A Variational Approach
for Mean-Variance-Optimal Deterministic
Consumption and Investment

Marcus C. Christiansen

Abstract A significant number of life insurance contracts are based on
deterministic investment strategies—this justifies to restrict the set of admissible
controls to deterministic controls. Optimal deterministic controls can be identified
by Hamilton-Jacobi-Bellman techniques, but for the corresponding partial differen-
tial equations only numerical solutions are available and so the general existence
of optimal controls is unclear. We present a non-constructive existence result and
derive necessary characterizations for optimal controls by using a Pontryagin maxi-
mum principle. Furthermore, based on the variational idea of the Pontryagin maxi-
mum principle, we derive a numerical optimization algorithm for the calculation of
optimal controls.

1 Introduction

Among many other applications, individual investment strategies arise in pension
saving contracts, see for example Cairns [6]. While in dynamic optimal consumption-
investment problems one typically aims to find an optimal control from the set of
adapted processes, in insurance practice quite a number of contracts rely on deter-
ministic investment strategies. Deterministic investment and consumption strategies
have the advantage that they are easier to organize in asset management, that they
make future consumption predictable, and that they are easier to communicate. From
a mathematical point of view, deterministic control avoids unwanted features of sto-
chastic control such as diffusive consumption, satisfaction points and consistency
problems. For further arguments and a detailed comparison of stochastic versus
deterministic control see also Menkens [17].

The present paper is motivated by Christiansen and Steffensen [9], where mean-
variance-optimal deterministic consumption and investment is discussed in a Black-
Scholes market. Sufficient conditions for optimal strategies are derived from a
Hamilton-Jacobi-Bellman approach, but only numerical solutions and no analytical
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solutions are given. That means that the general existence of solutions remains
unclear. We fill that gap, allowing for a slightly more general model with non-constant
Black-Scholes market parameters. By applying a Pontryagin maximum principle, we
additionally verify that the sufficient conditions of Christiansen and Steffensen [9]
for optimal controls are actually necessary. Furthermore, we present an alternative
numerical algorithm for the calculation of optimal controls. Therefore, we make use
of the variational idea behind the Pontryagin maximum principle. In a first step,
we define generalized gradients for our objective function, which, in a second step,
allows us to construct a gradient ascent method.

Mean-variance investment is a true classic since the seminal work by Markowitz
[16]. Since then various authors have improved and extended the results, see for exam-
ple Korn and Trautmann [12], Korn [13], Zhou and Li [18], Basak and Chabakauri
[3], Kryger and Steffensen [15], Kronborg and Steffensen [14], Alp and Korn [1],
Bjork, Murgoci and Zhou [5] and others.

Deterministic optimal control is fundamental in Herzog et al. [11] and Geering
et al. [10]. But apart from other differences, they disregard income and consumption
and focus on the pure portfolio problem without cash flows. Biuerle and Rieder
[2] study optimal investment for both, adapted stochastic strategies and determin-
istic strategies. They discuss various objectives including mean-variance objectives
under constraints. In the present paper, we discuss an unconstrained mean-variance-
objective and we also control for consumption.

The paper is structured as follows. In Sect. 2, we set up a basic model framework
and specify the optimal consumption and investment problem that we discuss here.
In Sect. 3, we present an existence result for the optimal control. Section4 derives
necessary conditions for optimal controls by applying a Pontryagin maximum prin-
ciple. Section 5 defines and calculates generalized gradients for the objective, which
helps to set up a numerical optimization algorithm in Sect. 6. In Sect. 7 we illustrate
the numerical algorithm.

