
Introduction to LOD2

Sören Auer(B)

University of Bonn, Bonn, Germany
auer@informatik.uni-bonn.de

Abstract. In this introductory chapter we give a brief overview on the
Linked Data concept, the Linked Data lifecycle as well as the LOD2
Stack – an integrated distribution of aligned tools which support the
whole life cycle of Linked Data from extraction, authoring/creation via
enrichment, interlinking, fusing to maintenance. The stack is designed to
be versatile; for all functionality we define clear interfaces, which enable
the plugging in of alternative third-party implementations. The architec-
ture of the LOD2 Stack is based on three pillars: (1) Software integration
and deployment using the Debian packaging system. (2) Use of a cen-
tral SPARQL endpoint and standardized vocabularies for knowledge base
access and integration between the different tools of the LOD2 Stack. (3)
Integration of the LOD2 Stack user interfaces based on REST enabled
Web Applications. These three pillars comprise the methodological and
technological framework for integrating the very heterogeneous LOD2
Stack components into a consistent framework.

The Semantic Web activity has gained momentum with the widespread publish-
ing of structured data as RDF. The Linked Data paradigm has therefore evolved
from a practical research idea into a very promising candidate for addressing one
of the biggest challenges in the area of intelligent information management: the
exploitation of the Web as a platform for data and information integration as well
as for search and querying. Just as we publish unstructured textual information
on the Web as HTML pages and search such information by using keyword-based
search engines, we are already able to easily publish structured information, reli-
ably interlink this information with other data published on the Web and search
the resulting data space by using more expressive querying beyond simple key-
word searches. The Linked Data paradigm has evolved as a powerful enabler
for the transition of the current document-oriented Web into a Web of inter-
linked Data and, ultimately, into the Semantic Web. The term Linked Data here
refers to a set of best practices for publishing and connecting structured data
on the Web. These best practices have been adopted by an increasing number
of data providers over the past three years, leading to the creation of a global
data space that contains many billions of assertions – the Web of Linked Data
(cf. Fig. 1).

In that context LOD2 targets a number of research challenges: improve coher-
ence and quality of data published on the Web, close the performance gap
between relational and RDF data management, establish trust on the Linked

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 1–17, 2014.
DOI: 10.1007/978-3-319-09846-3 1



2 S. Auer

Fig. 1. Overview of some of the main Linked Data knowledge bases and their interlinks
available on the Web. (This overview is published regularly at http://lod-cloud.net and
generated from the Linked Data packages described at the dataset metadata repository
ckan.net.)

Data Web and generally lower the entrance barrier for data publishers and users.
The LOD2 project tackles these challenges by developing:

• enterprise-ready tools and methodologies for exposing and managing very
large amounts of structured information on the Data Web.

• a testbed and bootstrap network of high-quality multi-domain, multi-lingual
ontologies from sources such as Wikipedia and OpenStreetMap.

• algorithms based on machine learning for automatically interlinking and fusing
data from the Web.

• adaptive tools for searching, browsing, and authoring of Linked Data.

The LOD2 project integrates and syndicates linked data with large-scale, exist-
ing applications and showcases the benefits in the three application scenarios
publishing, corporate data intranets and Open Government Data.

The main result of LOD2 is the LOD2 Stack1 – an integrated distribution of
aligned tools which support the whole life cycle of Linked Data from extrac-
tion, authoring/creation via enrichment, interlinking, fusing to maintenance.
The LOD2 Stack comprises new and substantially extended existing tools from
the LOD2 partners and third parties. The major components of the LOD2 Stack
are open-source in order to facilitate wide deployment and scale to knowledge
bases with billions of triples and large numbers of concurrent users. Through
1 After the end of the project, the stack will be called Linked Data Stack and main-

tained by other projects, such as GeoKnow and DIACHRON.

http://lod-cloud.net
http://ckan.net


Introduction to LOD2 3

an agile, iterative software development approach, we aim at ensuring that the
stack fulfills a broad set of user requirements and thus facilitates the transition
to a Web of Data. The stack is designed to be versatile; for all functionality we
define clear interfaces, which enable the plugging in of alternative third-party
implementations. We also plan a stack configurer, which enables potential users
to create their own personalized version of the LOD2 Stack, which contains
only those functions relevant for their usage scenario. In order to fulfill these
requirements, the architecture of the LOD2 Stack is based on three pillars:

• Software integration and deployment using the Debian packaging system. The
Debian packaging system is one of the most widely used packaging and deploy-
ment infrastructures and facilitates packaging and integration as well as main-
tenance of dependencies between the various LOD2 Stack components. Using
the Debian system also allows to facilitate the deployment of the LOD2 Stack
on individual servers, cloud or virtualization infrastructures.

