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Abstract In traditional portfolio theory, risk management is limited to the choice
of the relative weights of the riskless asset and a diversified basket of risky secu-
rities, respectively. Yet in industry, risk management represents a central aspect of
asset management, with distinct responsibilities and organizational structures. We
identify frictions that lead to increased importance of risk management and describe
three major challenges to be met by the risk manager. First, we derive a frame-
work to determine a portfolio position’s marginal risk contribution and to decide on
optimal portfolio weights of active managers. Second, we survey methods to con-
trol downside risk and unwanted risks since investors frequently have nonstandard
preferences, which make them seek protection against excessive losses. Third, we
point out that quantitative portfolio management usually requires the selection and
parametrization of stylized models of financial markets. We, therefore, discuss risk
management approaches to deal with parameter uncertainty, such as shrinkage pro-
cedures or resampling procedures, and techniques of dealing with model uncertainty
via methods of Bayesian model averaging.
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1 Introduction

In traditional portfolio theory the scope for risk management is limited. Wilson [63]
showed that in the absence of frictions the consumption allocation of each agent in an
efficient equilibriumsatisfies a linear sharing rule as long as agents have equi-cautious
HARA utilities. This implies that investors are indifferent between the universe of
securities and having access to only two appropriately defined portfolio positions, a
result that is usually referred to as the Two-Fund Separation Theorem. If a riskless
asset exists, then these two portfolios can be identified as the riskless asset and the
tangency portfolio. Riskmanagement in this traditional portfolio theory is, therefore,
trivial: the portfolio manager only needs to choose the optimal location on the line
that combines the riskless asset with the tangency portfolio, i.e., on the capital market
line. Risk management is thus equivalent to choosing the relative weights that should
be given to the tangency portfolio and to the riskless asset, respectively.

In a more realistic model that allows for frictions, risk management in asset man-
agement becomes a much more central and complex component of asset manage-
ment. First, a world with costly information acquisition will feature informational
asymmetries regarding the return moments, as analyzed in the seminal paper by
Grossman and Stiglitz [29]. In this setup, investors generally do not hold the same
portfolio of risky assets and the two fund separation theorem brakes down (see,
e.g., Admati [1]). We will refer to such portfolios as active portfolios. In such a
setup, risk management differs from the simple structure described above for the
traditional portfolio theory. Second, frictions such as costly information acquisition
frequently require delegated portfolio management, whereby an investor transfers
decision power to a portfolio manager. This gives rise to principal-agent conflicts
that may be mitigated by risk monitoring and portfolio risk control. Third, investors
may have nonstandard objective functions. For example, the investor may exhibit
large costs if the end-of-period portfolio value falls below a critical level. This may
be the case, for example, because investors are subject to their own principal-agent
conflicts. Alternatively, investors may be faced with model risk, and thus be unable
to derive probability distributions over possible portfolio outcomes. In such a setting
investors may have nonstandard preferences, such as ambiguity aversion. We will
now discuss each of these deviations from the classical frictionless paradigm and
analyze how it affects portfolio risk management.

2 Risk Management for Active Portfolios

If the optimal portfolio differs from the market portfolio, portfolio risk management
becomes a much more complicated and important task for the portfolio manager. For
active portfolios individual positions’ risk contributions are no longer fully deter-
mined by their exposures to systematic risk factors that affect the overall market
portfolio. A position’s contribution to overall portfolio risk must not be measured
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by the sensitivity to the systematic risk factors, but instead by the sensitivity to the
investor’s portfolio return. For active portfolios the manager must, therefore, cor-
rectly measure each asset’s risk-contribution to the overall portfolio risk and ensure
that it corresponds to the expected return contribution of the asset. We will now
derive a simple framework that a portfolio manager may use to achieve this.

We consider an investor who wishes to maximize his expected utility, E[ũ]. In
this section, we consider the case where the investor exhibits constant absolute risk
aversion with the coefficient of absolute risk aversion denoted by Γ . In the following
derivations, we borrow ideas from Sharpe [61] and assume for convenience that
investment returns and their dispersions are small relative to initial wealth, V0. Thus,
we can approximate Γ � γ/V0 with γ denoting the investor’s relative risk aversion.
This allows for easy translation of the results into the context of later sections, where
we focus on relative risk aversion.1 An expected-utility maximizer with constant
absolute risk aversion solves

max
w

E[ũ] = max
w

E[− exp(−Γ (V0(1 + w′r̃)))] = max
w

E[− exp(−γ(1 + w′r̃))],
(1)

wherew represents the (N ×1) vector of portfolio weights and r̃ is the (N ×1) vector
of securities returns. We make standard assumptions of mean-variance analysis,
and denote μe as the (N × 1) vector of securities’ expected returns in excess of
the risk free rate r f , σ2

p(w) the portfolio’s return variance given weights w, and
� the covariance matrix of excess returns. MR = 2�w constitutes the vector of
marginal risk contributions resulting from a marginal increase in portfolio weight of
the respective asset, i.e., MR = ∂(σ2

p)/∂w, financed against the riskless asset. For
each asset i in the portfolio we must, therefore, have

μe
i = γe′

i�w = 1

2
γ MRi , (2)

which implies
μe

i

MRi
= μe

j

MR j
= 1

2
γ ∀i, j. (3)

These results show the fundamental difference between risk management for
active and passive portfolios. While in the traditional world of portfolio theory, each
asset’s risk contribution was easily measured by a constant (vector of) beta coef-
ficient(s) to the systematic risk factor(s), the active investor must measure a secu-
rity’s risk contribution by the sensitivity of the asset to the specific portfolio return,
expressed by 2e′

i�w. This expression makes clear that each position’s marginal risk
contribution depends not only on the covariance matrix �, but also on the portfolio
weights, i.e., the chosen vector w. It actually converges to the portfolio variance,
σ2

p, as the security’s weight approaches one. In the case of active portfolios, these
weights are likely to change over time, and so will each position’s marginal risk

1 See, e.g., Pennacchi [55] for more details on this assumption.
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contribution. The portfolio manager can no longer observe a position’s relevant risk
characteristics from readily available data providers such as the stock’s beta reported
by Bloomberg, but must calculate the marginal risk contributions based on the port-
folio characteristics. As shown in Eq. (3), a major responsibility of the portfolio risk
manager now is to ensure that the ratios of securities’ expected excess returns over
their marginal risk contribution are equated.

2.1 Factor Structure and Portfolio Risk

Aprevalent model of investment management in practice features a CIOwho decides
on the portfolio’s asset allocation and on the allocation between passively or actively
managed mandates within each asset class. The actual management of the positions
within each asset class is then delegated to external managers. In the following we
provide a consistent framework within which such a problem can be analyzed. We
hereby assume a linear return generating process so that the vector of asset excess
returns, re can be written as

re = α + B f e + ε, (4)

where

• re is the (N ×1) vector of fund or manager returns in excess of the risk free return
• B is a (N × K ) matrix that denotes the exposure of each of the N assets to the K
return factors

• f e is a (K × 1) vector of factor excess returns and
• ε is the error term (independent of f e).

