
Random Fields Generation on the GPU
with the Spectral Turning Bands Method

Lars Hunger1,4, Biagio Cosenza2, Stefan Kimeswenger1,3,
and Thomas Fahringer2

1 Institute for Astro- and Particle Physics, University of Innsbruck, Austria
2 Institute of Computer Science, University of Innsbruck, Austria

3 Instituto de Astronomı́a, Universidad Católica del Norte Antofagasta, Chile
4 BrainLinks-BrainTools, University of Freiburg, Germany

Abstract. Random field (RF) generation algorithms are of paramount
importance for many scientific domains, such as astrophysics, geostatis-
tics, computer graphics and many others. Some examples are the genera-
tion of initial conditions for cosmological simulations or hydrodynamical
turbulence driving. In the latter a new random field is needed every time-
step. Current approaches commonly make use of 3D FFT (Fast Fourier
Transform) and require the whole generated field to be stored in mem-
ory. Moreover, they are limited to regular rectilinear meshes and need
an extra processing step to support non-regular meshes.

In this paper, we introduce TBARF (Turning BAnd Random Fields),
a RF generation algorithm based on the turning band method that is
optimized for massively parallel hardware such as GPUs. Our algorithm
replaces the 3D FFT with a lower order, one-dimensional FFT followed
by a projection step, and is further optimized with loop unrolling and
blocking. We show that TBARF can easily generate RF on non-regular
(non uniform) meshes and can afford mesh sizes bigger than the available
GPU memory by using a streaming, out-of-core approach. TBARF is 2 to
5 times faster than the traditional methods when generating RFs with
more than 16M cells. It can also generate RF on non-regular meshes,
and has been successfully applied to two real case scenarios: planetary
nebulae and cosmological simulations.

Keywords: gpu, random field, turning band, fft, astrophysics, non uni-
form mesh, non-regular mesh, gpgpu, spectral methods.

1 Introduction

A Random Field (RF) is a spatial distribution of correlated random values. One
RF point consists of a random value, and its corresponding spatial coordinates.
The correlation function describes how the values of RF points behave depending
on their relative position to each other. For instance, for a correlation function
with high correlation on short ranges, closeby points have very similar values.
This leads to the formation of clusters of points with similar values. The size
distribution of these clusters is described by the power spectrum. The correlation
function and the power spectrum are two different ways to describe a RF. The
power spectrum can be transformed into a corresponding correlation function
and vice versa, according to requirement of the Wiener-Khinchin theorem [27].

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 656–667, 2014.
c© Springer International Publishing Switzerland 2014

TBARF: Random Fields on the GPU 657

RF generation algorithms are of crucial importance for many scientific areas.
They are used to generate initial conditions for cosmological structure formation
simulations like the Millenium simulation [5], to create winds in planetary nebu-
lae simulations (see Sec.6) and for the initialization of N-body simulations [19].
In simulations that use a turbulence driving technique like the one proposed in
[8], a RF has to be generated in each time-step of the Magneto-hydrodynamical
simulation. RFs are also often used in geostatistical research [24] together with
a technique called Kriging for creating topological maps. In other words, RFs
are used when the statistical properties of a scalar field are known and distinct
realizations are to be generated.

We focus on three-dimensional (3D) RF. Traditional approaches to compute
3D RFs make extensive use of 3D Fast Fourier transforms (3D FFT). These 3D
FFT-based methods are limited to regular meshes for generating random fields.

In this paper we introduce TBARF (Turning BAnd Random Fields), a new
random field generation implementation based on the Turning band (TB) method
that has been highly optimized to run on GPUs. The proposed algorithm replaces
the 3D FFT used in a traditional approaches with a two step approach: a faster,
lower dimensional FFT to generate lines (which uses a smaller set of points with
respect to the traditional approach); and a multi-dimensional projection step,
where all of the lines affect each mesh point of the random field. TB RF gener-
ators are not commonly used for generating large RFs since, on the CPU, they
are much slower than a traditional 3D FFT approach. TB methods are slower,
on the CPU, since each grid point is affected by all off the lines, while in the
3DFFT approach the field is generated in one pass. In this work we demonstrate
that TB methods can be highly optimized for GPUs and allow the out-of-core
generation of RF on regular and non-regular meshes.