• Use of a central SPARQL endpoint and standardized vocabularies for knowl-
edge base access and integration between different tools. All components of
the LOD2 Stack access this central knowledge base repository and write their
findings back to it. In order for other tools to make sense out of the output of
a certain component, it is important to define vocabularies for each stage of
the Linked Data life-cycle.

• Integration of the LOD2 Stack user interfaces based on REST enabled Web
Applications. Currently, the user interfaces of the various tools are technolog-
ically and methodologically quite heterogeneous. We do not resolve this het-
erogeneity, since each tool’s UI is specifically tailored for a certain purpose.
Instead, we develop a common entry point for accessing the LOD2 Stack UI,
which then forwards a user to a specific UI component provided by a certain
tool in order to complete a certain task.

These three pillars comprise the methodological and technological framework
for integrating the very heterogeneous LOD2 Stack components into a consis-
tent framework. This chapter is structured as follows: After briefly introducing
the linked data life-cycle in Sect. 1 and the linked data paradigm in Sect. 2, we
describe these pillars in more detail (Sect. 3), and conclude in Sect. 4.

1 The Linked Data Life-Cycle

The different stages of the Linked Data life-cycle (depicted in Fig. 2) include:

Storage. RDF Data Management is still more challenging than relational Data
Management. We aim to close this performance gap by employing column-
store technology, dynamic query optimization, adaptive caching of joins,
optimized graph processing and cluster/cloud scalability.

Authoring. LOD2 facilitates the authoring of rich semantic knowledge bases,
by leveraging Semantic Wiki technology, the WYSIWYM paradigm (What
You See Is What You Mean) and distributed social, semantic collaboration
and networking techniques.



4 S. Auer

Fig. 2. Stages of the Linked Data life-cycle supported by the LOD2 Stack.

Interlinking. Creating and maintaining links in a (semi-)automated fashion is
still a major challenge and crucial for establishing coherence and facilitating
data integration. We seek linking approaches yielding high precision and
recall, which configure themselves automatically or with end-user feedback.

Classification. Linked Data on the Web is mainly raw instance data. For data
integration, fusion, search and many other applications, however, we need
this raw instance data to be linked and integrated with upper level ontologies.

Quality. The quality of content on the Data Web varies, as the quality of con-
tent on the document web varies. LOD2 develops techniques for assessing
quality based on characteristics such as provenance, context, coverage or
structure.

Evolution/Repair. Data on the Web is dynamic. We need to facilitate the
evolution of data while keeping things stable. Changes and modifications
to knowledge bases, vocabularies and ontologies should be transparent and
observable. LOD2 also develops methods to spot problems in knowledge
bases and to automatically suggest repair strategies.

Search/Browsing/Exploration. For many users, the Data Web is still invis-
ible below the surface. LOD2 develops search, browsing, exploration and
visualization techniques for different kinds of Linked Data (i.e. spatial, tem-
poral, statistical), which make the Data Web sensible for real users.

These life-cycle stages, however, should not be tackled in isolation, but by
investigating methods which facilitate a mutual fertilization of approaches devel-
oped to solve these challenges. Examples for such mutual fertilization between
approaches include:

• The detection of mappings on the schema level, for example, will directly
affect instance level matching and vice versa.

• Ontology schema mismatches between knowledge bases can be compensated
for by learning which concepts of one are equivalent to which concepts of
another knowledge base.



Introduction to LOD2 5

• Feedback and input from end users (e.g. regarding instance or schema level
mappings) can be taken as training input (i.e. as positive or negative exam-
ples) for machine learning techniques in order to perform inductive reasoning
on larger knowledge bases, whose results can again be assessed by end users
for iterative refinement.