Let� f denote the covariance matrix of factor excess returns and� the covariance
matrix of residuals, ε. Then, the covariance matrix of managers’ excess returns � is
given by

� = E(rere ′
)

= E([B f e + ε][B f e + ε]′)
= E(B f e f e ′ B ′ + εε′)
= B E( f e f e ′

)B ′ + E(εε′)
= B� f B ′ + �.

Let w denote the N × 1 vector of weights assigned to managers by the CIO, then
the portfolio excess return re

p is given by

re
p = w′re.
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If ei is the i th column of the (N × N ) identity matrix then

Cov(re
i , re

p) = Cov(e′
i B f e + e′

i ε, w′ B f e + w′ε)
= Cov(e′

i B f e, w′ B f e) + Cov(e′
i ε, w′ε)

= e′
i B� f B ′w + e′

i�w.

The beta of manager i’s return with respect to the portfolio is then

β̃i = e′
i B� f B ′w + e′

i�w

w′(B� f B ′ + �)w
.

Thus, we have an orthogonal decomposition of the vector of betas, β̃, into a part
that is due to factor exposure, β̃S , and a part that is due to the residuals of active
managers (tracking error), β̃ I

β̃ = B� f B ′w + �w

w′(B� f B ′ + �)w
= B� f B ′w

w′(B� f B ′ + �)w
︸ ︷︷ ︸

β̃S

+ �w

w′(B� f B ′ + �)w
︸ ︷︷ ︸

β̃ I

.

We can now determine the beta of a pure factor excess return f e
k to the portfolio.

With eF
k denoting the kth column of the (K × K ) identity matrix, the covariance

between the factor excess return and the portfolio excess return is

Cov( f e
k , re

p) = Cov(eF
k

′
f e, w′B f e + w′ε)

= eF
k

′
� f B ′w.

The vector of pure factor betas, β̃F , to the portfolio is therefore

β̃F = � f B ′w
w′(B� f B ′ + �)w

We thus have β̃S = Bβ̃F . Consequently, a position’s beta to the portfolio can be
written as

β̃ = Bβ̃F + β I .

i.e., we can decompose the position’s beta into the exposure-weighted betas of the
pure factor returns plus the beta of the position’s residual return.

Next we can derive the vector of marginal risk contributions of the portfolio
positions. Given the factor structure above, the effect of a small change in portfolio
weights, w, on portfolio risk, σ2

p is given by MR:
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1

2
MR = 1

2

∂

∂w
w′�w = �w

= σ2
pβ̃ = σ2

p(Bβ̃F + β̃ I )

Thus, an individual portfolio position i’s marginal risk contribution,MRi , is given
by

1

2
MRi = 1

2

∂

∂wi
w′�w

= e′
i�w = σ2

pβ̃i

= σ2
p(Bβ̃F

i + β̃ I
i ). (5)

2.2 Allocation to Active and Passive Funds

One important objective of risk control in a world with active investment strategies
is to ensure that an active portfolio manager’s contribution to the portfolio return
justifies his idiosyncratic risk or “tracking error”. If this is not the case, then it is
better to replace the active manager with a passive position that only provides a pure
factor exposures but no idiosyncratic risks. To analyze this question we define νe

as the vector of expected excess returns of the factor-portfolios and assume without
loss of generality νe > 0. Then, the vector of expected portfolio excess returns can
be written as

μe = E(α + B f e + ε) = α + Bνe. (6)

The first order optimality condition (3) states that the portfolio weight assigned to
manager i should not be reduced as long as it holds that:

μe
i

MRi
≥ μe

j

MR j
, ∀ j.

Substituting marginal risk contribution from (5) and expected return from (6) into
the above relation, we conclude that a manager i withMRi > 0 justifies her portfolio
weight relative to a pure factor investment in factor k iff

μe
i

E( f e
k )

= e′
i B E( f e) + αi

E( f e
k )

= e′
i Bνe + αi

νe
k

≥ β̃i

β̃F
k

= e′
i Bβ̃F + e′

i β̃
I

β̃F
k

.

Consider the case where asset manager i has exposure only to factor k, denoted
by Bi,k . Then, this manager justifies her capital allocation iff
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Bi,kν
e
k + αi

νe
k

≥ Bi,k β̃
F
k + β̃ I

i

β̃F
k

Bi,k + αi

νe
k

≥ Bi,k + β̃ I
i

β̃F
k

αi ≥ β̃ I
i

β̃F
k

νe
k .

Note that in general this condition depends on the portfolioweight. For sufficiently
small weights wi , manager i’s tracking error risk will be “non-systematic” in the
portfolio context, i.e., β̃ I

i = 0. However, as manager i’s weight in the portfolio
increases, his tracking error becomes “systematic” in the portfolio context. Therefore,
the manager’s hurdle rate increases with the portfolio weight. This is illustrated in
Example1.

Example 1 Consider the special case where there is only one single factor and a
portfolio, which consists of a passive factor-investment and a single active fund. The
portfolio weight of the passive investment is denoted by w1 and that of the active
fund by w2. The active fund is assumed to have a beta with respect to the factor
denoted by β and idiosyncratic volatility of σI .2

The covariance of factor returns is then a simple scalar equal to the factor return
variance, thematrix of factor exposures B has dimension (2×1) and the idiosyncratic
covariance matrix is (2 × 2)

w =
(

1 − w2
w2

)

, � f = σ2
ν, B =

(

1
β

)

, � =
(

0 0
0 σ2

I

)

.

The usual assumption νe > 0, σ2
I > 0 applies. The hurdle to be met by the alpha of

the active fund is accordingly given by

α ≥ H(w2) = β̃ I
2

β̃F
νe = σ2

I w2

σ2
ν(1 − (1 − β)w2)

νe.

The derivative of this hurdle with respect to the weight of the active fund w2 is

d H

dw2
= σ2

I

σ2
ν

νe 1

(1 − (1 − β)w2)2
> 0,

i.e., the hurdle H(w2)has a strictly positive slope, thus, the higher the portfolioweight
w2 of an active fund, the higher is the requiredα itmust deliver. This is so becausewith
low portfolio weight, the active fund’s idiosyncratic volatility is almost orthogonal to

2 Note that β is the linear exposure of the fund to the factor. It is a constant and independent of
portfolio weights. In contrast, betas of portfolio constituents relative to the portfolio, β̃F and β̃ I ,
depend on weights.
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Fig. 1 Minimum alpha justifying portfolio weights

the portfolio return, and so its contribution to the overall portfolio risk is low.When in
contrast the active fund has a high portfolio weight, its idiosyncratic volatility already
co-determines the portfolio return and is—in the portfolio’s context—a systematic
component. Themarginal risk contribution of the fund is then larger and consequently
demands a higher compensation, translating into an upward-sloping α-hurdle.

