GPU-Based Graph Decomposition into Strongly
Connected and Maximal End Components

Anton Wijs'*, Joost-Pieter Katoen?, and Dragan Bosnacki'

! Eindhoven University of Technology, The Netherlands
2 RWTH Aachen University, Germany

Abstract. This paper presents parallel algorithms for component
decomposition of graph structures on General Purpose Graphics Process-
ing Units (GPUs). In particular, we consider the problem of decompos-
ing sparse graphs into strongly connected components, and decomposing
stochastic games (such as Markov decision processes) into maximal end
components. These problems are key ingredients of many (probabilis-
tic) model-checking algorithms. We explain the main rationales behind
our GPU-algorithms, and show a significant speed-up over the sequential
counterparts in several case studies.

1 Introduction

Strongly connected components (SCCs, for short) are sub-graphs in which each
pair of states is mutually reachable. Finding maximal SCCs, i.e., SCCs that are
not contained in others, is a key ingredient of various model-checking algorithms.
To mention a few, this applies to the standard verification algorithms for CTL-
formulas of the form EG ¢ as well as for verifying fair CTL [1, Ch. 6] and checking
language emptiness [2]. The high relevance of SCCs has led to various dedicated
variants of Tarjan’s classical algorithm [3] such as symbolic [4] and a plethora
of parallel [5-7] algorithms. In the context of probabilistic model checking, a
generalisation of SCCs — known as maximal end components (MECs) — play a
pivotal role [8, 9]. Determining MECs is a main step in the verification of qual-
itative and quantitative properties on Markov decision processes (MDPs) and
continuous-time variants thereof. MDPs are an important class of models used for
the analysis of probabilistic systems consisting of several components running in
parallel. Parallelism is modelled by non-determinism whereas the steps within a
component may be probabilistic (e.g., modelling a coin flip). MDP model check-
ing is a very active branch of probabilistic model checking with applications
in amongst others planning and randomised distributed algorithms. MECs are
maximal strongly connected sub-graphs in which the MDP can ensure to reside

* This work was sponsored by the NWO Exacte Wetenschappen, EW (NWO Physical
Sciences Division) for the use of supercomputer facilities, with financial support
from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands
Organisation for Scientific Research, NWO), as well as the EU MEALS project and
the EU FP7 CARP project.

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 310-326, 2014.
© Springer International Publishing Switzerland 2014

GPU-Based Graph Decomposition 311

when playing against a probabilistic adversary. MEC decomposition of MDPs
is typically a pre-processing step of probabilistic model checking to determining
almost-sure limiting properties [1, Ch. 10]. Other applications include the analy-
sis of multi-player stochastic games [10] as well as recent approaches to combined
worst-case and expected value objectives for mean pay-off games [11]. Improve-
ments of the traditional sequential algorithms for determining MECs [1, 8, 9]
have been reported [12] and were tailored to MDPs with low tree-width [13].

In this paper, we provide new algorithms to efficiently decompose graphs into
SCCs and MECs by exploiting GPUs (Graphical Processing Units). Our de-
composition algorithms build upon three key principles. First, inspired by the
Forward-Backward algorithm (FB) [14], each thread combines a forward and a
backward reachability search so as to identify SCCs. Previous work on GPU-based
SCC decomposition [5-7] identified the FB algorithm (combined with a trimming
procedure to remove trivial SCCs) as the best performing one for general input
graphs. Opposed to these works, we focus on graphs that are commonly observed
in model checking, i.e., sparse graphs with a low average out-degree (number of
outgoing transitions per state) and tailor our algorithms to treat these graphs ef-
ficiently. The backward and forward search are started from some common state,
called the pivot. The second main principle is to exploit a novel pivot selection
strategy which turns out to be simple and efficient. Finally, we optimise the mem-
ory management to achieve coalesced memory access by the individual threads,
i.e., data access can be accomplished in a single memory fetch. Altogether this al-
leviates memory latency and thread divergence where part of the threads execute
one branch of the common code, while others take another branch. The overall
memory requirements are significantly lower than for competitive algorithms [5]
as besides the input graph G = (V, E), only a single additional integer array of
size |V'| is needed to store decomposition results. Given the restricted memory
size on a GPU, this memory reduction is essential. Our GPU-based MEC de-
composition algorithm uses the same principles as the SCC algorithm; it can be
viewed as a parallel version of the standard sequential algorithms [1, 8, 9]. To
the best of our knowledge, this is the first GPU-based MEC decomposition. We
implemented our algorithms using CUDA! for NVIDIA GPUs, and ran them
on examples of the PRISM benchmark suite [15]. Speed-up factors of 15-30 and
79 have been achieved for SCC and MEC decomposition, respectively. For SCC
decomposition, this is a significant improvement over previous results (e.g. [5])
for sparse graphs with a low average out-degree.