The contribution of this paper are as follows:

– TBARF, a TB-based RF generation algorithm optimized for GPUs exploit-
ing loop blocking and unrolling;

– Support for the fast generation of RF on irregular meshes;
– Out-of-core streaming computation of a RF which allows the generation of

a very large RF, not possible with the traditional approach on the GPU;
– Practical application of TBARF to two real test cases: planetary nebulae

and cosmological simulations.

2 Related Work

Random field generation. The TB method itself was first proposed in [23]. The
spectral TB method was then first proposed in Mantoglou [3] where a TB method
like TBARF is first described in combination with a spectral line generation
algorithm. A Matlab version of the TB method can be found in Xavier et al. [4].

GPU. Graphics Processing Units (GPUs) are used not only for 3D graphics
rendering but also in general-purpose computing because of their huge computa-
tional power. GPUs’ programmability has significantly improved thanks to high-
level parallel programming languages such as the CUDA [1] and OpenCL [2]. The

658 L. Hunger et al.

GPUs’hugepotential computational power comeswith somedrawbacks:Theavail-
able device memory is limited to few GBs (e.g. 6GB on NVIDIA Tesla K20); it
requires slow host-device communications for big datasets. Moreover, optimizing
code for GPUs means writing algorithms which are better suited for the hardware,
but also exploring low level optimizations. Traditional compiler optimizations such
as loop tiling (blocking) [16] and loopunrolling [14] have been successfully tested on
GPUs [17,15]. However, the search space is quite big [21,18] and highly optimized
codes still requiresmanual, problem-specific exploitationof the optimization space.

FFT. Our work also focuses on one- and multi-dimensional FFT methods. For
small-scale FFTs, if the data can be held entirely on a GPU, the computation
can benefit from the high device memory bandwidth [12,13,10,11]. However, if
the data does not fit the available device memory, the overhead to transfer data
between host memory (i.e. the CPU main memory) and device memory is a
bottleneck [22]. This problem applies whenever the dataset is bigger than the
available device memory, e.g. out-of-core computation or cluster computing [22].

3 The Turning Band Method

Correlation function and power spectrum. The (auto-)correlation function de-
scribes the correlation of two values of a RF depending on their spatial positions.
The power spectrum describes the size distribution of clusters in the RF. For
well behaved correlation functions these two ways of describing a RF are in-
terchangeable. This transformation is not always possible, but TBARF is able
to create a RF from both a spectral density or a correlation function. The TB
method is an asymptotically correct approach of generating multidimensional
RFs which we use for generating 3D RFs. The TBARF algorithm has multiple
steps. First, discrete 1D RFs, i.e. lines, have to be generated. The correlation
function or the power spectrum that the 1D lines have to follow is calculated by

C1D(r) =
d

dr
[r · C3D(r)]

S1D(ω) =
4π

∣
∣ω2

∣
∣

6
· S3D(ω)

where C3D is the correlation function, S3D the power spectrum of the 3D field
to be generated, r the distance between points and ω the angular frequency
corresponding to a structure of a certain size. To generate these lines according
to a power law power spectrum, we use a simple 1D Fourier transform approach
[25]. For lines with an arbitrary power spectrum we use a pulse train method
[26]. Lines according to a correlation function are generated using a circulant
embedding approach [6].

Number of lines and line directions. The TB method is an approximate method.
The statistical quality depends on the number of lines used to create the multi-
dimensional field. Empirical studies have shown that for a 3D field of any size
1000 lines are sufficient to avert banding artifacts [3,4]. A schematic picture of
the TB method is shown in Fig. 1(right). The lines are laid out along unit vec-
tors (ui), starting at the origin, so that the surface of the unit sphere is covered

TBARF: Random Fields on the GPU 659

Algorithm 1. Turning bands method.

1: S ← computeHaltonSequence()
2: Dir ← computeLineDirection(S)
3: L ← computeLines(Y) // requires 1D FFT
4: for all line ∈ L do
5: for all cell(x, y, z) ∈ domain do
6: lineCoord ← −(x, y, z) ·Dir[line]
7: linePoint ← round(lineCoord× resolutionFactor) + lineLength× 0.5 + 1
8: index = line.index ∗ linelength+ linepoint
9: value = L[index]
10: field[index] = field[index] + value
11: end for
12: end for

as uniformly as possible. We create the unit vectors with the help of a pseudo-
random Halton sequence, which leads to a closer to optimal coverage of the unit
sphere than random vectors. After the direction vectors have been created, we
rotate all vectors together by a random angle around the three major Cartesian
axes. This assures that we do not produce statistical artifacts if we generate a
large number of fields.