Take as an example JPMorgan Funds—Highbridge US STEEP, an open-end fund
incorporated in Luxembourg that has exposure primarily to U.S. companies, through
the use of derivatives. Using monthly data from 12/2008 to 12/2013 (data source:
Bloomberg), we estimate

�̂ f = σ̂2
ν = 0.002069, B̂ =

(

1
0.9821

)

, �̂ =
(

0 0
0 0.000303

)

.

Furthermore,we use the historical average of themarket risk premium ν̄ = 0.013127,
and the fund’s estimated alpha α̂ = 0.001751. The optimal allocation is the vector
of weights w∗ such that the marginal excess return divided by the marginal risk
contribution is equal for both assets in the portfolio. The increasing relationship
between alpha and optimal fund weight is illustrated in Fig. 1. At the estimated alpha
of 17.51 basis points, the optimal weights are given by

w∗ =
(

0.1029
0.8971

)

.
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3 Dealing with Investors Downside-Risk Aversion

When discussing investor’s utility optimization in Sect. 2, we referred to literature
showing that under fairly general assumptions optimal static sharing rules are linear
in the investment’s payoff, i.e., optimal risk sharing implies holding a certain fraction
of a risky investment rather than negotiating contracts with nonlinear payoffs. In a
dynamic context, Merton [51] derives an optimal savings-consumption rule that is
also in accordance with this finding. Consider a continuous-time framework with a
single risky and a riskless asset, where the investor can change the allocation wt to
the risky asset over time. When the risky asset follows a geometric Brownian motion
with drift μ and volatility σ, and utility exhibits a constant relative risk aversion
γ, then the optimal allocation to the risky asset is constant over time and can be
described as wt = μe/(γσ2). This means with constant investment opportunities
(μ and σ constant over time) investors keep the proportions of the risky and risk-
free assets in the portfolio unchanged over time. To keep weights constant, portfolio
rebalancing requires buying the risky asset when it decreases in value and selling it
with increasing prices.

While these theoretical results suggest that an investor should not avoid exposure
to risky investments even after sharp draw-downs of her portfolio’s value, financial
intermediaries face strong demand for products that provide portfolio insurance.
That is, investors seem to have considerable downside-risk aversion. Rebalancing to
constant portfolio weights is in clear contrast to portfolio insurance strategies, where
the allocation to the risky asset has to be decreased if it falls in value, and the risky
assetwill be purchased in response to price increases. Perold andSharpe [56] note that
these opposing rebalancing rules lead to different shapes of strategy payoff curves.
Buying stocks as they fall (as in the Merton model) leads to concave payoff curves.
Such strategies do well in flat but oscillating markets, as assets are bought cheaply
and sold at higher prices. However, in persistent downmarkets losses are aggravated
from buying ever more stocks as they fall. Portfolio insurance rebalancing rules
prescribe the opposite: selling stocks as they fall. This limits the impact of persistent
down markets on the final portfolio value and at the same time keeps the potential of
upmarkets intact, leading to a convex payoff profile. Yet if markets turn out flat but
oscillating, convex strategies perform poorly.

3.1 Portfolio Insurance

In this paper, we define portfolio insurance as a dynamic investment strategy that is
designed to limit downside risk. The variants of portfolio insurance are, therefore,
popular examples of convex strategies. The widespread use of portfolio insurance
strategies among both individual and institutional investors indicates that not all
market participants are equally capable of bearing the downside risk associated with
their average holding of risky assets. Individual investors might be subject to habit
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formation or recognition of subsistence levels that define a minimum level of wealth
required. For corporations, limited debt capacity makes it impossible to benefit from
profitable investment projects if wealth falls below a critical value. Furthermore,
kinks in the utility function could originate in agency problems, e.g., career concerns
of portfolio managers, who see fund flows and pay respond in an asymmetric way
to performance. In the literature on portfolio insurance, Leland [47] has stated the
prevalence of convex over concave strategies for an investor whose risk aversion
decreases in wealth more rapidly than for the representative agent. Alternatively,
portfolio insurance strategies should be demanded by investors with average risk
tolerance, but above average return expectations. Leland argues that insured strate-
gies allow such an optimistic investor to more fully exploit positive alpha situations
through greater levels of risky investment, while still keeping risk within manageable
bounds.

Brennan and Solanki [14] contrast this analysis and derive a formal condition for
optimality of an option like payoff that is typical for portfolio insurance. It can be
shown that a payoff function where the investor receives the maximum of the refer-
ence portfolio’s value and a guaranteed amount is optimal only under the stringent
conditions of a zero risk premium and linear utility for wealth levels in excess of the
guaranteed amount. Similarly, Benninga and Blume [9] argue that in complete mar-
kets utility functions consistent with optimality of portfolio insurance would have
to exhibit unrealistic features, like unbounded risk aversion at some wealth level.
However, they make the point that portfolio insurance can be optimal if markets are
not complete. An extreme example of market incompleteness in this context, which
makes portfolio insurance attractive, is the impossibility for an investor to allocate
funds into the risk-free asset. Grossman and Vila [30] discuss portfolio insurance
in complete markets, noting that the solution of an investor’s constrained portfolio
optimization problem (subject to a minimum wealth constraint VT > K ) can be
characterized by the solution of the unconstrained problem plus a put option with
exercise price K . More recently, Dichtl and Drobetz [19] provide empirical evidence
that portfolio insurance is consistent with prospect theory, introduced by Kahneman
and Tversky [41]. Loss-averse investors seem to use a reference point to evaluate
portfolio gains and losses. They experience an asymmetric response to increasing
versus decreasing wealth, in being more sensitive to losses than to gains. In addition,
risk aversion also depends on the current wealth level relative to the reference point.
The model by Gomes [27] shows that the optimal dynamic strategy followed by
loss-averse investors can be consistent with portfolio insurance.3

3 It is interesting to study the potential effects of portfolio insurance on the aggregate market. As
our focus is the perspective of a risk-manager who does not take into account such market-wide
effects of his actions, we do not cover this literature. We refer the interested reader to Leland and
Rubinstein [46], Brennan and Schwartz [13], Grossman and Zhou [32] and Basak [6] as a starting
point.



Risk Control in Asset Management: Motives and Concepts 249

3.2 Popular Portfolio Insurance Strategies

The main portfolio insurance strategies used in practice are stop-loss strategies,
option-based portfolio insurance, constant proportion protfolio insurance, ratcheting
strategies with adjustments to the minimum wealth target, and value-at-risk based
portfolio insurance.

3.2.1 Stop-Loss Strategies

The simplest dynamic strategy for an investor to limit downside risk is to protect
his investment using a stop-loss strategy. In this case, the investor sets a minimum
wealth target or floor FT , that must be exceeded by the portfolio value VT at the
investment horizon T . He then monitors if the current value of the portfolio Vt

exceeds the present value of the floor exp(−r f (T − t))FT , where r f is the riskless
rate of interest. When the portfolio value reaches the present value of the floor, the
investor sells the risky and buys the riskfree asset. While this strategy has the benefit
of simplicity, there are several disadvantages. First, due to discreteness of trading or
illiquidity of assets, the transaction price might be undesirably far below the price
triggering portfolio reallocation. Second, once the allocation has switched into the
riskfree asset the portfolio will grow deterministically at the riskfree rate, making
it impossible to even partially participate in a possible recovery in the price of the
risky asset.

