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Abstract. Multi-object adaptive optics (MOAO) is a novel adaptive
optics (AO) technique dedicated to the special case of wide-field multi-
object spectrographs (MOS). It applies dedicated wavefront corrections
to numerous independent tiny patches spread over a large field of view
(FOV). The control of each deformable mirror (DM) is done individu-
ally using a tomographic reconstruction of the phase based on measure-
ments from a number of wavefront sensors (WFS) pointing at natural
and artificial guide stars in the field. The output of this study helps
the design of a new instrument called MOSAIC, a multi-object spectro-
graph proposed for the European Extremely Large Telescope (E-ELT)1.
We have developed a novel hybrid pseudo-analytical simulation scheme
that allows us to accurately simulate in detail the tomographic problem.
The main challenge resides in the computation of the tomographic re-
constructor, which involves pseudo-inversion of a large dense symmetric
matrix. The pseudo-inverse is computed using an eigenvalue decomposi-
tion, based on the divide and conquer algorithm, on multicore systems
with multi-GPUs. Thanks to a new symmetric matrix-vector product
(SYMV) multi-GPU kernel, our overall implementation scores signifi-
cant speedups over standard numerical libraries on multicore, like Intel
MKL, and up to 60% speedups over the standard MAGMA implementa-
tion on 8 Kepler K20c GPUs. At 40,000 unknowns, this appears to be the
largest-scale tomographic AO matrix solver submitted to computation,
to date, to our knowledge and opens new research directions for extreme
scale AO simulations.

1 Introduction

Astronomical programs characterizing high redshift galaxies to study their for-
mation and evolution, require to observe a large number of objects in parallel in

1 http://www.eso.org/public/teles-instr/e-elt
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the largest field possible to achieve a sufficient statistic for a reasonable observ-
ing time. This is the principle of multi-object spectroscopy. Moreover, it is also
necessary to resolve these galaxies so as to perform integral field spectroscopy
on their structures. The required resolution should be much better than atmo-
spherical seeing, typically 50 to 100 milli-arcseconds, and therefore requires the
implementation of adaptive optics (AO), an instrumental technique for the com-
pensation of dynamically evolving aberrations in an optical system (i.e., due to
atmospheric turbulence in the case of a ground based telescope). One of the
instruments proposed for the future European Extremely Large Telescope (E-
ELT) is MOSAIC [8], a multi-object integral field (multi-IFU) spectrograph for
the analysis of distant galaxies, a merger of the EAGLE and OPTIMOS-EVE
phase A projects [5,15]. It must be equipped with a specific AO concept, called
multi-object AO (MOAO).

In this paper, we present an efficient approach for simulating the behavior
of a MOAO system on extremely large telescopes, based on a novel hybrid,
pseudo-analytical simulation scheme, somewhere in between the end-to-end and
purely analytical approaches, that allows us to simulate in detail the tomographic
problem as well as noise and aliasing with a high fidelity. The advantage of this
pseudo-analytical approach is its accuracy, as compared to a pure Fourier ap-
proach (as developed for instance in [16]), since it is using the same reconstructor
as the one that would be used on sky, while being extremely fast as compared
to a standard end-to-end approach. The main challenge resides in the computa-
tion of the tomographic reconstructor which is split in three phases: 1) the eigen
decomposition of a large dense symmetric matrix (typically 40 000× 40 000 el-
ements, or greater) corresponding to the covariance matrix of the turbulence
using a divide-and-conquer algorithm, 2) the explicit pseudo-inversion compu-
tation of the covariance matrix and 3) the computation of the tomographic
reconstructor using matrix-matrix multiplication kernel. Thanks to their high
memory bandwidth and their compute-intensive capabilities (high ratio floating-
point operations per memory byte loaded i.e., the so-called surface to volume
effect), hardware accelerators, such as GPUs, are natural candidates for such
workloads. Our contributions are twofold. We have further optimized the exist-
ing multi-GPU symmetric eigensolver [21] from the Matrix Algebra on GPU and
Multicore Architectures library [2] (MAGMA) by integrating a new symmetric
matrix-vector product (SYMV), which represents one of the main performance
bottlenecks for symmetric eigensolvers due to its memory-bound nature (phase
1). We have also developed a linearly scaling matrix-matrix multiplication kernel
on multi-GPUs (phases 2 and 3).