2 The Mean-Variance-Optimal Deterministic Consumption
and Investment Problem

Let B([0, T]) denote the space of bounded Borel-measurable functions, equipped
with the uniform norm | - ||oc. On some finite time interval [0, T'], we assume that
we have a continuous income with nonnegative rate a € B([0, T']) and a continuous
consumption with nonnegative rate ¢ € B([0, T]). Let C([0, T']) bet the set of
continuous functions on [0, T']. The positive initial wealth xo and the stochastic
wealth X () at + > 0 is distributed between a bank account with risk-free interest
rate r € C([0, T']) and a stock or stock fund with price process

dS(t) = S()a(t)dt + St)o (AW (), S(0) = 1,
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where a(t) > r(t) > 0,0(t) > O and a,0c € C([0, T]). We write 7 (¢) for the
proportion of the total value invested in stocks and call it the investment strategy.
The wealth process X (¢) is assumed to be self-financing. Thus, it satisfies

dX() = X))+ (a@) —r@)m(t))dt + (at) —c@))dt + X (t)o ()7 (1)dW ()

(1)
with initial value X (0) = xo and has the explicit representation
t
X (1) = xpeh U 4 / (a(s) — c(s))eh Vs, 2)
0
where
dU (1) = (r(6) + (a(t) — r@e)m(r) — %a(r)zn(r)z)dr
+ o) (t)dW(t), U) =0. 3)

It is important to note that the process (X (¢));>0 depends on the choice of the invest-
ment strategy (7 (¢));>0 and the consumption rate (c(¢));>0. In order to make that
dependence more visible, we will also write X = X, For some arbitrary but
fixed risk aversion parameter y > 0 of the investor, we define the risk measure

MV,[-1:=E[-]—yVar[-].

We aim to maximize the functional

T
G(m,c) == MV, /e—mc(s)ds + e PTxTO(T) (4)
0

with respect to the investment strategy 7 and the consumption rate c¢. The parameter
p > 0 describes the preference for consuming today instead of tomorrow.

3 Existence of Optimal Deterministic Control Functions

In Christiansen and Steffensen [9], where a Hamilton-Jacobi-Bellman approach is
used, the existence of optimal control functions is related to the existence of solu-
tions for the Hamilton-Jacobi-Bellman partial differential equation. However, only
numerical solutions are available, so the general existence of solutions is unclear.
Here, we fill that gap by giving an existence result for optimal deterministic control
functions. The proof needs rather weak assumptions, but it is not constructive.
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Theorem 1 Let G : D — (—00, 00) be defined by (4) for
D = {(n, ¢) € B([0, T]) x B([0, T]) : c(t) <c(t) <c(t), te]l0, T]}

with lower and upper consumption bounds c, ¢ € B([0, T]). Then, the functional G
is continuous and has a finite upper bound.

Proof We first show that MV, [X(T)] = MV, [X (T.9)(T)] has a finite upper bound
that does not depend on (7, ¢). Defining the stochastic process

Y(t):= X(t) — yX(1)> + yE[X()]*, t€]0,T], (5)

we have MV, [X(T)] = E [Y(T)]. So it suffices to show that E [Y (T)] has a finite
upper bound that does not depend on (7, ¢). Since the quadratic variation process of
X satisfies d[X](t) = X (t)%0 ()27 (1)%d¢, from Ito’s Lemma we get that

dE[X ()] = E[XO)]{r@) + (a@t) — r@)m(t)}dt + (a(t) — c(t))dt, (6)

dE[X ()] = 2E[X)*){r@) + () — r@)w () }dt + E[X ()] (a(t) — c(1))dt
+ E[X ®)*o (t)*m(1)3dr.

(7

Hence, the expectation function of Y solves the differential equation

dE[Y ()] = E[XO)1{r () + (a(t) — r())m (1) }dt + (a(t) — c(t))dt
—yYE[X®)*]o (1)*m(0)*dr — 2y (E[X(1)*] — E[X(D)]*)  (8)
x {r(@) + (a(t) — r(1)7 () }dr.

The right hand side of (8) is maximal with respect to 7 (¢) for

) = 1 oa) — ;(t) E[X ()] -2y \2’ar[X(t)]' ©)
2y o(t) E[X(1)"]

Plugging (9) into (8) and rearranging terms yields

dE[Y ()] < r(0)(EIX ()] — 2y Var[X ()])dr + (a(r) — c())dr
1 (a@) - r()? (E[X ()] -2y VaI[X(t)])2 (10)
4y o(1)? E[X(1)?]