3.2.2 Option-Based Portfolio Insurance

Brennan and Schwartz [12] and Leland [47] describe that portfolio insurance can
be implemented in two eqivalent ways: (1) holding the reference portfolio plus a
put option, or (2) holding the riskfree asset plus a call option. When splitting his
portfolio into a position S0 in the risky asset and P0 in a protective put option at
time t = 0, the investor has to take into account the purchase price of the option
when setting the exercise price K , solving (S0 + P0(K )) · (FT /V0) = K for K . The
ratio FT /V0 is the minimumwealth target expressed as a fraction of initial wealth. If
such an option is available on the market it can be purchased and no further action is
needed over the investment horizon; alternatively such an option can be synthetically
replicated as popularized by Rubinstein and Leland [58]. Again, the risky asset will
be bought on price increases and sold on falling prices, but in contrast to the stop-
loss strategy, changes in the portfolio allocation will now be implemented smoothly.
Even after a fall in the risky asset’s price there is scope to partially participate in an
eventual recovery as long asDelta is strictly positive. Toward the endof the investment
horizon, Delta will generally be very close to either zero or one, potentially leading
to undesired portfolio switching if the risky asset fluctuates around the present value
of the exercise price.
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3.2.3 Constant Proportion Portfolio Insurance

In order to provide a simpler alternative to the option replication approach described
above, Black and Jones [10] propose CPPI for equity portfolios. Black and Perold
[11] describe properties of CPPI and propose a kinked utility function forwhichCPPI
is the optimal strategy. Implementation of CPPI starts with calculation of the cushion
Ct = Vt − Ft , which is the amount by which the current portfolio value Vt exceeds
the present value of the minimum wealth target (Ft = exp(−r f (T − t))FT ). Thus,
the cushion can be interpreted as the risk capital available at time t . The exposure
Et to the risky asset is determined as a constant multiple m of the cushion Ct ,
while the remainder is invested risk free. To avoid excessive leverage, exposure will
typically be determined subject to the constraint of amaximum leverage ratio l, hence
Et = min{m ·Ct , l ·Vt }. If the portfolio is monitored in continuous time, the portfolio
value at time T cannot fall below FT . However, discrete trading in combination with
sudden price jumps could lead to a breach of the minimum wealth target (gap risk).

3.2.4 Ratcheting Strategies

The portfolio insurance strategies discussed so far limit the potential shortfall from
the start of the investment period to its end, frequently a calendar year. But investors
may also be concerned with losing unrealized profits that have been earned within
the year. Estep and Kritzman [23] propose a technique called TIPP (time invariant
portfolio insurance) as a simple way of achieving (partial) protection of interim gains
in addition to the protection offered by CPPI. Their methodology adjusts the floor Ft

used to calculate the cushionCt over time.TheTIPPfloor is set as themaximumof last
period’s floor and a fraction k of the current portfolio value: Ft = max(Ft−1, kVt ).
This method of ratcheting the floor up is time invariant in the sense that the notion of
a target date T is lost. However, if the percentage protection is required with respect
to a specific target date, themethod can be easily adjusted by setting a target date floor
FT proportional to current portfolio value Vt , which is then discounted. Grossman
and Zhou [31] provide a formal analysis of portfolio insurance with a rolling floor,
while Brennan and Schwartz [13] characterize a complete class of time-invariant
portfolio insurance strategies, where asset allocation is allowed to depend on current
portfolio value, but is independent of time.

3.2.5 Value-at-Risk-Based Portfolio Insurance

In a broader context, Value-at-Risk (VaR) has emerged as a standard formeasurement
and management of financial market risk. VaR has to be specified with confidence
a and horizon �t and is the loss amount that will be exceeded only with probability
(1− a) over the time span �t . It is, therefore, a natural measure to control portfolio
drawdown risk. The typical definition of VaR assumes that over the time horizon
no adjustments are made to the portfolio. Yet, if under adverse market movements
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risk reducing transactions are implemented, VaR is likely to overestimate actual
losses, making portfolio insurance even more effective. On the other hand, poor
estimation of the return distribution will lead to bad quality of the VaR estimate.
Herold et al. [35, 36] describe a VaR-based method for controlling shortfall risk.
The allocation to the risky asset is chosen such that the VaR equals the prespecified
minimum return. They note that their method can be seen as a generalized version of
CPPI with a dynamic multiplier mt = 1/(�−1(a)

√
�tσt ), where �−1(a) is the a-

percentile of the standard normal distribution, and σt is the volatility of the reference
portfolio. Typically,market volatility increaseswhenmarkets crash, leading to amore
pronounced reduction of the allocation to the risky asset as both the cushion and the
multiplier shrink. This offers the potential advantage of VaR-based risk control that
if markets calm, the allocation to the risky asset will increase again, allowing the
portfolio to benefit from a recovery. Basak and Shapiro [7] take a critical view on
VaR-based risk management: Strictly interpreting VaR as a risk quantile, managers
could be inclined to deliberately assume extreme risks if they are not penalized for
the severity of losses that occur with a probability less than 1 − a. However, in a
portfolio insurance context this could be easily fixed, e.g., by restrictions on assuming
tail risks.

3.3 Performance Comparison

Benninga [8] uses Monte Carlo simulation techniques to compare stop-loss, OBPI,
and CPPI. Surprisingly, he finds that stop-loss dominates with respect to terminal
wealth and Sharpe ratio. Dybvig [21] considers asset allocation and portfolio payouts
in the context of endowment management. If payouts are not allowed to decrease,
CPPI exhibits more desirable properties than constant mix strategies. Balder et al. [4]
analyze risks associated with implementation of CPPI under discrete-time trading
and transaction costs. Zagst and Kraus [64] compare OBPI and CPPI with respect
to stochastic dominance. Taking into account that implied volatility—which is rel-
evant for OBPI—is usually higher than realized volatilty—relevant for CPPI—they
find that under specific parametrizations CPPI dominates. Recently, Dockner [20]
compares buy-and-hold, OBPI and CPPI concluding that there does not exist a clear
ranking of the alternatives. Dichtl and Drobetz [19] consider prospect theory (Kah-
neman and Tversky [41]) as framework to evaluate portfolio insurance strategies.
They use a twofold methodological approach: Monte Carlo simulation and historical
simulation with data for the German stock market. Within the behavioral finance
context chosen, their findings provide clear support for the justification of downside
protection strategies. Interestingly, in their study stop-loss, OBPI and CPPI turn out
attractive while the high protection level of TIPP associated with opportunity costs
in terms of reduced upside potential turns out to be suboptimal. Finally, they recom-
mend to implement CPPI aggressively by using the highest multiplier m consistent
with tolerance for overnight or gap risk.
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Example 2 In 4 out of the 18 calendar years from 1995 to 2013, the S&P 500 total
return index lost more than 5%. For investors with limited risk capacity it was not
helpful that these losses happened three times in a row (2000, 2001, and 2002),
or were severe (2008). The following example illustrates how simple versions of
common techniques to control downside risk have performed over these 18 years.
We assume investment opportunities in the S&P 500 index and a risk-free asset, an
investment horizon equal to the calendar year, and a frictionless market (no trans-
action costs). Each calendar year the investment starts with a January 1st portfolio
value of 100. Rebalancing is possible with daily frequency. For the portfolio insur-
ance strategies investigated, the desired minimum wealth is given with 95, and free
parameters are set in a way to make the strategies comparable, by ensuring equal
equity allocations at portfolio start. This is achieved by resetting the multiples m
for CPPI and TIPP each January 1st according to the Delta of the OBPI strategy.
Similarly, the VaR confidence level is set to achieve this same equity proportion at
the start of the calendar year. OBPI Delta also governs the initial equity portion of
the buy-and-hold portfolio. Table1 reports the main results, and Fig. 2 summarizes
the distribution of year-end portfolio values in a box plot.