Exploiting general purpose GPUs (GPGPUs, for short) in the setting of model
checking is not new. Thanks to efforts of several research groups [16-18], GPG-
PUs have been applied to significantly improve the run times of model checking
algorithms. In the context of probabilistic model checking, these improvements
usually targeted the numerical part of the algorithms, so as to exploit the inher-
ent advantages of the GPUs [16, 19, 20|. More recently, we presented an on-the-fly
search algorithm for standard model checking running entirely on GPUs [21].

! http://www.nvidia.com/object/cuda_home_new.html.

http://www.nvidia.com/object/cuda_home_new.html

312 A. Wijs, J.-P. Katoen, and D. Bosnacki

Organisation of the paper. Section 2 treats the basics of MDPs, MECs and
relevant SCC and MEC decomposition algorithms. Section 3 gives a detailed
account of our GPU algorithms focussing on our main design choices. Section 4
presents the experimental results, and Section 5 concludes.

2 Preliminaries

This section gives an introduction to the main concepts of MDPs and MECs [1,
Ch. 10], presents the parallel FB algorithm for SCC decomposition [14] and the
standard sequential algorithm for MEC decomposition [8, 9] of MDPs.

2.1 Markov Decision Processes and Maximal-End Components

Let A(X) denote the set of probability distributions over the countable set X,
i.e., the set of functions p : X — [0,1] with > p(z) = 1.

Definition 1 (Markov Decision Process). 4 Markov decision process (MDP)
is a tuple M = (S, 3, T), where S is a finite set of states, § € S is the initial state,
andT : S — 2205 js the transition function with T(s) # 0 and T(s) is finite for
alls € S.

The transition function 7" maps every state s € S to a finite, non-empty set of
distributions over S. In state s, one of the distributions in p € T'(s) is selected
non-deterministically, and the MDP evolves to state s’ with probability u(s’). As
T'(s) is non-empty for every state, this procedure can be repeated ad infinitum.
For state s, T'(s) can be viewed as the set of distributions that are selected in
a non-deterministic manner. Alternatively, an MDP can be consider as a single-
player game in which the system plays against a random adversary. An MDP
naturally induces a digraph in the following sense.

Definition 2 (MDP Graph). The induced labelled digraph of MDP M =
(5,8,T) isG = (V,E) withV = S is the set of vertices and E CVxA(V)xV is
the set of labelled edges defined by: (u, p,v) € E iff p(v) > 0 for some p € T'(u).

Intuitively speaking, there is a p-labelled edge between two vertices (states) u
and v whenever v is in the support of distribution p in 7'(u). For node u and
distribution p, let E,(u) = {v € V | (u,u,v) € E}. We call E,(u) the set
of target vertices (states) of the source vertexr (state) u under distribution u.
Moreover, let E(u) = {J, E,(u). For labelled digraphs we adopt the standard
graph-theoretical notions like paths, cycles, components, etc.. An MDP graph
G = (V,E) is strongly connected iff for every two vertices u,v € V there is a
path from u to v and a path from v to u. The set of nodes C' C V is a strongly
connected component (SCC) of G iff G restricted to C, denoted G1C, i.e., the
graph G1C = (C, (C x A(C) x C)NE), is strongly connected. SCC C is mazimal
iff there is no SCC C’ # C with C' C C’. In the sequel, unless stated otherwise,
we use the abbreviation SCC for maximal SCCs. In the following, let G = (V, E)
be an MDP graph.

GPU-Based Graph Decomposition 313

Definition 3 (SCC Decomposition). An SCC decomposition of graph G =
(V,E) is a partitioning of V' that consists of all mazimal SCCs of G.

It is convenient to distinguish vertices that are potentially “closed” in the sense
that for at least one non-deterministic choice (distribution) all transitions remain
within a given set.

Definition 4 (E-Closed Nodes). Vertex v € V is existentially closed (e-
closed) for X CV iff E,(v) C X for some u € T(v).

Definition 5 (End-Components). U C V is an end-component of MDP
graph G if GTU is strongly connected and every u € U is e-closed for U.

End-components that share common nodes can be merged into a single end-
component. A mazimal end-component (MEC) of G is an end-component C' for
which there is no end-component C’ # C such that C C C’. Observe that every
vertex in V belongs to at most one maximal end-component.