Projection step. The last step is the projection in which the 3D RF is generated
(Fig. 1(right)). A point P of the 3D RF is generated by projecting its location
vectorXP onto the line i and adding the corresponding value of this line Li(P) to
the value of the point P . For P , this projection is then repeated for each line. After
doing the projection step for each point, we have generated the full 3D RF.

Fig. 1. In the FFT method (left), components with different frequencies (or wavevec-
tors) are summed up according to their amplitude. This summing is done by performing
the inverse FT. In The TB algorithm (right) the point positions P are projected onto
the lines Xp · ui, and the corresponding values Li(P) are then summed over all lines.

660 L. Hunger et al.

Traditional 3D FFT method. As a comparison, we also show a traditional 3D
Fourier Transform algorithm for creating a RF with a power law power spectrum
and a power law index between -3 and -5. This algorithm is much less versatile
than our TB algorithm. For the input data we choose the amplitude A for each
3D wavevector k according to the desired power spectrum. For each wavevector
we also choose a random phase Φ to be able to generate different realizations of
the RF. We choose the random phases of our input data so that Φ(k) = −Φ(-k),
making sure that the result of the following inverse Fourier transformation is real.
After filling the 3D array with the input data (A · Φ) we only have to perform
a 3D inverse Fourier transformation on the array to get our final field with the
correct power spectrum. With the inverse Fourier transform, contributions with
different wavevectors are summed up according to their amplitude to generate a
real valued field (see Fig. 1(left)). For the power law indexes outside the range -3
to -5, this method does not work because the resulting field will show very strong
generation artifacts. There are more complex 3D FFT methods that can generate
RF according to arbitrary power spectra but that is beyond the scope of this
paper. To compare the results of both methods, we calculate the power spectrum
of the resulting field and compare it with the theoretical power spectrum we
aimed to generate. Both methods generate RFs with the correct power spectrum.

Non-regular (Non-uniform) Fields. One advantage of the TB method is its
ability to generate RF on non-regular meshes. The difference between regular and
non-regular meshes is shown in Fig. 2. The 3D FFT methods can only generate
RF on regular rectangular meshes since FFT works only on equally spaced points.
In the projection step, the TB method can generate RF with arbitrary point po-
sitions. The resolution of the 1D lines has to be chosen high enough so that the
smallest distance between two grid points can be sufficiently resolved. The ability
to create RFs on non-regular meshes makes TBARF a very versatile RF gener-
ator. It can be used to create RF on regular grids with different resolutions like
in Adaptive Mesh Refinement(AMR) or on entirely unstructured grids. Both of
these tasks are much harder to perform with traditional 3D FFT methods.

Fig. 2. Grid Points of a regular (left) and non-regular (right) mesh. In the irregular
mesh the shape of the corresponding Voronoi cell is shown additionally.

4 Parallelization and Optimizations

The TBmethod, as described by Algorithm 1, comprises four main steps: the Hal-
ton sequence (line 1) and line direction generation (line 2), the one-dimensional

TBARF: Random Fields on the GPU 661

field generation (line 3) , and the final projection step (lines 4-11). Step 1 and 2
are fast. Step 3 includes multiple 1D FFT calls with very small sizes, which are
quite fast (cuFFT has an optimized cufftP lanMany function for this). There-
fore, the projection code is the main bottleneck and is where we focus our opti-
mization efforts. In the following section we describe how we map that algorithm,
and in particular the projection phase, onto the GPU hardware.

OpenCL. We use the OpenCL [2] model and terminology: the platform model
comprises of a host connected to one or more devices (e.g. a GPU). Each device
consists of one or more compute units (CUs) which are further divided into
processing elements (PEs). A program running on a device is called kernel, and
represents the parallel part of an OpenCL application. A single OpenCL thread
is called work-item. Several work-items form a work-group. OpenCL provides a
fast local memory which is shared between work-items belonging to the same
work-group. Similarly, OpenCL offers fast local synchronization between work-
items inside the same group. Host and device exchange data through memory
buffers, which are passed as arguments to the kernel before its execution.