The achieved minimum wealth levels show that for CPPI, TIPP, OBPI, and VaR-
based portfolio insurance even in theworst year the desiredminimumwealth has been
missed just slightly, while in the case of the stop loss strategy there is a considerable
gap. This can be partly explained by the simple setup of the eample (e.g., rebalancing
using daily closing prices only, while in practice intraday decision-making and trad-
ing will happen). But a possibly large gap between desired and achieved minimum
wealth is also systematic of stop loss strategies because of the mechanics of stop-loss
orders. The moment the stop limit is reached, a market order to sell the entire port-
folio is executed. The trading price, therefore, can and frequently will be lower than
the limit. This can pose considerable problems in highly volatile and illiquid market
environments. Option replication comes next in missing desired wealth protection.

Table 1 Portfolio insurance strategies

Mean Median SD all SD lower Min Max Turnover

Long only 110.92 113.91 19.29 15.55 63.91 137.59 0.00

Buy & hold 108.32 107.15 12.52 9.18 79.99 132.11 0.00

Stop loss 108.77 105.77 16.09 6.52 89.13 137.59 0.42

CPPI 107.71 104.77 12.52 2.82 94.62 136.89 4.58

TIPP 105.31 104.20 7.45 3.29 94.63 122.75 1.03

OBPI 108.50 105.21 12.43 4.29 95.00 135.58 3.63

Option repl. 108.84 107.07 11.93 4.72 92.04 132.59 3.64

VaR 108.21 104.15 13.21 2.64 94.79 137.59 8.16

Comparison of portfolio insurance strategies, annual horizon, S&P 500, 1995–2013. We report
end-of-year wealth levels per investment of 100 (mean, median, min, max); standard deviations
calculated both over the whole sample (SD all) and for the subsample where the annual S&P 500
total return is below its mean (SD lower); turnover in the annual turnover ratio
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Fig. 2 Comparison of portfolio insurance strategies, annual horizon, S&P 500, 1995–2013. For
each strategy, the shaded area indicates the observations from the 25th to the 75th percentile,
the median is shown as the line across the box and the mean as a diamond within the box. The
whiskers denote the lowest datum still within 1.5 interquartile range of the lower quartile, and the
highest datum still within 1.5 interquartile range of the upper quartile. If there are more extreme
observations they are shown separately by a circle. The semitransparent horizontal line indicates
the desired minimum wealth level

In the example, this might be due the simplified setup, where the exercise price of
the option to be replicated is determined only once per year (at year start), and then
daily Delta is calculated for this option and used for allocation into the risky and the
riskless asset. In practice, new information on volatility and the level of interest rates
will also lead to a reset of the strike used for calculation of the Delta. Another obser-
vation is that the standard deviation of annual returns is lowest for TIPP, which comes
at the price of the lowest average return. If the cross-sectional standard deviation is
computed only for the years with below-average S&P 500 returns, it is lowest for
VaR-based risk control. For all methods shown, practical implementation will typi-
cally use higher levels of sophistication. For example, trading filters will be applied
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to avoid adjusting portfolios as frequently as in the example leading to high turnover
values.

3.4 Other Risks

In the previous discussion, shortfall risk was seen from the perspective of an investor
holding assets only. However, many institutional investors simultaneously optimize
a portfolio of assets A and liabilities L . Sharpe and Tint [62] describe a flexible
approach to systematically incorporate liabilities into pension fund asset allocation,
by optimizing over a surplus measure S = A − kL , where k ∈ [0, 1] is a factor
denoting the relative weight attached to liabilities. In the context of asset liability
management, Ang et al. [2] analyze the effect of downside risk aversion, and offer
an explanation why risk aversion tends to be high when the value of the assets
approaches the value of the liabilities. Ang et al. [2] specify the objective function
of the fund as mean-variance over asset returns plus a downside risk penalty on the
liability shortfall that is proportional to the value of an option to exchange the optimal
portfolio for the random value of the liabilities. An investor following their advice
tends to be more risk averse than a portfolio manager implementing the Sharpe and
Tint [62] model. For very high funding ratios, the impact of downside risk on risk
taking, and therefore the asset allocation of the pension fund manager is small. For
deeply underfunded plans, the value of the option is also relatively insensitive to
changes in volatility, again leading to a small impact on asset allocation. The effect
of liabilities on asset allocation is strongest when the portfolio value is close to the
value of liabilities. In this case, lower volatility reduces the value of the exchange
option, leading to a smaller penalty.

Another hedging motive arises if investors wish to bear only specific risks. This
might be due to specialization of the investor in a certain asset class, making it
desirable to hedge against risks not primarily driving the returns of this asset class.
A popular example is currency risk, which has been recently analyzed by Campbell
et al. [15] who find full currency hedging to be optimal for a variance-minimizing
bond investor, but discuss the potential for overall risk reduction fromkeeping foreign
exchange exposure partly unhedged in the case of equity portfolios.

4 Parameter Uncertainty and Model Uncertainty

Quantitative portfolio management builds on optimization output of stylizedmodels,
which (i) need to be carefully chosen to capture relevant features of the market
framework and (ii) must be calibrated and parameterized. These choices, model
selection, as well as model calibration, bear the risk of misspecification, which might
have severely negative consequences on the desired out-of-sample properties of the
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portfolio. Thus, a main application of risk management in asset management is
controlling the risk inherent in model specification and parameter selection. In this
section, we distinguish between parameter uncertainty and model uncertainty in the
following way. With parameter uncertainty we refer to the case where we know the
structure of the data generating process that lies behind the observed set of data, but
the parameters of the process must be empirically determined.4 Finite data history
is the only limiting factor, which prevents us from deriving the true values of the
model parameters. Under the assumption of the null hypothesis, we can derive the
joint distribution of the estimated parameters relative to the true values, and finally
the joint predictive distribution of asset returns under full consideration of estimation
problems. Thus, we can treat parameter uncertainty simply as an additional source of
variability in returns. It is noncontroversial to assume that a decision-maker does not
distinguish between uncertainty in returns caused by the general variability of returns
and uncertainty that has its origin in estimation problems, and hence the portfolio
optimization paradigm is not affected.