• Semantically enriched knowledge bases improve the detection of inconsisten-
cies and modelling problems, which in turn results in benefits for interlinking,
fusion, and classification.

• The querying performance of RDF data management directly affects all other
components, and the nature of queries issued by the components affects RDF
data management.

As a result of such interdependence, we should pursue the establishment
of an improvement cycle for knowledge bases on the Data Web. The improve-
ment of a knowledge base with regard to one aspect (e.g. a new alignment with
another interlinking hub) triggers a number of possible further improvements
(e.g. additional instance matches).

The challenge is to develop techniques which allow exploitation of these
mutual fertilizations in the distributed medium Web of Data. One possibility
is that various algorithms make use of shared vocabularies for publishing results
of mapping, merging, repair or enrichment steps. After one service published
its new findings in one of these commonly understood vocabularies, notifica-
tion mechanisms (such as Semantic Pingback [11]) can notify relevant other
services (which subscribed to updates for this particular data domain), or the
original data publisher, that new improvement suggestions are available. Given
proper management of provenance information, improvement suggestions can
later (after acceptance by the publisher) become part of the original dataset.

The use of Linked Data offers a number of significant benefits:

• Uniformity. All datasets published as Linked Data share a uniform data
model, the RDF statement data model. With this data model all information
is represented in facts expressed as triples consisting of a subject, predicate
and object. The elements used in subject, predicate or object positions are
mainly globally unique identifiers (IRI/URI). Literals, i.e., typed data values,
can be used at the object position.

• De-referencability. URIs are not just used for identifying entities, but since
they can be used in the same way as URLs they also enable locating and
retrieving resources describing and representing these entities on the Web.

• Coherence. When an RDF triple contains URIs from different namespaces in
subject and object position, this triple basically establishes a link between
the entity identified by the subject (and described in the source dataset using
namespace A) with the entity identified by the object (described in the target
dataset using namespace B). Through the typed RDF links, data items are
effectively interlinked.

• Integrability. Since all Linked Data sources share the RDF data model, which
is based on a single mechanism for representing information, it is very easy
to attain a syntactic and simple semantic integration of different Linked Data



6 S. Auer

sets. A higher level semantic integration can be achieved by employing schema
and instance matching techniques and expressing found matches again as
alignments of RDF vocabularies and ontologies in terms of additional triple
facts.

• Timeliness. Publishing and updating Linked Data is relatively simple thus
facilitating a timely availability. In addition, once a Linked Data source is
updated it is straightforward to access and use the updated data source, since
time consuming and error prune extraction, transformation and loading is not
required.

Table 1. Juxtaposition of the concepts Linked Data, Linked Open Data and Open
Data.

Representation\degree of openness Possibly closed Open (cf. opendefinition.org)

Structured data model Data Open Data

(i.e. XML, CSV, SQL etc.)

RDF data model Linked Data (LD) Linked Open Data (LOD)

(published as Linked Data)

The development of research approaches, standards, technology and tools for
supporting the Linked Data lifecycle data is one of the main challenges. Develop-
ing adequate and pragmatic solutions to these problems can have a substantial
impact on science, economy, culture and society in general. The publishing, inte-
gration and aggregation of statistical and economic data, for example, can help
to obtain a more precise and timely picture of the state of our economy. In the
domain of health care and life sciences making sense of the wealth of struc-
tured information already available on the Web can help to improve medical
information systems and thus make health care more adequate and efficient. For
the media and news industry, using structured background information from
the Data Web for enriching and repurposing the quality content can facilitate
the creation of new publishing products and services. Linked Data technologies
can help to increase the flexibility, adaptability and efficiency of information
management in organizations, be it companies, governments and public admin-
istrations or online communities. For end-users and society in general, the Data
Web will help to obtain and integrate required information more efficiently and
thus successfully manage the transition towards a knowledge-based economy and
an information society (Table 1).

2 The Linked Data Paradigm

We briefly introduce the basic principles of Linked Data (cf. Sect. 2 from [4]).
The term Linked Data refers to a set of best practices for publishing and inter-
linking structured data on the Web. These best practices were introduced by

http://opendefinition.org


Introduction to LOD2 7

Tim Berners-Lee in his Web architecture note Linked Data2 and have become
known as the Linked Data principles. These principles are:

• Use URIs as names for things.
• Use HTTP URIs so that people can look up those names.
• When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).
• Include links to other URIs, so that they can discover more things.