Recall that we assumed ¥ > 0 and o (¢) > 0, so the first and second denominator are
never zero. If the third denominator E[X (r)%] is zero, we implicitly get E[X (t)] = 0,
and (10) is still true by defining 0/0 := 0. The first line on the right hand side of
(10) has an upper bound of

r(t) E[Y()]dt + (a(t) — c(t))dt.
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With the help of the equality
2
(E[X ()] — 2y Var[X (1)])” = E[X (1)]* — 4y Var[X ()] E[Y (1)]

and the inequalities (E[X (1)])?> < E[X(¢)?] and Var[X ()] < E[X(1)?], we can
show that the second line on the right hand side of (10) has an upper bound of

1 (a() —r@)?

4y o@)? (1 +ay |E[Y(f)]|)dt.

All in all, we obtain
dE[Y(1)] < (C1|E[Y(t)]| + Cz)dt, tel0,T] (11)

for some finite positive constants Cy and C3, since the functions r(¢), a(t), a(t) are
uniformly bounded on [0, T'], since —c(¢) < —c(¢) for auniformly bounded function
¢, and since the positive and continuous function o (¢) has a uniform lower bound
greater than zero. Thus, we have E[Y ()] < g(¢) for g(¢) defined by the differential
equation

dg(t) = (C1 1g()] + Ca)dr,  g(0) = Y(0) = xo > 0. (12)

This differential equation for g(#) has a unique solution, which is bounded on [0, T']
and does not depend on the choice of (7, ¢). Hence, also MV, [X(T)] = E[Y(T)]
has a finite upper bound that does not depend on the choice of (i, ¢). The same is
true for the functional (4), since

T
G(m,c) < / e P e(s)ds + e PT MV, ,—or [X(T)].
0

Now we show the continuity of the functional G. Suppose that (7, ¢;),>1 1S
an arbitrary but fixed sequence in D that converges to (7, co) with respect to the
supremum norm. Since D is a Banach space, the limit (7, o) is also an element of
D. Let X, (¢) := X< (1) for all ¢. As the sequence (7, ¢;)n>1 1s convergent and
within D, the absolutes |7, (¢)| and |c, (¢)| have finite upper bounds, uniformly in n
and uniformly in ¢. Therefore, analogously to inequality (11), from Eq. (6) we get
that

dE[X, ()] < (C3 |[E[X,()]| + C4)ds, 1€[0,T], n=0,1,2,...
for some positive finite constants C3 and C4. Arguing analogously to (12), we obtain

that E[X,,(t)] < f(¢) for some bounded function f(¢). Using similar arguments for
—E[X,(¢)], we get that also the absolute | E[ X, (#)]| is uniformly bounded in n and
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in ¢. Applying Eq. (7), we obtain
dE[X,()*] = 2E[X, () {r (1) + (a(t) — r ()7, (1) }dt
+ E[Xn ()] (a(t) — cu(0))dt + E[X,(1)*0 ()7, (1)?dt.

Using the uniform boundedness of |E[ X, (¢)]|, |7, (¢)| and |c, (¢)|, we can conclude
that

dE[X, ()] < (Cs EIX,()*1+ Cg)dr, 1€[0,T], n=0,1,2,...
for some positive finite constants C5 and Cg. Hence, arguing analogously to above,
the value E[X,()?] is uniformly bounded in n and in ¢. Let Y, () be the process

according to definition (5) but with X, instead of X. Using (8) and the uniform
boundedness of |E[ X, (1)]], E[Xn(t)z], |7, ()| and |c, (1)|, we can show that

dE[Yo(t)—Yn(t)]S(C7 sup |mo(t) — mp(t)| +  sup ICo(l)—cn(t)I)dt, 1€[0,T]
1€[0.T] 1€[0,T]

for some positive finite constant C7. Thus, we get

E[Yo(T) =Y, (T)] =T C7 sup |mo(r) —ma(t)| + T sup |co(t) — ca(t)],
1€[0,T] 1€[0,T]

where we used that Y (0) — Y, (0) = xo — xo = 0. Arguing similarly for — E[Yy(¢) —
Y, (t)], we can conclude that

|G (70, co) — G (p, cn)l

T

= j / e (co(s) — ca())ds + e T MV, 1 [Xo(T)] — e T MV, - pr [X,(T)]
0

<T sup |co(t) — ca(D)| + e "T|E[Yo(T) — Y, (T)]
t€l0,T]