In contrast, with model uncertainty we refer to the case where a decision-maker
is not sure, which model is the correct formulation that describes the underlying
dynamics of asset returns. In such a case, it is generally not possible to specify prob-
abilities for the models considered as feasible. Thus, model uncertainty increases
uncertainty about asset returns, but we are not able to state a definite probability
distribution of returns, which incorporates model uncertainty. That is, model uncer-
tainty is a prototypical case of Knightian uncertainty, referring to Knight [42], where
it is not possible to characterize the uncertain entity (in our case the asset return) by
means of a probability distribution. Consequently, model uncertainty fundamentally
changes the decision-making framework andwe have tomake assumptions regarding
a decision-maker’s preferences concerning situations of ambiguity.

4.1 Parameter Uncertainty

The most obvious estimation problem in a traditional minimum-variance portfolio
optimization task arises when determining the covariance structure of asset returns.
This is so because estimates of the sample covariance matrix turn out to be weakly
conditioned in general and—as soon as the number of assets is larger than the number
of periods considered in the return history—the sample covariance matrix is singular
by construction.

Example 3 Consider as a broad asset universe the S&P 500 with N = 500 con-
stituents. It is common practice to estimate the covariance structure of stock returns
from two years of weekly returns. The argument for a restriction of the history to
T = 104 weeks is a reaction to the fact that there is apparently some time-variation

4 We assume in general, that themodel has a structure,which ensures that parameters are identifiable.
For example, it is assumed that log-returns are normally distributed, but mean and variance must
be estimated from observed data.
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in the covariance structure, which the estimate is able to capture only if one restricts
the used history.5

Let r denote the (T × N ) matrix containing weekly returns, then the sample
covariance matrix �̂S is determined by

�̂S = 1

T − 1
r ′ M r, (7)

where the symmetric and idempotent matrix M is the residual maker with respect to
a regression onto a constant,

M = I − 1 (1′ 1)−1 1′,

with I the (T × T ) identity matrix and 1 a column vector containing T times the
constant 1.

In the assumed setup, the sample covariance matrix is singular by construction.
This is so because from (7) it follows that the rank of �̂S is bounded from above by
min{N , T − 1}.6 And even in the case where the number of return observations per
asset exceeds the number of assets (T > N + 1) the sample covariance matrix is
weakly determined, hence, subject to large estimation errors since one has to estimate
N (N + 1)/2 elements of �̂S from T · N observations.

Since a simple Markowitz optimization, see Markowitz [49], needs to invert the
covariance matrix, matrix singularity prohibits any attempt of advanced portfolio
optimization, and is thus the most evident estimation problem in portfolio manage-
ment. Elton and Gruber [22] is an early contribution, which proposes the use of
structural estimators of the covariance matrix. Jobson and Korkie [38] provide a rig-
orous analysis of the small sample properties of estimates of the covariance structure
of returns.

Less evident are the problems caused by errors in the estimates of return expec-
tations, whereas it turns out that they are economically much more critical. Jorion
[39] shows in the context of international equity portfolio selection that the errors
in the estimates of return expectations have a severe impact on the out-of-sample

5 Such an approach is typical for dealing with inadequate model specification. The formal estimate
is based on the assumption that the covariance structure is stable. Since data show that the covariance
structure is not stable, an ad-hoc adaptation—the limitation of the data history—is used to capture
the recent covariance structure. The optimal amount of historical data that should be used cannot
be derived within the model, but must be roughly calibrated to some measure of goodness-of-fit,
which balances estimation error against timely response to time variations.
6 The residual maker M has at most rank T − 1 because it generates residuals from a projection
onto a one-dimensional subspace of RT . Since r has at most rank N , we have

rank(�̂S) ≤ min{N , T − 1}.
For example, the sample covariance matrix estimated from two years of weekly returns of the 500
constituents of the S&P500 (104 observations per stock) has at most rank 103. Hence, it is not
positive definite and not invertible, because at least 397 of its 500 eigenvalues are exactly equal 0.
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performance of optimized portfolios. He further shows that the Bayes-Stein shrink-
age approach introduced in Jorion [40] helps mitigate errors and at the same time
improves out-of-sample properties of the portfolio.

Structural Estimators Means and covariances of asset returns are the most basic
inputs into a portfolio optimization model. However, estimation errors in further
model parameters like some measure of risk aversion, speed of reversion to long-
term averages, etc., must be estimated from empirical data and are, thus, equally
likely inflicted with estimation errors. While sample estimates of distribution means,
(co-)variances and higher moments are generally unbiased and efficient, they tend to
be noisy. This can be improved by imposing some sort of structure on the estimated
parameters. Such structural estimates are less prone to estimation errors at the expense
of ignoring part of the information inherent in the observed data sample. When
determining the covariance structure of asset returns, Elton and Gruber [22] analyze
a set of different structural assumptions, e.g., what they call the single index model
(assuming that the pairwise covariance of asset returns is only generated by the assets
individual correlation to a market index), the mean model (pairwise correlations
between assets are assumed constant across the asset universe), and models that
assume that the correlation structure of asset returns is determined by within industry
averages or across industry averages or by a (small) number of principal components
of the sample covariancematrix. They show that especially the particularly restrictive
estimates (single indexmodel andmeanmodel) deliver forecasts of future correlation
that are more accurate than the simple historical sample estimates.7

Shrinkage Estimators When determining model parameters θ, it is very popular
to apply some shrinkage approach. This approach aims to combine the advantages of
a sample estimate θ̂S (pure reliance on sample data) and a structural estimate θ̂struct
(robustness) by computing some sort of weighted average8

θ̂ = λθ̂S + (1 − λ)θ̂struct.

While practitioners often use ad hoc weighting schemes, the literature provides
a powerful Bayesian interpretation of shrinkage, which allows for the computation
of optimal weights. In this Bayesian view, the structural estimator serves as the
prior, which anchors the location of model parameters θ and the sample estimate
acts as the conditioning signal. Bayes’ rule then gives a stringent advice of how to
combine prior and signal in order to compute the updated posterior that is used as
an input for the portfolio optimization. The abovementioned Bayes-Stein shrinkage
used in Jorion [39, 40] focuses on estimates of the expected returns. In the context
of covariance estimation, an early contribution is Frost and Savarino [25]. More
recently, Ledoit and Wolf [43] determine a more general Bayesian framework to
optimize the shrinkage intensity, in which the authors explicitly correct for the fact

7 See, e.g., Dangl and Kashofer [18] for an overview of structural estimates of the covariance
structure of large equity portfolios—including shrinkage estimates.
8 Shrinkage is usually a multivariate concept, i.e., λ is in general not a fixed scalar, but it depends
on the observed data in some nonlinear fashion.