The basic idea of Linked Data is to apply the general architecture of the
World Wide Web [6] to the task of sharing structured data on global scale. The
Document Web is built on the idea of setting hyperlinks between Web documents
that may reside on different Web servers. It is built on a small set of simple stan-
dards: Uniform Resource Identifiers (URIs) and their extension Internationalized
Resource Identifiers (IRIs) as globally unique identification mechanism [2], the
Hypertext Transfer Protocol (HTTP) as universal access mechanism [3], and
the Hypertext Markup Language (HTML) as a widely used content format [5].
Linked Data builds directly on Web architecture and applies this architecture to
the task of sharing data on global scale.

2.1 Resource Identification with IRIs

To publish data on the Web, the data items in a domain of interest must first
be identified. These are the things whose properties and relationships will be
described in the data, and may include Web documents as well as real-world
entities and abstract concepts. As Linked Data builds directly on Web archi-
tecture, the Web architecture term resource is used to refer to these things of
interest, which are in turn identified by HTTP URIs. Linked Data uses only
HTTP URIs, avoiding other URI schemes such as URNs [8] and DOIs3. The
structure of HTTP URIs looks as follows:

[scheme:][//authority][path][?query][#fragment]

A URI for identifying Shakespeare’s ‘Othello’, for example, could look as
follows:

http://de.wikipedia.org/wiki/Othello#id

HTTP URIs provide a simple way to create globally unique names in a
decentralized fashion, as every owner of a domain name or delegate of the domain
name owner may create new URI references. They serve not just as a name but
also as a means of accessing information describing the identified entity.
2 http://www.w3.org/DesignIssues/LinkedData.html
3 http://www.doi.org/hb.html

http://www.w3.org/DesignIssues/LinkedData.html
http://www.doi.org/hb.html


8 S. Auer

2.2 De-referencability

Any HTTP URI should be de-referencable, meaning that HTTP clients can look
up the URI using the HTTP protocol and retrieve a description of the resource
that is identified by the URI. This applies to URIs that are used to identify classic
HTML documents, as well as URIs that are used in the Linked Data context to
identify real-world objects and abstract concepts. Descriptions of resources are
embodied in the form of Web documents. Descriptions that are intended to be
read by humans are often represented as HTML. Descriptions that are intended
for consumption by machines are represented as RDF data. Where URIs identify
real-world objects, it is essential to not confuse the objects themselves with
the Web documents that describe them. It is therefore common practice to use
different URIs to identify the real-world object and the document that describes
it, in order to be unambiguous. This practice allows separate statements to be
made about an object and about a document that describes that object. For
example, the creation year of a painting may be rather different to the creation
year of an article about this painting. Being able to distinguish the two through
use of different URIs is critical to the consistency of the Web of Data.

There are two different strategies to make URIs that identify real-world
objects de-referencable [10]. In the 303 URI strategy, instead of sending the
object itself over the network, the server responds to the client with the HTTP
response code 303 See Other and the URI of a Web document which describes
the real-world object (303 redirect). In a second step, the client de-references
this new URI and retrieves a Web document describing the real-world object.
The hash URI strategy builds on the characteristic that URIs may contain a
special part that is separated from the base part of the URI by a hash symbol
(#), called the fragment identifier. When a client wants to retrieve a hash URI
the HTTP protocol requires the fragment part to be stripped off before request-
ing the URI from the server. This means a URI that includes a hash cannot be
retrieved directly, and therefore does not necessarily identify a Web document.
This enables such URIs to be used to identify real-world objects and abstract
concepts, without creating ambiguity [10].

Both approaches have their advantages and disadvantages [10]: Hash URIs
have the advantage of reducing the number of necessary HTTP round-trips,
which in turn reduces access latency. The downside of the hash URI approach is
that the descriptions of all resources that share the same non-fragment URI part
are always returned to the client together, irrespective of whether the client is
interested in only one URI or all. If these descriptions consist of a large number
of triples, the hash URI approach can lead to large amounts of data being unnec-
essarily transmitted to the client. 303 URIs, on the other hand, are very flexible
because the redirection target can be configured separately for each resource.
There could be one describing document for each resource, or one large docu-
ment for all of them, or any combination in between. It is also possible to change
the policy later on.



