߙറ௩. We 
use an optimization method in [6] to solve the above sparse representation problem. 
After obtaining the optimal weighing vector  ߙറ௩, the final likelihood ܳ௦ሺݒሻ on the 
target image point ݒ of ܫ௦ can be determined by: 

 ܳ௦ሺݒሻ ൌ ∑ ∑  ఈሬሬറೡሺ௣,௨ሻൈீ೛ሺ௨ሻೠאԳሺೡሻು೛సభ∑ ∑  ఈሬሬറೡሺ௣,௨ሻೠאԳሺೡሻሻು೛సభ  (4) 

Given the likelihood map for hippocampus, we further apply the level sets method 
to outline the hippocampus boundary and derive the final segmentation. 

3 Experimental Results 

In the experiments, MR images of 10 infant subjects acquired from a Siemens head-
only 3T scanner are used. In each subject, both T1- and T2-weighted MR images 
were acquired in four data sets at 2 weeks, 3 months, 6 months and 9 months of age. 
T1-weighted MR images were acquired with 144 sagittal slices at a resolution of 1 ൈ 1 ൈ 1݉݉ଷ, while T2-weighted MR images were acquired with 64 axis slices at 
resolution of 1.25 ൈ 1.25 ൈ 1.95݉݉ଷ. For each subject, the T2-weighted MR image 
is aligned to the T1-weighted MR image at the same age and then further resampled 
to 1 ൈ 1 ൈ 1݉݉ଷ. In the pre-processing step, skull stripping and bias-field correction 
is applied to each image. The manual segmentations of the hippocampal regions for 
all 10 subjects are used as ground-truth for evaluation.  

We set parameters for the unsupervised deep feature learning as below. The patch 
size is set to 11 ൈ 11 ൈ 11 considering the balance between computation time and 
discriminative power, and 4 layers are employed in the SAE. The number of units in 
each layer of SAE is 800, 400, 200 and 100, respectively. Thus, the final dimensional-
ity of deep-learned feature representation is 100. The target activation ߩ  for the  
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