Parallelization strategy. Algorithm 1 can be parallelized in two different ways. Fol-
lowing the original sequential formulation, it is possible to run a different OpenCL
work-item for each line (line parallelization). Alternatively, it is possible to apply a
loop interchange between the two for loops, thereforemapping a different OpenCL
work-item to each cell, i.e. cell parallelization. The line parallelization approach
has two drawbacks. First, writing cell values happens concurrently from different
threads, therefore requiring an atomic addition. Unfortunately, atomic addition
for double floating point precision is not included inOpenCL 1.1, but can be imple-
mented by exploiting a 64-bit compare and exchange operation (atom cmpxchg).
However, atomic operations are extremely expensive on GPUs. The second draw-
back is the lower parallelism: while applying our approach to a real dataset, the
number of lines is too low (ranging from 1024 up to 8192) to exploit GPUs’ mas-
sively parallel architecture. On the other hand, cell parallelization exposes a high
level of parallelism and does not require the use atomic operations. We tested the
two parallelizations on a 1283 mesh with 1024 lines of length 2600, where the cell
parallelization was 50 times faster than the line parallelization.

1 kernel void make r e g f i e l d (int n r l i n e s ,
2 int dim x , int dim y , int dim z , int l i n e l e ng th ,
3 g l o b a l double4∗ d i r , g l o b a l double∗ L ,
4 g l o b a l double∗ RF, double r e s f a c t o r) {
5 const s i z e t dim yz = dim y∗dim z ;
6 int g id = g e t g l o b a l i d (0) ;
7 int k = gid / dim yz ;
8 int j = (g id % (f i e l d d im y z)) / f i e l dd im y ;
9 int i = g id − j ∗ dim y − k ∗ dim yz ;

10 double4 id4 = {k , j , i , 0} ;
11 double r f v a l u e = 0 ;
12 for (int l =0; l<n r l i n e s ; l++) {
13 double l i n e c o o r d = − dot (id4 , d i r [l]) ;
14 s i z e t l i n ep o i n t = round (l i n e c o o r d∗ r e s f a c t o r)+l i n e l e n g t h ∗0.5+1;
15 r f v a l u e += L [l ∗ l i n e l e n g t h+l i n e p o i n t] ;
16 }
17 RF[g id] = r f v a l u e ;
18 }

Listing 1.1. Non optimized OpenCL kernel for the cell parallelization projection kernel.

662 L. Hunger et al.

Loop blocking and unrolling. Starting from the cell parallelization, we applied
two loop optimizations to the for loop in line 12 (Listing 1.1). First, we tried
to apply loop blocking (i.e. tiling) by partitioning the loop iteration space into
smaller blocks (matching the work-group size), to ensure data used in a loop
stays in the fast local memory available on the GPU. This technique can be
applied to the line dir vector (line 13) which has coalesced memory accesses.
However, the L array (line 15) is accessed randomly and cannot be prefetched.

We also applied loop unrolling (i.e. unwinding) to the same loop. The goal
of loop unrolling is to reduce the number of iterations and branch penalties, as
well as hiding memory access latencies while reading data from the memory [14].
The latter is particularly important in our case, as the inner loop performs many
random accesses to the (slower) global memory. We applied to the projection
code all the combinations of loop blocking and unrolling, with group size of 64,
128, 256 and 512, and unroll factors of 1, 2, 4 and 8.

Streaming out-of-core field generation. GPU architecture has a limited amount
of memory with respect to the RF size needed in some applications (already 30
GB for an 10243 grid). Especially while working with astrophysical datasets, RFs
commonly exceed the memory available on a single GPU. This is a limitation
for the standard approach based on 3D FFT [22]. Our approach only requires
the lines to be stored on the GPU, and can be further distributed to work over
multiple devices (e.g. on a multi-GPU or cluster of GPUs) or to perform an out-
of-core streaming computation of the field in a single machine. TBARF splits
the field in fragments of 1283 cells to allow out-of-core RF generation.

Non-regular fields The TB method can also be used to generate a non-regular
RF. We applied the same optimizations to a non-regular version of the projection
kernel (note that other parts of the algorithm do not change), and tested different
point distributions.

5 Results

Test settings We ran different versions of the TBARF code on a Intel Core i7
CPU 960 (3.20GHz 4 cores, 8 logical procs) and an NVIDIA GeForce GTX 550
(with 1280MB of OpenCL global memory). All tests were performed with double
precision. OpenCL drivers were Intel OpenCL 1.2 SDK, OpenCL 1.1. CUDA and
CUDA Driver API 5.5 (CC 2.0). We used the libWater CUDA extension [20] to
support both CUDA and OpenCL kernels. For the FFT implementations, we
used FFTW [9] on the CPU and CUFFT [11] for the CUDA version.