Introduction to LOD2 9

2.3 RDF Data Model

The RDF data model [7] represents information as sets of statements, which
can be visualized as node-and-arc-labeled directed graphs. The data model is
designed for the integrated representation of information that originates from
multiple sources, is heterogeneously structured, and is represented using different
schemata. RDF can be viewed as a lingua franca, capable of moderating between
other data models that are used on the Web.

In RDF, information is represented in statements, called RDF triples. The
three parts of each triple are called its subject, predicate, and object. A triple
mimics the basic structure of a simple sentence, such as for example:

Burkhard Jung is the mayor of Leipzig
(subject) (predicate) (object)

The following is the formal definition of RDF triples as it can be found in
the W3C RDF standard [7].

Definition 1 (RDF Triple). Assume there are pairwise disjoint infinite sets I,
B, and L representing IRIs, blank nodes, and RDF literals, respectively. A triple
(v1, v2, v3) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple. In this tuple, v1
is the subject, v2 the predicate and v3 the object. We call T = I ∪ B ∪ L the set
of RDF terms.

The main idea is to use IRIs as identifiers for entities in the subject, predicate
and object positions in a triple. Data values can be represented in the object
position as literals. Furthermore, the RDF data model also allows in subject and
object positions the use of identifiers for unnamed entities (called blank nodes),
which are not globally unique and can thus only be referenced locally. However,
the use of blank nodes is discouraged in the Linked Data context. Our example
fact sentence about Leipzig’s mayor would now look as follows:

<http://leipzig.de/id>

<http://example.org/p/hasMayor>

<http://Burkhard-Jung.de/id> .

(subject) (predicate) (object)

This example shows that IRIs used within a triple can originate from different
namespaces thus effectively facilitating the mixing and mashing of different RDF
vocabularies and entities from different Linked Data knowledge bases. A triple
having identifiers from different knowledge bases at subject and object position
can be also viewed as an typed link between the entities identified by subject
and object. The predicate then identifies the type of link. If we combine different
triples we obtain an RDF graph.

Definition 2 (RDF Graph). A finite set of RDF triples is called RDF graph.
The RDF graph itself represents an resource, which is located at a certain loca-
tion on the Web and thus has an associated IRI, the graph IRI.



10 S. Auer

Fig. 3. Example RDF graph describing the city of Leipzig and its mayor.

An example of an RDF graph is depicted in Fig. 3. Each unique subject or
object contained in the graph is visualized as a node (i.e. oval for resources
and rectangle for literals). Predicates are visualized as labeled arcs connect-
ing the respective nodes. There are a number of synonyms being used for RDF
graphs, all meaning essentially the same but stressing different aspects of an RDF
graph, such as RDF document (file perspective), knowledge base (collection of
facts), vocabulary (shared terminology), ontology (shared logical conceptualiza-
tion).

2.4 RDF Serializations

The initial official W3C RDF standard [7] comprised a serialization of the RDF
data model in XML called RDF/XML. Its rationale was to integrate RDF with
the existing XML standard, so it could be used smoothly in conjunction with
the existing XML technology landscape. However, RDF/XML turned out to be
difficult to understand for the majority of potential users because it requires
to be familiar with two data models (i.e., the tree-oriented XML data model
as well as the statement oriented RDF datamodel) and interactions between
them, since RDF statements are represented in XML. As a consequence, with N-
Triples, Turtle and N3 a family of alternative text-based RDF serializations was
developed, whose members have the same origin, but balance differently between
readability for humans and machines. Later in 2009, RDFa (RDF Annotations,
[1]) was standardized by the W3C in order to simplify the integration of HTML
and RDF and to allow the joint representation of structured and unstructured
content within a single source HTML document. Another RDF serialization,
which is particularly beneficial in the context of JavaScript web applications
and mashups is the serialization of RDF in JSON. Figure 4 presents an example
serialized in the most popular serializations.