=T Cg sup |mo(t) — mu()| + 2T sup |co(t) — ca(t)]
t€[0,T1] 1€[0,T]

for some finite constant Cg, where the processes ?o(t) and ?n (¢) are defined as
above but with y replaced by ye_pT. Since we assumed that (77, ¢,,),>1 converges in

supremum norm, we obtain that G (T, cp) converges to G (g, cp), i.e. the functional
G is continuous.
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As G has a finite upper bound on the domain D, the supremum

sup G(m,c)
(m,c)eD

indeed exists. Since G is continuous and D is a Banach space, we can conclude that
on each compact subset K of D there exists a pair (%, ¢*) for which

Gr*,¢*)= sup G(m, o). (13)
(m,c)ekK

4 A Pontryagin Maximum Principle

Christiansen and Steffensen [9] identify characterizing equations for optimal invest-
ment and consumption rate by using a Hamilton-Jacobi-Bellman approach. Here, we
show that those characterizing equations are indeed necessary by using a Pontryagin
maximum principle (cf. Bertsekas [4]).

Defining the moment functions

mi(t) = E[(X(@®))], i=12,

pi0) = EI(J) (a(s) — ) ek Wds)].  i=1.2,
ni(t) = E[¢h' Uy, i=1,2,

k() = Elel 4 [T(a(s) — c(s))el Vds],

(14)

as in Christiansen and Steffensen [9], we can represent the objective function G (7, ¢)
by

T
G(m,c) = [e P e(s)ds + e T (mi(tni (1) + p1(1))
0

—ye 2T (ma(D)na(t) + 2my (DK () + pa(t) — (mi(Hni () + p1(1)?)
(15)

for any 7 in [0, T']. Simple calculations give us that

Emi) = @) + (@) = r)m @) m1 (1) + (a() — c(1)),
Ema0) = (2r(z) +2 () — r() () + n(r)zamz) ma(1) +2 (a(t) — ¢ (1) my (1).
(16)

Similarly to m and m», also ny, n2, p1, p2, and k solve a system of ordinary
differential equations but with terminal instead of initial conditions, see Christiansen
and Steffensen [9].
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Theorem 2 Let (1", ¢*) be an optimal control in the sense of (13), and let m} (t),

pi(t), ni(t), i = 1,2, and k*(t) be the corresponding moment functions according
to (14). Then, we have necessarily

7 (t) =

) — r(t) (€T mTORT@) — 2ym’1“(t)(k*(t) - nT(t)m’]"(T)) 1
o (1)? ( 2ym5(On3 (1) - )
(17

iy = | €O it e T=D —n¥(t) +2ye=PT (mT(r)n;(r) +k*(t) — n’lk(t)mT(T)) >0
c(t) else.

(18)
Proof With (r*, ¢*) being an optimal control, we define local alternatives by

e e[GO, O + B, 1) for i € (1o — & 1]
(o (1), " (1)) = [ (T*(1), c* (1)) else

for continuous functions 4 and /. As G(x*, ¢*) is maximal, by applying (15) for
t = to we obtain that

0]
G(r*, ™) — G@®, ) =— / e PSl(s)ds + ef’)T(mT(zo) —m§ (to))n’f(to)

p—¢
— e T { (m3(10) = m510)n5 10) + 2 (m7 (10) — S (10))}K* (10)
= (m}(00)* = mi (1))} (10)* — 20 (t0)

— mi ) t0)pi )]
1o
= / e P I(s)ds + (m] (1) — m] (zo))

p—e&

m}(t)? — m§ (1)) ye T n} (1)

x {eTniw0) = 29e™7 (k" (1) = () pi (1)}
= (m]
— (m5(t0) —m5(t0))ye """ ny(to
(m3(t0) — m§(10)) ye 2T 3 (t0) 19

must be nonnegative. Equation (16) implies that

Ty

e [ d
mi(to) — mi(fo) = / (amﬂs)—aml(s)) S
fh—e
fo

= / ({("(s) + (a(s) — r(s))n*(s))m}‘(s)