258 T. Dangl et al.

that the prior (i.e., the structural estimate of the covariance structure) as well as the
updating information (i.e., the sample covariance matrix) are determined from the
same data. Consequently, errors in these two inputs are not independent and the
Bayesian estimate must control for the interdependence.9

Weight Restrictions A commonly observed reaction to parameter uncertainty in
portfolio management is imposing ad hoc restrictions on portfolio weights. That is,
the discretion of a portfolio optimizer is limited by maximum as well as minimum
constraints on the weights of portfolio constituents.10 In sample, weight restrictions
clearly reduce portfolio performance (as measured by the objective function used in
the optimization approach).11 Nevertheless, out of sample studies show, that in many
cases weight restrictions improve the risk-return trade-off of portfolios. Jagannathan
andMa [37] provide evidence why weight restrictions might be an efficient response
to estimation errors in the covariance structure. Analyzingminimum-variance portfo-
lios they show that binding long only constraints are equivalent to shrinking extreme
covariance estimates toward more moderate levels.

Robust Optimization A more systematic approach to parameter uncertainty than
weight restrictions is robust optimization. After determining the uncertainty set S for
the relevant parameter vector p, robust portfolio optimization is usually formulated
as a max-min problem where the vector w of portfolio weights solves the equation

w ∈ argmaxw{min
p∈S

f (w; p)},

with f (w; p) being the planner’s objective function that she seeks to maximize.
This is a conservative or worst-case approach, which in many real-world applica-
tions shows favorable out-of-sample properties (see Fabozzi et al. [24], or for more
details on robust and convex optimization problems and its applications in finance
see Lobo et al. [48]). Provided a distribution of the parameters is available, the rather
extreme max-min approach could be relaxed by applying convex risk measures. In
the context of derivatives pricing, Bannoer and Scherer [5] develop the concept of
risk-capturing functionals and exemplify risk averse pricing using an average Value-
at-Risk measure.

Resampling A different approach to deal with parameter uncertainty in asset man-
agement is resampling. This technique does not attempt to producemore robust para-
meter estimates or to build a portfolio-optimization model, which directly regards
parameter uncertainty in portfolio optimization. Resampling is a simulation-based
approach that was first described in the portfolio-optimization context by Michaud
[52] and exists in different specifications. It takes the sample estimates of mean

9 See also Ledoit and Wolf [44, 45] for more on shrinkage estimates of the covariance structure.
10 Weight restrictions are frequently part of regulatory measures targeting the fund industry aimed
to control the risk characteristics of investment funds.
11 Green and Hollifield [28] argue that in the apparent presence of a strong factor structure in the
cross section of equity returns, mean-variance optimal portfolios should take large short positions
in selected assets. Hence, a restriction to a long-only portfolio is expected to negatively influence
portfolio performance.
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returns as well as of the covariance matrix and resamples a number R of return
‘histories’ (where R is typically between 1,000 and 10,000). From each of these
return histories, an estimate of the vector of mean returns as well as of the covari-
ance matrix is derived. These estimates form the ingredients to calculate R different
versions of the mean-variance frontier. Resampling approaches differ in the set of
restrictions used to determine the mean-variance frontiers and in the way how the
frontiers are averaged to get the definite portfolio weights. Some authors criticize
that the unconditionally optimal portfolio does not simply follow from an average
over R vectors of conditionally optimal portfolio weights (see, e.g., Scherer [59] or
Markowitz and Usmen [50]), others point out that the ad-hoc approach of resampling
could be improved by using a Bayesian approach (see, e.g., Scherer [60], or Harvey
et al. [33, 34]). Despite the critique, all those studies appreciate the out-of-sample
characteristics of resampled portfolios.

Example 4 This simple example builds on Example1 which discusses the optimal
weight of an active fund relative to a passive factor investment. An index-investment
in the S&P 500 serves as the passive factor investment and an active fund with
the constituents of the S&P 500 as its investment universe is the delegated active
investment strategy. In Example1 we take a history of five years of monthly log-
returns (60 observations) to estimate mean returns as well as the covariance structure
and the alpha, which the fund generates relative to the passive investment. We use
these estimates to conclude that the optimal portfolio weight of the fund should be
roughly 90% and only 10% of wealth should be held as a passive investment.

Being concerned about the quality of our parameter estimation that feeds into the
optimization, we first examine the regression, which was performed to come up with
these estimates. Assuming that log-returns are normally distributed, we conclude
from the regression in Example1 that our best estimates of the parameters α, β and
ν are

α̂ = 17.51 bp/month, β̂ = 0.9821, ν̂ = 131.27 bp/month,

and that the estimation errors are t-distributed with a standard deviation12

σ58(α̂) = 23.40 bp/month, σ58(β̂) = 0.0498, σ59(ν̂) = 454.91 bp/month.

Furthermore, estimation errors in α̂ and β̂ are negatively correlated with a correlation
coefficient ρ = −27.93% and errors in the estimate of the market risk premium ν̂

are uncorrelated to the errors in α̂ and β̂.
A statistician would now conclude that neither the fund’s α nor the factor’s risk

premium ν is significantly different from zero, and thus an investor should seek
exposure to none of the two. Another approach is to extend the optimization problem
and include parameter uncertainty as an additional source of variability in the final
outcome.

12 Subscripts denote degrees of freedom.
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Fig. 3 Distribution of optimal portfolio weight in the interval [−100%, 200%] of the active invest-
ment over 100,000 resampled histories.Approximately 29%ofweights lie outside the stated interval

In contrast to a full consideration of parameter uncertainty, we use a resampling
approach, which addresses this issue in a more ad hoc manner. We take the empir-
ical estimates as the true moments of the joint distribution of factor returns and
active returns, and resample 100,000 histories.13 Then, we perform the optimization
discussed in Example1 on each of the simulated histories. Figure3 illustrates the
distribution of optimal active weights across theses 100,000 histories. Given the null
hypothesis that returns are normally distributed with the estimated moments, resam-
pling gives a good and reliable overview of the joint distribution of model parameters
we estimate and—finally—an overview of the distribution of optimal weights. We
can conclude that in the present setup, optimal active weights are not well determined
since the estimation of the optimization model from only 60 observations per time
series is too noisy to get a well-determined outcome. While resampling generates a
good picture of the overall effects of parameter uncertainty, it provides no natural
advice for the optimal portfolio decision beyond this illustrative insight.14

13 This is the simplest version of resampling, mostly used in portfolio optimization. Given the null
hypothesis that returns are normally distributed, we know that the empirical estimates of distribution
moments are t-distributed around the true parameters, see Jobson and Korkie [38] for a detailed
derivationof the small sample properties of these estimates.Thus, amore advanced approach samples
for each of the histories, first the model parameters from their joint distribution, and then—given
the selected moments—the history of normally distributed returns. Harvey et al. [33] is an example
that uses advanced resampling to compare Bayesian inference with simple resampling.
14 Some authors do propose schemes how to generate portfolio decisions from the cross section of
the simulation results, see, e.g., Michaud andMichaud [53]. These schemes are, however, criticized
by other authors for not being well-founded in decision theory, e.g., Markowitz and Usmen [50]
and others mentioned in the text above.
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Finally, a study that perfectly illustrates the strong implications of parameter
uncertainty on optimal portfolio decisions is Pastor and Stambaugh [54]. The authors
question the paradigm that due to mean reverting returns, stocks are less risky in the
long run than over short horizons. This proposition is true if we know the parameters
of the underlying mean reverting process with certainty. Pastor and Stambaugh [54]
show that as soon as we properly regard estimation errors in model parameters,
additional uncertainty from estimation errors dominates the variance reduction due
to mean reversion, and thus they provide strong evidence against time diversification
in equity returns.