3 Integrating Heterogeneous Tools into the LOD2 Stack

The LOD2 Stack serves two main purposes. Firstly, the aim is to ease the distrib-
ution and installation of tools and software components that support the Linked



Introduction to LOD2 11

Data publication cycle. As a distribution platform, we have chosen the well estab-
lished Debian packaging format. The second aim is to smoothen the information
flow between the different components to enhance the end-user experience by a
more harmonized look-and-feel.

3.1 Deployment Management Leveraging Debian Packaging

In the Debian package management system [9], software is distributed in
architecture-specific binary packages and architecture-independent source code
packages. A Debian software package comprises two types of content: (1) control
information (incl. metadata) of that package, and (2) the software itself.

The control information of a Debian package will be indexed and merged
together with all other control information from other packages available for the
system. This information consists of descriptions and attributes for:

(a) The software itself (e.g. licenses, repository links, name, tagline, . . . ),
(b) Its relation to other packages (dependencies and recommendations),
(c) The authors of the software (name, email, home pages), and
(d) The deployment process (where to install, pre and post install instructions).

The most important part of this control information is its relations to other
software. This allows the deployment of a complete stack of software with one
action. The following dependency relations are commonly used in the control
information:

Depends: This declares an absolute dependency. A package will not be config-
ured unless all of the packages listed in its Depends field have been correctly
configured. The Depends field should be used if the depended-on package is
required for the depending package to provide a significant amount of func-
tionality. The Depends field should also be used if the install instructions
require the package to be present in order to run.

Recommends: This declares a strong, but not absolute, dependency. The Rec-
ommends field should list packages that would be found together with this
one in all but unusual installations.

Suggests: This is used to declare that one package may be more useful with
one or more others. Using this field tells the packaging system and the user
that the listed packages are related to this one and can perhaps enhance its
usefulness, but that installing this one without them is perfectly reasonable.

Enhances: This field is similar to Suggests but works in the opposite direction.
It is used to declare that a package can enhance the functionality of another
package.

Conflicts: When one binary package declares a conflict with another using a
Conflicts field, dpkg will refuse to allow them to be installed on the system at
the same time. If one package is to be installed, the other must be removed
first.



12 S. Auer

Fig. 4. Different RDF serializations of three triples from Fig. 3



Introduction to LOD2 13

Fig. 5. Example DEB-package dependency tree (OntoWiki). Some explanation: Boxes
are part of the LOD2 Stack, Ellipses are part of the Debian/Ubuntu base system,
Dashed forms are meta-packages, Relations: Depends (D), Depends alternative list
(A), Conflicts (C) and Suggests (S).

All of these relations may restrict their applicability to particular versions of
each named package (the relations allowed are <<, <=, =, >= and >>). This
is useful in forcing the upgrade of a complete software stack. In addition to this,
dependency relations can be set to a list of alternative packages. In such a case,
if any one of the alternative packages is installed, that part of the dependency
is considered to be satisfied. This is useful if the software depends on a specific
functionality on the system instead of a concrete package (e.g. a mail server or
a web server). Another use case of alternative lists are meta-packages. A meta-
package is a package which does not contain any files or data to be installed.
Instead, it has dependencies on other (lists of) packages.

Example of meta-packaging: OntoWiki.
To build an appropriate package structure, the first step is to inspect the manual
deployment of the software, its variants and the dependencies of these variants.
OntoWiki is a browser-based collaboration and exploration tool as well as an
application for linked data publication. There are two clusters of dependencies:
the runtime environment and the backend. Since OntoWiki is developed in the
scripting language PHP, it’s architecture-independent but needs a web server
running PHP. More specifically, OntoWiki needs PHP5 running as an Apache 2
module. OntoWiki currently supports two different back-ends which can be used
to store and query RDF data: Virtuoso and MySQL. Virtuoso is also part of the
LOD2 Stack while MySQL is a standard package in all Debian-based systems.
In addition to OntoWiki, the user can use the OntoWiki command line client
owcli and the DL-Learner from the LOD2 Stack to enhance its functionality.