TBARF vs traditional approach. We compared the traditional approach based on
3D FFT with our approach running on the GPU and CPU. Figure 3 shows the
performance for different grid sizes and line lengths. For all the tests, we used 1024
lines and line length scaling according to the the grid size (e.g. 5123 cells line length
is 1064).The standard approach on the CPUuses 3DFFTWand supports very big
grid sizes. The erratic behavior of the FFTWapproach can be explained by the dif-
ferent algorithms employed by the FFTW library when the number of points is not
equal to a power of two. The GPU version of the same approach based on cuFFT

TBARF: Random Fields on the GPU 663

Fig. 3. Performance behavior of our out-of-core RF generation on different target ar-
chitectures with varying problem sizes (i.e. the number of cells)

is faster, but it is limited by the amount of memory available on the GPU (up to
32.77 million cells for our test cases). 3D FFT methods require an extra cell per
dimension (i.e. to generate a field of 2563 elements we need a 2573 3D FFT). We
tested TBARF OpenCL on both CPU and GPU, and a CUDA version on the lat-
ter. Each TBARF code was running on its optimized configuration (see next para-
graph). Despite being slower than the 3D cuFFT for small datasets, the TBARF
CUDA version can quickly generate RFs bigger than the available device memory;
on such datasets, it is always faster than the 3D FFTW approach. TBARF CUDA
is about 4 to 6% faster than TBARF OpenCL on the NVIDIA GPU.

Projection kernel optimizations. Table 1 shows the runtimes for the projection
kernel on a uniform mesh generation with 1283 cells. The use of local memory
highly improves performance of GPU kernels, in the projection kernel this op-
timization can only be applied to the relatively small line buffer. Unfortunately
there is no simple way to apply the same optimization to the line array. Applying
both loop unrolling and blocking is not always beneficial for the CPU. On the
GPU, the fastest CUDA configuration uses loop unrolling (factor 4) while the
fastest OpenCL configurations utilize both loop unrolling and blocking.

Non-regular fields. Finally, we tested the non-regular version of the RF genera-
tion algorithm against different mesh structures in order to understand how the
point distribution affects the locality of the memory accesses. The first, named
regular, has exactly the same distribution of the regular, uniform grid used be-
fore. The second uses a jitter sampling approach where each point has a regular
position plus a random offset. The third is a completely random point distribu-
tion, where two close points in the input array may be very distant in space.
Figure 4 shows that regular and jitter distribution are very similar in perfor-
mance. However, the random distribution is noticeably slower than a regular
one (10 to 25% slower) as it exposes poor memory accesses locality.

664 L. Hunger et al.

Table 1. Runtime, averaged over multiple runs, of 32 different optimization configura-
tions of the projection kernel. In bold, the best configurations for each target platform.
Runtimes are in ms.

non optimized blocking

local size 64 128 256 512 64 128 256 512

CL CPU 3600 3594 3590 3603 2966 2945 3038 3329
CL GPU 391 391 396 416 387 386 388 392

CUDA 369 368 369 368 363 365 366 369

loop unrolling

local size 64 128 256 512 64 128 256 512 64 128 256 512
unroll factor 2 2 2 2 4 4 4 4 8 8 8 8

CL CPU 3702 3628 3634 3632 3510 3516 3510 3468 3556 3510 3523 3515
CL GPU 388 387 389 387 386 388 388 393 387 386 389 394

CUDA 368 369 369 371 363 364 366 364 364 364 364 364

loop unrolling and blocking

local size 64 128 256 512 64 128 256 512 64 128 256 512
unroll factor 2 2 2 2 4 4 4 4 8 8 8 8

CL CPU 3248 3130 3121 3121 3098 3105 3064 3048 3113 3079 3051 3023
CL GPU 388 390 400 417 386 388 390 403 386 386 386 391