0—¢&
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= (r(s) + (als) — V(S))HS(S))M(S)} + l(S))ds,

since ||m} — m{|| — O for ¢ — 0. Moreover, since we have m7(t) — mj (1),
r(t) — r(ty), a(t) - a(ty), o(t) — o(ty) for t — t9, we get that

0]

0]
mi(to) — m§(to) = —(a(ty) — r(to)) mj(to) / h(s)ds + / 1(s)ds + o(e).
1 &

0— o—¢e
(20)
For the squared functions we use
m(t0)* — m§(10)* = (m}(10) — m{(10)) (m}(10) + m (10))
= 2m’(10) (7 (t0) — m§ (t0)) — (m}(t0) — m (10))
and then apply the asymptotic formula (20), which leads to
0]
mi(0)* — m§ (10)” = —2(a(to) — r(10)) m7 (10)° / h(s)ds
fh—¢e
1o
+ 2m] (t0) / [(s)ds + o(e).
fn—¢
Similarly, we can show that
m3(to) — m5(to) = { — 2(a(to) — r(t9)) m5(to)
0]
— 27 ()0 (0)*m3(t0) |} [ h(s)ds
o th—¢
+2m (1 1(s)ds + o(e).
1(0)tof8 ( o1

Plugging Eq. (21) into Eq. (19) and rearranging, we get

1o

o(e) < / l(s)ds( — P04 e Py (tg) — 2yeFT {m’;‘(zo)nz(m) + k* (1)

fo—¢

— nj (to) (n (to)m7 (t0) + PT(to))})
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0]

+ / h(s) ds (a(19) — F(lo))( — m(to)n}(to)e T — 2ye T m}(10)

fn—¢
x| = Ktt0) + mitt0) (5 tom 10) + p;‘(to))})

o (19)? }

— 2Ve_2me§(t0)n§(fo){ —1- n*(to)m

for all continuous functions / and h. Note that n}(to)m7](to) + pj(to) = mj(T).
Consequently, we must have that the sign of /(#) equals the sign of

e + e~ Tnit0) — 2777 (0I5 (10) +K* (10) — () (D))
which means that (18) holds, and we have necessarily that

0= =m0} e " —2ye T m(ns ) — 1 = 7*(10) )

a(to)—r(1o)
—2ye 2 Tm} (1) (= K*(t0) + i to)m} (1)),
(22)
which means that (17) is satisfied.

Recalling that n7 (f9)m] (to) + p}(to) = m7(T), we observe that Eqs.(17) and (18)
are equal to Egs. (19) and (20) in Christiansen and Steffensen [9], which means that
the latter equations are not only sufficient but also necessary.

5 Generalized Gradients for the Objective

For differentiable functions on the Euclidean space, a popular method to find maxima
is to use the gradient ascent method. We want to follow that variational concept,
however our objective is a mapping on a functional space. Therefore, we first need
to discuss the definition and calculation of proper gradient functions.

Theorem 3 Let (7, ¢) € D for D as defined in Theorem 1. For each pair of contin-
uous functions (h,1) on [0, T], we have

T
lim G +dh,c+68l) — G(m, ) _ /h(s)(VnG(n, ) (s)ds

§—0 1)
0

T

+ / 1(5)(VeG (, ) (s)ds
0
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with

(V2 G(, 0))(s) = (a(s) — r(S))(ml(S)”ll(S)e_pT —2ye T my(s)na(s)

o (s)?

a(s) = ()
x (k(s) - n1(S)m1(T)))

X (1 + 7 (s) ) —2ye 2T\ (s)

and
(VeG(m, 0))(s) = e — e PTny(s)
+2ye™2T (my ($)na(s) + k() = i (Im(T)).
The limit
G Sh, 8 — G(m, d
fim G F0mc+3D (””z—‘Gm+Mm+m
§—0 ) ds 1s=0

is the so-called Gateaux derivative (or directional derivative) of the functional
G at (7, ¢) in direction (h,!). Following Christiansen [7], we interpret the two-
dimensional function (V, G (x, c¢), V;G(7, ¢)) as the gradient of G at (7, c).