The dependency tree (depicted in Fig. 5) is far from being complete, since
every component also depends on libraries and additional software which is omit-
ted here. Given this background information, we can start to plan the pack-
aging. We assume that users either use MySQL or Virtuoso as a backend on



14 S. Auer

Fig. 6. Basic architecture of a local LOD2 Stack.

a server, so the first decision is to split this functionality into two packages:
ontowiki-mysql and ontowiki-virtuoso. These two packages are abstracted
by the meta-package ontowiki, which requires either ontowiki-mysql or
ontowiki-virtuoso, and which can be used by other LOD2 Stack packages
to require OntoWiki. Since both the MySQL backend and the Virtuoso backend
version use the same system resources, we need to declare them as conflicting
packages.

3.2 Data Integration Based on SPARQL, WebID and Vocabularies

The basic architecture of a local LOD2 Stack installation is depicted in Fig. 6.
All components in the LOD2 Stack act upon RDF data and are able to commu-
nicate via SPARQL with the central system-wide RDF quad store (i.e. SPARQL
backend). This quad store (Openlink Virtuoso) manages user graphs (knowledge
bases) as well as a set of specific system graphs where the behaviour and status
of the overall system is described. The following system graphs are currently
used:

Package Graph:
In addition to the standard Debian package content, each LOD2 Stack package
consists of a RDF package info which contains:

• The basic package description, e.g. labels, dates, maintainer info (this is basi-
cally DOAP data and redundant to the classic Debian control file)

• Pointers to the place where the application is available (e.g. the menu entry
in the LOD2 Stack workbench)

• A list of capabilities of the packed software (e.g. resource linking, RDB extrac-
tion). These capabilities are part of a controlled vocabulary. The terms are
used as pointers for provenance logging, access control definition and a future
capability browser of the LOD2 workbench.

Upon installation, the package info is automatically added to the package graph
to allow the workbench / demonstrator to query which applications are available
and what is the user able to do with them.



Introduction to LOD2 15

Fig. 7. The visualization widgets CubeViz (statistic) and SemMap (spatial data).

Access Control Graph:
This system graph is related to WebID4 authentication and describes which users
are able to use which capabilities and have access to which graphs. The default
state of this graph contains no restrictions, but could be used to restrict certain
WebIDs to specific capabilities. Currently, only OntoWiki takes this graph into
account and the access control definition is based on the WebAccessControl
schema5.

Provenance Graph:
Each software package is able to log system wide provenance information to
reflect the evolution of a certain knowledge base. Different ontologies are devel-
oped for that use-case. To keep the context of the LOD2 Stack, we use the
controlled capability vocabulary as reference points.

In addition to the SPARQL protocol endpoint, application packages can use
a set of APIs which allow queries and manipulation currently not available with
SPARQL alone (e.g. fetching graph information and manipulating namespaces).
Two authorized administration tools are allowed to manipulate the package and
access control graphs:

• The Debian system installer application automatically adds and removes pack-
age descriptions during install / upgrade and remove operations.

• The LOD2 Workbench (Demonstrator) is able to manipulate the access con-
trol graph.

All other packages are able to use the APIs as well as to create, update and
delete knowledge bases. Chapter 5 gives an comprehensive overview on the LOD2
Stack components.

3.3 REST Integration of User Interfaces

Many of the components come with their own user interface. For example, the
Silk Workbench is a user interface for the Silk linking engine. This workbench
supports the creation of linking specifications, executing them and improving
them using the feedback from the user on the created links. With the OntoWiki
4 http://www.w3.org/wiki/WebID
5 http://www.w3.org/wiki/WebAccessControl

http://dx.doi.org/10.1007/978-3-319-09846-3_5
http://www.w3.org/wiki/WebID
http://www.w3.org/wiki/WebAccessControl


16 S. Auer

linked data browsing and authoring tool, a user can browse and update infor-
mation in a knowledge base. By using both tools together, the user gains the
ability to study the input sources’ content structure and to create links between
them.