The remainder of the paper is organized as follows. Section 2 introduces the
novel MOAO approach. Section 3 presents the mathematical model for simulat-
ing the MOAO technique. Section 4 recalls the major computational steps of the
dense symmetric eigensolver. Section 5 describes the parallel implementation of
the overall tomographic reconstructor which includes an efficient matrix-matrix
multiplication kernel on multi-GPUs. Section 6 highlights the performance re-
sults on multi-GPUs. Also, performance comparisons against the state of the art,
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high performance dense linear algebra software libraries are shown on x86 as well
as GPUs i.e., Intel MKL [13], CULA [1] and the standard MAGMA implemen-
tation. Finally, Section 8 summarizes the results of this paper and presents the
ongoing work.

2 The Multi-Object Adaptive Optics Technique

Measuring the wavefront disturbances is achieved, by conventional AO systems,
using a wavefront sensor (WFS), which is of a Shack-Hartmann type for most
of systems currently in operations [6]. The WFS splits optically the telescope
pupil into a number of sub-apertures and makes as many images of a sufficiently
bright stellar guide source in each sub-apertures. The exact position of each
image, influenced by the turbulence, allows to determine the local slope (i.e.,
derivative) of the wavefront in front of each sub-aperture. The WFS measurement
ends up with a vector field, sampled as the sub-aperture pattern, and describing
the wavefront gradient over the pupil area.

The high redshift galaxies are much too faint to provide guide sources for the
wavefront measurement for AO and one should find field stars bright enough
to ensure this measurement. To obtain 100% sky coverage, a critical aspect
for cosmological programs, it is necessary to create artificial guide stars by the
backscattering of a laser beam on the Sodium layer of the atmosphere [10] so as to
deal with the low stars density found in cosmological fields. These artificial stars
are called Laser Guide Stars (LGS) as opposed to Natural GS (NGS). Whatever
type of GS, natural or laser, they can be used to measure the atmospheric
turbulence in directions that are not those directions of interest (those galaxies to
be observed). Tomography algorithms must thus be developed to allow optimal
reconstruction of the turbulent volume and the calculation, by projection on the
different directions of interest, of the correction to be applied.

Moreover, the fields of interest are very large (5 to 10 arc minutes) compared
to the capabilities of conventional AO and a deformable mirror (DM), or even
several, compensating the whole field of view is not an adequate solution. Addi-
tionally, serious problems arise when trying to implement such optical designs.
In fact, only the galaxies must be corrected in this large field, i.e., small patches
of few arcseconds, but not the entire field. In the MOAO concept, a specific
optical train is placed in the direction of each object of interest including a ded-
icated DM to ensure correction. Aligned with the linear approach of wavefront
reconstruction used in classical AO systems, the tomographic reconstructors pro-
posed up to now in the literature are linear operators [7]. The input data is a
vector that concatenates all the measurements taken at a given moment of all
the WFSs staring at NGS and LGS. On output, the multiplication by the tomo-
graphic matrix will produce a vector that will represent either the phase in the
volume (expressed in a suitable basis), or the voltages of a DM.

We have chosen to follow an approach that we have used on the CANARY
experiment [9]: the “Learn & Apply”. The tomographic reconstructor is aimed
at retrieving the wavefront measurements that a virtual sensor would see when
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looking at a source located on the scientific target and called truth sensor (TS).
As finding this reconstructor is an inverse problem, it is searched using a minimal
mean square error (MMSE) approach, relying on priors on turbulence parame-
ters (Kolmogorov assumption, global Fried parameter, C2

n(h) profile, wind speed
profile, etc.) in order to constraint it and provide regularization. This reconstruc-
tor can then be used either to control a real system, or in our case to compute
the reconstruction error using an analytical model for the various terms of the
system error budget. From this reconstructor, we derive numerically the covari-
ance matrix of the tomographic error, including aliasing and propagated noise.
We are then able to simulate the point-spread function (PSF) associated to this
covariance matrix of the residuals. The obtained long exposure PSF is then mul-
tiplied, in the Fourier space, by the product of the optical transfer functions
(OTF) corresponding to bandwidth and fitting errors.