CUDA 369 372 385 412 367 369 372 381 364 367 366 370

Fig. 4. Non-regular field with three different point distributions

6 Applications

Astrophysics: Planetary Nebulae. The code presented here has already been
implemented to create a wind with density fluctuations in a Planetary Nebulae
clump simulation. To have an inflowing wind entering on one side of the compu-
tation domain we create a RF tube of size 256 x 256 x 5000 with a power law power
spectrum. The size of the tube will be larger for higher resolutions. For this prob-
lem we already use the out-of-core version of TBARF since the whole field is too
large to fit into the main memory. Examples of the fields used can be found in
Fig.5, for these simulations the power law index of the power spectrum is a free

TBARF: Random Fields on the GPU 665

Fig. 5. 2D plane slices through 3D RF used in the Planetary Nebulae simulations. Red
values are positive while blue values are negative. (left) shows a field with a power
spectrum P (k) ∝ k−3.9 that emphasizes larger structures while (right) shows a field
with a power spectrum of P (k) ∝ k−2.0 where larger structures are less prominent.

parameter, so we show RFs for different power law indices. With the optimized
out-of-core CUDA kernel it takes 28241 ms to generate a RF with 256 x 256 x
5000 points using 1024 lines with a linelength of 4350.

Astrophysics: Cosmology Simulations. In the astrophysical community
moving mesh techniques for calculating hydrodynamical simulations have be-
come more popular. The most prominent example is AREPO, the new moving
mesh n-body code by Volker Springel [7]. In these codes hydrodynamic simula-
tions are performed on a non-regular mesh.TBARFs ability to create RFs on a
non-regular mesh is a clear advantage over the traditional 3D FFT methods for
all simulations performed with these moving mesh codes.

TBARF is able to generate RFs that can be used as initial conditions for
cosmological structure formation simulations with AREPO. A realization of such
a RF following a Harrison Zeldovich spectrum is shown in Fig. 6 (left). These new
moving mesh codes can also be used to perform turbulence driven simulations.

Fig. 6. Red values are positive while blue values are negative. (left) shows a 2D slice
through a 3D RF with a power spectrum of P (k) ∝ k1.0 sometimes proposed as the
initial fluctuations (Harrison Zeldovich Spectrum) of cosmological structure formations.

(right) shows a slice through a 3D RF with a power spectrum of P (k) ∝ k6 · e(−k) that
is used for turbulence driving simulations.

666 L. Hunger et al.

These simulations are typically quite large so the ability of TBARF to create
the fields out-of-core is another advantage. A RF is needed in every time-step,
making the RF generation a major contributor to the computational cost of the
whole simulation. Until now the runtime of TB methods prohibited them from
being used in this manner. With the increased performance on the GPU, TB
methods, like TBARF, are now a viable option for turbulence driven simulations
on non-regular meshes. In Fig. 6 (right) we show a slice of a RF that can be used
for this kind of turbulence driven simulations. With the optimized out-of-core
CUDA kernel it takes 22803 ms to generate a RF with 5123 points using 1024
lines with a linelength of 1065.

7 Conclusions

In this paper we demonstrated that TB methods can be significantly sped up by
porting them onto the GPU.We present TBARF, our implementation of the turn-
ing band method. TBARF efficiently generates random fields on both regular and
non-regular meshes on the GPU. We showed that TBARF is able to create ran-
dom fields which are bigger than the available device GPU memory quickly,
thanks to its ability to do out-of-core streaming computation. Traditional meth-
ods based on 3D FFT are limited to the available device memory and can not
generate random fields on non-regular meshes. These advantages make TBARF
much better suited to be used in combination with, for example, moving mesh hy-
drodynamic codes than traditional 3D FFT RF generators. The project source is
available at https://github.com/LarsHunger/TBARF under the LGPL License.

Acknowledgment. This project was funded by the FWF Doctoral School CIM
Computational Modelling under contract W 1227-N16 (DK-plus CIM) and by
the Austrian Research Promotion Agency under contract 834307 (AutoCore).