Many stack components request similar information from the user. For exam-
ple, selecting the graph of interest. To provide the end-user the feeling of a
harmonized single application, we develop supportive REST-based WebAPIs.
These APIs offer a common application view of the LOD2 Stack. The more tools
support this API, the more harmonized and integrated the end-user experience
gets. Currently, the LOD2 Stack WebAPI consists of:

• Graph management : The set of graphs is not easy to maintain. SPARQL does
not support retrieval of all graphs. The only possible query which selects all
graphs that have at least one triple is performance wise quite costly: SELECT
DISTINCT ?g WHERE GRAPH ?g ?s ?p ?o The WebAPI also standardizes
some meta information like being a system graph. When LOD2 Stack com-
ponents use this common graph management WebAPI, the end-user obtains
a uniform look-and-feel with respect to graph management.

• Prefix management : To make RDF resources more readable, prefixes are used
to abbreviate URI namespaces. Typically, each application manages its own
namespace mapping. Using this REST API, a central namespace mapping is
maintained, thus producing consistency among stack components. The end-
user is freed from updating the individual component mappings. Moreover,
an update in one component is immediately available to another.

In addition to creating supportive REST-based APIs, the LOD2 Stack
encourages component owners to open up their components using REST based
WebAPIs. For example, the semantic-spatial browser, a UI tool that visualizes
RDF data containing geospatial information on a map, is entirely configurable
by parameters encoded within its invocation URL. Similarly other visualization
and exploration widgets (such as the CubeViz statistical data visualization) can
directly interact with the SPARQL endpoint (cf. Fig. 7). This makes it easy to
integrate into (third party) applications into the stack.

4 Conclusion and Outlook

In this chapter we gave a brief introduction to Linked Data its management
life-cycle on the Web and the LOD2 Stack, the result of a large-scale effort to
provide technological support for the life-cycle of Linked Data. We deem this a
first step in a larger research and development agenda, where derivatives of the
LOD2 Stack are employed to create corporate enterprise knowledge hubs withing
the Intranets of large companies. The overall stack architecture and guidelines
can also serve as a blue-print for similar software stacks in other areas.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.



Introduction to LOD2 17

References

1. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syn-
tax and processing - a collection of attributes and processing rules for extending
XHTML to support RDF. W3C Recommendation, October 2008. http://www.w3.
org/TR/rdfa-syntax/

2. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform resource identifiers (URI):
Generic syntax. Internet RFC 2396, August 1998

3. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol - http/1.1 (rfc 2616). Request for Comments.
http://www.ietf.org/rfc/rfc2616.txt (1999). Accessed 7 July 2006

4. Heath, T., Bizer, C.: Linked data - evolving the web into a global data space.
In: Hendler, J., van Harmelen, F. (eds.) Synthesis Lectures on the Semantic Web:
Theory and Technology. Morgan & Claypool, San Rafael (2011)

5. HTML 5: A vocabulary and associated APIs for HTML and XHTML. W3C Work-
ing Draft, August 2009. http://www.w3.org/TR/2009/WD-html5-20090825/

6. Jacobs, I., Walsh, N.: Architecture of the world wide web, volume one. World Wide
Web Consortium, Recommendation REC-webarch-20041215, December 2004

7. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and
abstract syntax. Technical report W3C, 2 (2004)

8. Moats, R.: Urn syntax. Internet RFC 2141, May 1997
9. Murdock, I.: The Debian Manifesto (1994). http://www.debian.org/doc/manuals/

project-history/ap-manifesto.en.html
10. Sauermann, L., Cyganiak, R.: Cool URIs for the semantic web. W3C Interest

Group Note, December 2008
11. Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a social data web with

semantic pingback. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI),
vol. 6317, pp. 135–149. Springer, Heidelberg (2010)

http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2009/WD-html5-20090825/
http://www.debian.org/doc/manuals/project-history/ap-manifesto.en.html
http://www.debian.org/doc/manuals/project-history/ap-manifesto.en.html

	Introduction to LOD2
	1 The Linked Data Life-Cycle
	2 The Linked Data Paradigm
	2.1 Resource Identification with IRIs
	2.2 De-referencability
	2.3 RDF Data Model
	2.4 RDF Serializations

	3 Integrating Heterogeneous Tools into the LOD2 Stack
	3.1 Deployment Management Leveraging Debian Packaging
	3.2 Data Integration Based on SPARQL, WebID and Vocabularies
	3.3 REST Integration of User Interfaces

	4 Conclusion and Outlook
	References