Proof (Proof of Theorem 3) In the proof of Theorem 2 we already implicitly showed
that

0]
G(m,c) = G + hly—e 1), ¢ + Ngg—e.0) = —(Va G (7, ) (10) / h(s)ds

p—¢&
fo
— (VG (m, o) (to) / I(s)ds + o(e)
Ip—¢&
forall 7o € [0, T], (7w, ¢) € D,and h, [ € C([0, T]). Defining an equidistant decom-

position of the interval [0, T'] by

l .
;. =-T, i=0,...,n,
n
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we can rewrite the difference G (v + §h, ¢ + 81) — G (7, ¢) to
G(r +6h,c+d8l) — G(m,c)

n
= Z (G(TL’ + 6h1j0,5;), ¢ + 8l1j0,;) — G(w + 8hljo,5_ ), ¢ + 511[0,11.71]))
i=1
n i
=5 Z(V,,G(n + 8h1j0.4_ 1, ¢ + 81150 5, ) (%) / h(s)ds
i=l Ti-1
n i n
+8 D (VeG(r + 8hljg 1,1 ¢ + 811105, ))(T) / I(s)ds + > o(T/n)
i=1 o i=1
for all 0 < 6 < 1. The moments p1, p2, n1, ny, k, interpreted as mappings of (7, c)
from the domain B([0, T'])? with L,-norm into the codomain C ([0, T']) with supre-
mum norm, are continuous. Hence, the gradient functions on the right hand side of
the last equation are continuous with respect to the parameters t;_1 and t;. Thus, for
n — oo we obtain

G(m +6h,c+68l) — G(m,c)
8

T
= /(V,,G(r[ + 8hlo 11, ¢ + 6l1[0,51)) (s)h(s)ds
0

T
+ /(VCG(JT + 8hljg 51, ¢ + 81110,5))) (s)I(s)ds.
0

Since the moment functions pi, p2, ni, no, k (interpreted as mappings of (7, ¢)
from the domain B([0, T'])? with supremum-norm into the codomain C ([0, T']) with
supremum norm) are even uniformly continuous, the above gradient functions are
uniformly continuous with respect to parameter §. Thus, for § — 0 we end up with
the statement of the theorem.

6 Numerical Optimization by a Gradient Ascent Method

With the help of the gradient function (V,G (7, ¢), VG (m, c)) of the objective
G (7, ¢), we can construct a gradient ascent method. A similar approach is also used
in Christiansen [8].

Algorithm

1. Choose a starting control (7 (LN c(o)).
2. Calculate a new scenario by using the iteration



A Variational Approach for Mean-Variance-Optimal Deterministic Consumption ... 237

Fig. 1 Sequence of
investment rates 7 (),

i =0,...,40 calculated by
the gradient ascent method.
The higher the number i the
darker the color of the
corresponding graph

D, Dy = (O Oy 4 g (VNG(jT(i),C(i)L VnG(n(i)’c(i)))

where K > 0 is some step size that has to be chosen. If ¢t is above or below
the bounds ¢ and ¢, we cut it off at the bounds.' '

3. Repeat step 2 until ‘G(n(l“), DY — Gz D, c(’))} is below some error tol-
erance.

7 Numerical Example

Here, we demonstrate the gradient ascent method of the previous section with a
numerical example. For simplicity, we fix the consumption rate ¢ and only control
the investment rate 7. We take the same parameters as in Christiansen and Steffensen
[9] in order to have comparable results: For the Black-Scholes market we assume
that » = 0.04, « = 0.06 and o = 0.2. The time horizon is set to 7' = 20, the initial
wealth is xog = 200, and the savings rate is a(¢) — c(t) = 100 — 80 = 20. The
preference parameter of consuming today instead tomorrow is set to p = 0.1, and
the risk aversion parameter is set to y = 0.003.

Starting from 7@ = 0.5, Fig. 1 shows the converging series of investment rates
7D i = 0,...,40 for K = 0.2. The last iteration step 740 perfectly fits the
corresponding numerical result in Christiansen and Steffensen [9].



238 M.C. Christiansen
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