4.2 Model Uncertainty

Qualitatively different from dealing with parameter uncertainty is the issue of model
uncertainty. Since it is not at all clear what the exact characteristics of the data-
generating process,whichunderlies asset returns are, it is not obviouswhich attributes
a model must feature in order to capture all economically relevant effects of the
portfolio selection process. Hence, every model of optimal portfolio choice bears the
risk of being misspecified. In Sect. 4.1 we already mention the fact that traditional
portfolio models assume that mean returns and the covariance structure of returns
are constant over time. This is in contrast to empirical evidence that the moments
of the return distribution are time varying. Limiting the history, which is used to
estimate distribution parameters, is a frequently used procedure to get a more actual
estimate. The correct length of historical data that shall be used is, however, only
rarely determined in a systematic manner.

Bayesian Model Averaging A systematic approach to estimation under model
uncertainty is Bayesian model averaging. It builds on the concept of a Bayesian
decision-maker that has a prior about the probability weights of competing models
that are constructed to predict relevant variables (e.g., asset returns) one period ahead.
Observed returns are then used to determine posterior probability weights for each
of the models considered applying Bayes rule.15 Each of the competing models
generates a predictive density for the next period’s return. After observing the return,
models which have assigned a high likelihood to the observed value (compared to
others) experience an upward revision of their probability weight. In contrast, models
that have assigned a low likelihood to the observed value experience a downward
revision of their weight. Finally, the overall predictive density is calculated as a
probability-weighted sum of all models’ predictive densities. This Bayesian model
averaging is an elegant way to approach a problem of model uncertainty to transform
it into a standard portfolio problem to find the optimal risk-return trade-off under the
derived predictive return distribution. This approach can, however, only be applied

15 The posterior probability that a certain model is the correct model is proportional to the product
of the model’s prior probability weight and the realized likelihood of the observed return.
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under the assumption that the decision-maker has a single prior and that she shows
no aversion against the ambiguity inherent in the model uncertainty.16

Raftery et al. [57] provide the technical details of Bayesian model averaging and
Avramov [3], Cremers [16], and Dangl and Halling [17] are applications to return
prediction. Bayesian model averaging treats model uncertainty just as an additional
source of variation. The predictive density for next period’s returns becomes more
disperse the higher the uncertainty aboutmodels, which differ in their prediction. The
optimal portfolio selection is then unchanged, but regards the additional contribution
to uncertainty.

Ambiguity Aversion If it is not possible to explicitly assess the probability that a cer-
tain model correctly mirrors the portfolio selection problem and investors are averse
to this form of ambiguity, alternative portfolio selection approaches are needed.
Garlappi et al. [26] develop a portfolio selection approach for investors who have
multiple priors over return expectations and show ambiguity aversion. The authors
prove that the portfolio selection problem of such an ambiguity-averse investor can
be formulated by imposing two modifications to the standard mean-variance model,
(i) an additional constraint that guarantees that the expected return lies in a specified
confidence region (the way how multiple priors are modeled) and (ii) an additional
minimization over all expected returns that conform to the priors (mirroring ambi-
guity aversion). This model gives an intuitive illustration of the fact that ambiguity
averse investors show explicit desire for robustness.

5 Conclusion

The asset management industry has substantial influence on financial markets and
on the welfare of many citizens. Increasingly, citizens are saving for retirement via
delegated portfolio managers such as pension funds or mutual funds. In many cases
there are multiple layers of delegation. It is, therefore, crucial for the welfare of
modern societies that portfolio managers manage and control their portfolio risks.
This article provides an eagle’s perspective on riskmanagement in assetmanagement.

In traditional portfolio theory, the scope for risk control in portfolio management
is limited. Risk management is essentially equivalent to determining the fraction
of capital that the manager invests in a broadly and well diversified basket of risky
securities. Thus, the “risk manager” only needs to find the optimal location on the
securitiesmarket line.By contrast, in amore realisticmodel of theworld that accounts
for frictions, risk management becomes a central and important module in asset
management that is frequently separate from other divisions of an asset manager.
We identify several major frictions that require risk management that goes beyond
choosing the weight of the riskless asset in the portfolio. First, in a world with costly
information acquisition, investors do not hold the same mix of risky assets. This

16 As explained in the introduction to this section, ambiguity aversion refers to preferences that
express discomfort with uncertainty in the sense of Knight [42].
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requires measuring a position’s risk contribution relative to the specific portfolio.
Thus, risk management requires constant measurement of each portfolio position’s
marginal risk contribution and comparing it to its marginal return contribution. This
article derives a framework to calculate the marginal risk contributions and to decide
on optimal portfolio weights of active managers.

In many realistic instances, investors have nonstandard preferences, which make
themparticularly sensitive to downside risks.We, therefore, review themain portfolio
insurance concepts to achieve protection against downside risk. Stop-loss strategies,
option-based portfolio insurance, constant proportion portfolio insurance, ratcheting
strategies, and value-at-risk-based portfolio insurance. Using data for the S&P 500
since 1995 we simulate these alternative risk management concepts and demonstrate
their risk and return characteristics.

Finally, we point out that quantitative portfolio management usually builds on the
output from rather stylized models, which must be chosen to capture the relevant
market environment, and which must be calibrated and parameterized. Both these
choices, i.e., model selection and model calibration, contain the risk of misspecifica-
tion, and thus the risk of negative effects on out-of-sample portfolio performance.We
survey and discuss risk management approaches to deal with parameter uncertainty,
such as shrinkage procedures or resampling procedures. Qualitatively different from
parameter uncertainty is the effect of model uncertainty. Different ways of dealing
with model uncertainty via methods of Bayesian model averaging and the consider-
ation of ambiguity aversion are, therefore, surveyed and discussed.

The increased risk during the financial crisis and the following sovereign debt cri-
sis has lead to a substantially increased focus on risk control in the asset management
industry. At the same time these market episodes have also demonstrated the limi-
tations of risk management in asset management. For example that volatile markets
without strong trends make existing downside protection strategies very expensive
for investors. Furthermore, risk management concepts for long-term investors are
still in their infancy. Scenario-based approaches, possibly combined with min-max
strategies may be more useful in this context than standard risk management tools.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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