3 Mathematical Model

Because we aim to simulate the image quality attained on the E-ELT using
MOAO, the end product we are looking for is the long-exposure point spread
function (PSF). The latter is the Fourier transform of the optical transfer func-
tion (OTF). Under the hypothesis of stationarity of the phase, it has been shown,
for instance in [19] that the OTF can be written as OTF (ρ/λ) = OTFtel(ρ/λ)
exp(− 1

2Dφ(ρ)), with OTFtel the optical transfer function of the telescope, and
Dφ(ρ) the structure function of the residual phase.

We will assume that the residual errors induced by the AO correction will be
made of three independent terms: 1) a term due to the DM fitting error induced
by the limited number of actuators on the DM, 2) a term due to temporal error,
induced by the finite system bandwidth and 3) a term made of the tomographic
error, the associated aliasing, and the noise propagated from the measurements
through the tomographic reconstructor. A structure function will be associated
to each of these terms, that will be computed from the power spectral density
of the residual phase for the first two items, exactly as proposed in [17,14]. The
computation of the third term is explained below. We will assume that these
3 terms behave as independent processes. Thus, the structure function of the
residual phase can be written as the following sum: Dφ(ρ) = Dfit(ρ) +Dbw(ρ)+
Dtomo(ρ).

While the computation of the first two structure functions:Dfit(ρ) andDbw(ρ)
is not compute intensive, the computation of the last term: Dtomo(ρ) requires a
lot of computing power, especially in the case of the E-ELT, as explained below.
As mentioned in the previous section, in our current design for MOAO, an on-
axis “truth sensor” is used to calibrate the interaction matrix of the system, that
will allow us to control the DM from this virtual WFS measurements minimizing
the calibration errors. If we call t the measurements of the truth sensor and v
the voltages applied on the DM, we can calibrate the interaction matrix D by
soliciting each actuator of the DM one by one : t = D v and we can control
the DM from the TS measurements using v = D† t, where D† is the generalized
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inverse of D, possibly with some filtered modes. D† is usually computed by doing
a singular value decomposition (SVD) of D = U · [diag(λi)] · V t. The negligible
singular values are then filtered out and D† can then be calculated as follows:

D† = V · [diag(1/λ1, 1/λ2, · · · , 1/λk)] · U t, (1)

where k is the numerical rank of D. The tomographic error vector e, as it would
be measured by a noiseless truth sensor, would be e = t − Rm, where R is
the tomographic reconstructor used on the system to drive the DM. Given a
particular reconstructor, we can thus compute the covariance matrix Cee of e as
follows:

Cee = Ctt − CtmRt −RCt
tm +RCmmRt. (2)

The structure function of the phase tomographic error Dtomo(ρ) can then be
deduced from the statistical covariance matrix of the DM actuators, Cvv (the
subscript v stands for volts). The matrix Cvv is computed using Cvv = D†CeeD

†t,
with Cee given in Eq. 2 and D† explained in Eq. 1. To compute Cee it is thus
necessary to introduce a given tomographic reconstructor. It has been shown, for
instance in [20], that the Minimum Mean Square Error (MMSE) tomographic
reconstructor can be written as:

R = Ctm.C−1
mm, (3)

where Cmm stands for the covariance matrix between all the measurements of
all the WFS of the instrument, and Ctm is the covariance matrix between the
measurements of the factious truth sensor, and all the other system measure-
ments. In the case of the E-ELT, Cmm is an extremely large matrix (40k x 40k
or greater) and its inversion is thus the most compute intensive part of our
pseudo-analytical model. It must be noted that the inversion of matrix Cmm in
the previous equation is not a strict inversion, as the null space of Cmm may not
be empty. Inverting Cmm may be done using eigen decomposition, and filtering
out the negligible eigenvalues.