References

1. NVIDIA: CUDA Compute Unified Device Architecture Reference Manual
2. Khronos OpenCL Working Group: The OpenCL Specification 1.1
3. Mantoglou, A.: Digital Simulation of Multivariate Two- and Three-Dimensional

Stochastic Processes with a Spectral Turning Bands Method. Mathematical Geol-
ogy 19(2), 129–149 (1987)

4. Emery, X., Lantuéjoul, C.: TBSIM: A computer program for conditional simula-
tion of three-dimensional Gaussian random fields via the turning bands method.
Computers & Geosciences 32, 1615–1628 (2006)

5. Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., Gao, L.,
Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J.A., Cole, S., Thomas, P.,
Couchman, H., Evrard, A., Colberg, J., Pearce, F.: Simulations of the formation,
evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

6. Dietrich, C.R., Newsam, G.N.: Fast and Exact Simulation of Stationary Gaussian
Processes through Circulant Embedding of the Covariance Matrix. SIAM Journal
on Scientific Computing 18(4), 1088–1107 (1997)

7. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical sim-
ulations on a moving mesh. Monthly Notices of the Royal Astronomical Soci-
ety 401(2), 791–851 (2010)

https://github.com/LarsHunger/TBARF

TBARF: Random Fields on the GPU 667

8. Stone, J.: Direct Numerical Simulations of Compressible Magnetohydrodynamical
Turbulence Interstellar Turbulence. In: Proceedings of the 2nd Guillermo Haro
Conference, p. 267. Cambridge University Press (1999)

9. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of the IEEE 93(2), 216–231 (2005)

10. Volkov, V., Kazian, B.: Fitting FFT onto G80 Architecture Report. University of
California, Berkeley (2008)

11. NVIDIA: CUDA CUFFT Library, Version 2.3 (2009)
12. Govindaraju, N., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High perfor-

mance discrete fourier transforms on graphics processors. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis
(SC), pp. 2:1–2:12 (2008)

13. Nukada, A., Matsuoka, S.: Auto-tuning 3-D FFT Library for Cuda GPUs. In: Pro-
ceedings of the Conference on High Performance Computing Networking, Storage
and Analysis (SC), pp. 30:1–30:10 (2009)

14. Sarkar, V.: Optimized Unrolling of Nested Loops. International Journal of Parallel
Programming 2(5), 545–581 (2001)

15. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory opti-
mization and parallelism management In: Proceedings of the 2010 ACM SIGPLAN
PLDI, pp. 86–97 (2010)

16. Wolfe, M.: More Iteration Space Tiling. In: Proceedings of the ACMIEEE Confer-
ence on Supercomputing, pp. 655–664 (1989)

17. Murthy, G.S., Ravishankar, M., Baskaran, M.M., Sadayappan, P.: Optimal Loop
Unrolling For GPGPU Programs. In: IEEE International Symposium on Parallel
& Distributed Processing (IPDPS), pp. 1–11 (2010)

18. Kofler, K., Grasso, I., Cosenza, B., Fahringer, T.: An Automatic Input-Sensitive
Approach for Heterogeneous Task Partitioning. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing, pp.
149–160 (2013)

19. Kofler, K., Steinhauser, D., Cosenza, B., Grasso, I., Schindler, S., Fahringer, T.: Kd-
tree Based N-Body Simulations with Volume-Mass Heuristic on the GPU. In: Work-
shop on Parallel and Distributed Scientific and Engineering Computing (PDSEC)

20. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: LibWater: Heterogeneous Dis-
tributed Computing Made Easy. In: Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, pp. 161–172 (2013)

21. Jordan, H., Thoman, P., Durillo, J.J., Pellegrini, S., Gschwandtner, P., Fahringer,
T., Moritsch, H.: A Multi-Objective Auto-Tuning Framework for Parallel Codes.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), pp. 10:1–10:12 (2012)

22. Chen, Y., Cui, X., Mei, H.: Large-scale FFT on GPUClusters. In: Proceedings of the
24th ACM International Conference on Supercomputing (ICS), pp. 315–324 (2010)

23. Matheron, G.: The intrinsic random functions and their application. Adv. Appl.
Prob. 5, 439–468 (1973)

24. Chiles, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. John Wiley
& Sons, New York (1999)

25. Kasdin, N.J., Walter, T.: Discrete Simulation of Power Law noise. In: 46th Pro-
ceedings of the 1992 IEEE Frequency Control Symposium, pp. 274–283 (1992)

26. Carrettoni, M., Cremonesi, O.: Generation of noise time series with arbitrary power
spectrum. Computer Physics Communications 181(12), 1982–1985 (2010)

27. Engelberg, S.: Random signals and noise: A mathematical introduction, p. 130.
CRC Press (2007)

	Random Fields Generation on the GPU with the Spectral Turning Bands Method
	1 Introduction
	2 Related Work
	3 The Turning Band Method
	4 Parallelization and Optimizations
	5 Results
	6 Applications
	7 Conclusions
	References