4 Dense Symmetric Eigensolver Algorithm

The LAPACK dense symmetric eigensolver (DSYEVD) is composed of three
computational stages. The matrix is first reduced to tridiagonal (DSYTRD)
form using orthogonal transformations based on Householder reflectors, which
guarantees numerical stability. The reflectors are saved in the reduced lower or
upper part of the matrix, depending on which part is considered, since they will
be required at the last stage. The second stage extracts all eigenvalues from the
tridiagonal matrix and optionally computes all eigenvectors using a divide-and-
conquer algorithm (DSTEDC). The third stage corresponds to the back transfor-
mation where all orthogonal transformations from the first stage are applied by
block to the eigenvector matrix (DORMTR). If only eigenvalues are needed, the
routine DYSTRD is called followed by DSTERF, which calculates only the eigen-
values out of the tridiagonal matrix and has an algorithmic complexity of O(n2)
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compared to O(n3) for DSYTRD. One of the main performance bottlenecks of
DSYEVD is DSYTRD due to its expensive panel factorization, which requires
loading into memory the whole unreduced part of the matrix (i.e., the trailing
submatrix) at each single reduction step to perform Level 2 BLAS operations
(memory-bound) i.e., the symmetric matrix-vector product (DSYMV). The up-
date of the trailing submatrix is however compute-intensive and relies on high
performance Level 3 BLAS operations (compute-bound). When all eigenvectors
are additionally needed, DSTEDC and DORMTR are also based on successive
calls to Level 3 BLAS kernels and easily achieve high performance close to the
matrix-matrix multiplication kernel performance (DGEMM) on modern parallel
architectures.

5 Implementation Details

The DSYMV is a memory-bound kernel that represents the main bottleneck
in the DSYEVD algorithm. We present an optimized DSYMV kernel, which
is a variant of a previously version proposed by some of the authors [3]. The
new version has some improvements, such as the elimination of the need to
a workspace for global reduction, and the use of atomic operations to allow
multiple threads working on the same output location. These new optimizations
are suitable for the Kepler architecture2. In contrast with the old design [3],
the DSYMV is BLAS compliant and achieves higher occupancy on the GPU for
relatively small matrices. For the multi-GPU DSYMV, the matrix layout over
the GPUs is decided by the upper level algorithm (DSYTRD). A multi-GPU
version of this algorithm is proposed by MAGMA [21]. The matrix layout is
block-column 1D cyclic distribution. Since we intend to integrate our DSYMV
into MAGMA, we use the same layout.

Once the eigenvalue decomposition is complete, the pseudo inverse of the co-
variance matrix can be computed, C−1

mm = U ·E−1 ·U t, where U is the matrix of
eigenvectors and E is a diagonal matrix containing the eigenvalues. Afterwards,
the tomographic reconstructor can be computed as in Equation 3, where Ctm is
a rectangular matrix of a typical size 3.5k × 40k. It is not trivial, though, to per-
form such operations on huge matrices. One optimization for the pseudo inverse
is to compute the square root of E−1 and multiply it by U . This multiplication is
simplified to scaling the columns of U by the square roots of E−1. The resulting
matrix (say Ū) can then be used to compute C−1

mm, since C−1
mm = Ū · ŪT . We

propose a statically scheduled DGEMM on multi-GPU systems. The proposed
kernel performs the standard BLAS operation, C = αA·B+βC, where A, B, and
C have the dimensions m×k, k×n, and m×n, respectively3. The design is based
on processing matrices with tiles. cuBLAS DGEMM [18] is used to perform the

2 http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
3 NVIDIA’s cuBLAS-XT library provides a similar kernel, but it is not freely available
on multi-GPUs.

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
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product at the tile level. It is a highly optimized kernel that achieves approx-
imately 1.1 Tflop/s in double precision on a Kepler GPU. Since the matrices
might not fit into GPUs’ main memory, our implementation is an out-of-core
DGEMM. The tiles are exchanged between CPU and GPU(s) as needed during
computation. The communication overhead should be hidden by useful compu-
tation. Figure 1 shows how the work is assigned among four GPUs, where A and
B are both processed in the non-transposed mode. For simplicity, assume that
m, n, and k can be fully divided into a given tile size. The block rows of A are
assigned to GPUs in a 1D cyclic manner. Each GPU reads a block row of A, tile
by tile, and does all the computation associated with it. A GPU reads B in block
columns, tile by tile, and writes the corresponding result in C (1D cyclic block
row, tile by tile). An important point is the memory consumption per GPU.

Fig. 1. Strategy and memory requirement
for the proposed DGEMM-MGPU

From Figure 1, we can determine
the device memory requirement for
the proposed DGEMM-MGPU, for a
sample matrix whose dimension k fits
into six tiles. Each GPU requires as
many tiles as necessary to store a
block row of A. The implementation
uses double buffers for B and C tiles
in order to overlap communication
with computation. The total memory
requirement (M), in bytes, per GPU
is given by, M = (kT + 4T 2)P, where
P is the precision, expressed in bytes,
and T is the tile size. Only tile sizes
higher than 1000 are considered, to
ensure approximately 1.1 Tflop/s per-
formance per tile. Even with a large
tile size of 5k, the kernel can process

square matrices beyond 100k in double precision (on a K20c GPU), which is
beyond the targeted size here.

6 Experimental Results

The experiments have been conducted on a system equipped with Intel Sandy
Bridge CPU (2 sockets × 8 cores per socket), and accelerated with eight Kepler
K20c GPUs (ECC off), each with 5 GB of memory. We use CUDA Toolkit 5.5 and
Intel MKL (Intel Composer XE 2013) to build MAGMA-1.4.0. CULA R17 does
not distribute DSYEVD and provides only the DSYEV algorithm (symmetric
eigensolver using the QR iteration) on single GPU. All computations are done
in double precision. Results are properly averaged across multiple runs.

Starting with the DSYMV, The proposed kernel outperforms the state-of-the-
art implementations, including MAGMABLAS-1.4.0, cuBLAS-5.5, and CULA-
R17. Figure 2(a) shows the performance of the proposed kernel against the
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(a) DSYMV performance on one GPU. (b) DSYMV performance on 1:8 GPUs.

Fig. 2. DSYMV performance on single and multi-GPUs (Kepler K20c - ECC off)

aforementioned high performance libraries, on a single Kepler K20c GPU. The
Figure shows an asymptotic improvement of 97% against CULA-R17, 56%
against cuBLAS-5.5, and 44% against MAGMABLAS-1.4.0. For small matrix
dimensions (less than 2000), the improvement is up to 2x against the best im-
plementation, which is a crucial result for the DSYTRD algorithm. The per-
formance is about 88% of the sustained peak bandwidth performance. cuBLAS
appears twice in the Figure, since it provides two implementations. In addition
to our multi-GPU implementation, only MAGMABLAS provides the DSYMV
kernel on multi-GPUs. Figure 2(b) shows the performance of both implementa-
tions, on a single node with 8 GPUs. The asymptotic performance speedup over
8 GPUs is up to 40%.

Fig. 3. DSYEVD Execution time using one
GPU against multi-core system.

The dominant part of DSYEVD is
the DSYTRD stage, which is, in turn,
dominated by symmetric matrix-
vector product. Thanks to MAGMA
being open source, we were able to
replace MAGMABLAS DSYMV ker-
nel with the one we propose. For
the single GPU case, we compare
the three libraries offering symmetric
eigenvalue decomposition, Intel MKL,
MAGMA-1.4.0, and CULA-R17. For
MAGMA, we run an additional accel-
erated version (from now on referred
to as accelerated MAGMA) where our
proposed DSYMV is used. All eigen-
values and eigenvectors are computed

here, although our application, in principle, will filter out up to 20% of the
eigenpairs with very low magnitude. Figure 3 shows the execution time of the
DSYEVD algorithm for the aforementioned libraries. GPU accelerated libraries
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uses one Kepler K20c GPU (ECC off). The accelerated MAGMA DSYEVD us-
ing our DSYMV kernel is faster than the original MAGMA DSYEVD by 35%.
It achieves 3.4x speedup against MKL, and up to 7.2x against CULA DSYEV.
Figure 4(a) shows the execution time for the DSYEVD-MGPU, where the ac-
celerated MAGMA achieves speedups up to 45%, 60%, and 70%, on 2, 4, and 8
GPUs, respectively. We notice that the original MAGMA routine has a prepro-
cessing step for a workspace, performed every time before the DSYMV-MGPU
routine is called. Since our DSYMV-MGPU routine does not need a workspace,
we save the initialization time in addition to the saving due to the more optimized
routine. Figure 4(b) shows the overhead of computing the eigenvectors over a
run that computes only eigenvalues. Our results still show that the dominant
part in the operation is the DSYTRD part, since the backward transformation
phase is compute-bound and can be done very efficiently on the GPU.

(a) DSYEVD scalability against the num-
ber of GPUs.

(b) Overhead of eigenvector computations
on 8 GPUs.

Fig. 4. DSYEVD execution time analysis

Table 1. Performance (Tflop/s) of
the pseudo inversion

Tile size 4 GPUs 8 GPUs
1000 3.50 5.39
1600 3.60 6.04
2000 3.99 6.36
2500 4.03 7.74
4000 3.52 5.23
5000 4.16 8.05

We also present the performance of the
DGEMM kernel, which is designed specifi-
cally for the application, although it can be
easily modified to serve as general purpose
DGEMM. Communicating tiles between the
CPU and the GPU is done asynchronously, so
that the GPU can process existing tiles while
receiving new ones, and the CPU can do use-
ful work concurrently with the GPU. In this
case, the useful work is scheduling more tiles
to be processed. Figure 1 shows that our static
scheduling strategy may suffer from load im-

balance, which will result in a performance drop. However, for the matrix sizes
of the application, we can achieve performance that is very close to the peak,
if we choose the right tile size. The computation of the pseudo inverse involves
multiplication of two 40k×40k matrices. Using different tile sizes, the perfor-
mance is summarized in Table 1, for 4 and 8 GPUs. It is clear that the larger
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the tile, the better the performance. Tile size 5000 achieves performance that is
very close to the sustained peak.

Finally, we present the overall simulation performance. Thanks to the pro-
posed DSYMV and DGEMM kernels, the accelerated MAGMA finishes the sim-
ulation in 263.49s. This is 60% better than an original MAGMA implementation
(421.10s). It is also 17.5x faster than Intel MKL on 16 core Intel Sandy Bridge
processor (4656.25s). To prove how dominant the DSYEVD is, our results show
that it takes 241.07s on accelerated MAGAM, 399.15s with an original MAGMA,
and 4370.50s using Intel MKL. The other phases are less than 10% of the total
run time, for the accelerated MAGMA case.

7 Related Work

It is noteworthy to mention that there exist other numerical algorithms for dense
symmetric eigensolver, which tries to workaround DSYTRD’s bottlenecks by in-
troducing a two-stage tridiagonal reduction. The original dense matrix is first
reduced to band form using efficient compute-intensive kernels from which a
bulge chasing algorithm is applied to chase down the off-diagonal elements un-
til the final tridiagonal matrix is formed. This allows to cast most of Level 2
BLAS operations into Level 3 BLAS operations and increases significantly the
overall symmetric eigensolver. This two-stage approach has been first introduced
by Bischof et. al [4]. Haidar et. al [11,12] have further improved it on shared-
memory multicore architecture. All aforementioned implementations run only on
multicore and are very challenging to port on GPUs due to the non-conventional
kernels involved in the bulge chasing procedure. The authors presented only per-
formance results based on a MATLAB implementation.

8 Conclusion and Future Work

This paper has presented 1) an efficient implementation of the DSYMV kernel
on multi-GPUs, which is a critical Level 2 BLAS operation for the dense sym-
metric eigensolver DSYEVD and 2) an optimized asynchronous DGEMM kernel
on multi-GPUs. Thanks to both implementations and the multi-object adaptive
optics approach, the overall application accurately solves unprecedented problem
scale in the adaptive optics field (up to our knowledge) and reaches high perfor-
mance on multi-GPUs compared to the standard MAGMA implementation on
8 Kepler K20c GPUs (up to 60% speedup). New research directions for extreme
scale AO simulations can be envisaged by replacing the actual dense symmetric
eigensolver to compute the tomographic reconstructor with the Cholesky-based
symmetric matrix inversion. This would permit to calculate the explicit inverse
directly without intermediary computational steps as well as to port this overall
application to distributed-memory systems with GPUs more easily. This method
would also allow to capture and to better handle the noise propagated from the
measurements through the tomographic reconstructor. In addition, the covari-
ance matrix generation has not been investigated here since the time taken to
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compute it is not dominant for the problem sizes studied in the paper. However,
it would have to be considered for large problem sizes, especially when targeting
distributed-memory environment. Future possibilities also include exploitation
of the low rank character of the co-variance matrix and reuse of information
between instances that are currently treated as independent.
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