Definition 6 (MEC Decomposition). A MEC decomposition of MDP graph
G is the partitioning of V into the MECs of G and the set of vertices that do
not belong to any MEC (of G).

For the description of the MDP algorithms (below) we define the notion of
attractor. Stated in words, an attractor is a set of vertices in which the MDP
may reside with positive probability no matter which distributions are non-
deterministically selected.

Definition 7 (Attractor). The attractor Attr(U) of U C V is defined as
Attr(U) = U;>o Ui where U; is defined inductively by:

—Up=U, and

— U1 =U;U{u eV | VYu. E,(u) NU; # 0}, fori > 0.

The attractor Attr(U) contains U plus all vertices from which the vertices in
U can be reached via at least one transition regardless of the resolution of the
non-deterministic choices by the adversary. The MEC-decomposition algorithm
discussed later on exploits the following two results from [22]. The first result
identifies the vertices that do not belong to any MEC and thus can be removed
without affecting the MEC decomposition of the rest of the MDP graph.

Lemma 1 (Removing Attractor Nodes). Let G = (V, E) be an MDP graph.

1. For SCCC in G, letU ={veC|Yu.E,(v) L C} and Z = Attr(U)N C.
Then: for every MEC X of G it holds that ZNX = (.

2. Let C be a MEC in G and Z = Attr(C) \ C. Then: for every MEC X # C
of G it holds that ZN X = .

The second result from [22] provides a sufficient criterion for an SCC to be a
MEC.

Lemma 2 (Closed SCCs are MECs). An SCC C of the MDP graph G =
(V,E) with E(v) C C for allv e C, is a MEC.

A corollary of Lemma 2 is that every bottom SCC, i.e., an SCC C' such that all
transitions from C' lead back to C, is a MEC.

314 A. Wijs, J.-P. Katoen, and D. Bosnacki

2.2 SCC Decomposition Using Forward-Backward Search

Many algorithms exist to perform SCC decomposition. Linear-time algorithms
such as the ones by Tarjan [3] and Dijkstra [23] are based on depth-first search
and thus very hard to parallelize, especially when the goal is to run thousands
of threads in parallel as is the case with GPUs. An alternative for SCC de-
composition is the Forward-Backward algorithm (FB, for short) proposed by
Fleischer et al. [14]. This algorithm is based on a breadth-first search (BFS) strat-
egy, combining a forward and a backward search. It has worst-case complexity
O(|[V|2 + |V] - |E|), but offers great potential for GPU-based parallelization.
The Forward-Backward (FB) al-
gorithm starts by (randomly) select-
ing a pivot vertex p .(See Alg 1, hne gsg:ri':?:sggpgei;p(:s"igczn of G is given
3) The SCC to which p belongs 15 V' < Trim(V) produces trivial SCCs
then found by performing both a 2 if V/ # 0 then

. P V/
forward BFS and a backward BFS 4 ?TFTVSELF’Z(E;UZ?(TV,}E))

Algorithm 1. FB with Trimming (FBT)

X . B Brs(pivot, (V', E
starting from p, to determine the 6 Tenjozvg CZE’(PE%”OB J(Cmm V),)
forward and backward closure (of p), do in parallel

: : 8: FBT(((F \ B), E
?espectlv.ely (Alg. 1, hn'es 4-5). The FBTEEEBingEB
intersection of the vertices reached 1o: FBT(((V \ (BUF)), E))

via the forward and backward BFSs

constitutes an SCC (and is removed, Alg. 1, line 6). The graph vertices are
then partitioned into the vertices belonging only to the forward closure, those
only in the backward closure, and those outside both closures. These subsets
are referred to as search regions. Subsequently, FB can be invoked recursively
in parallel on the three search regions. This can be done, since all other, not
yet detected SCCs, are contained in one of these search regions. The FB algo-
rithm can be improved by trimming [24] (see Alg. 1, line 1). This step eliminates
the trivial SCCs consisting of only one vertex. The trimming procedure exploits
topological sort elimination by starting in a vertex with zero in- or out-degree.
As such vertex cannot be a part of a non-trivial SCC, they can be safely removed
to avoid using them as pivots in the FB search. Since the removal can create
other trimming candidates, the procedure is iterated (in the method TRIM(V)
in Alg. 1) until there are no vertices for trimming left. Trimming is also used
in our parallel SCC algorithm. Several studies [5-7] have shown that parallel
SCC decomposition algorithms including Coloring heads off [25] and Recursive
OBEF [26], show inferior performance compared to the FBT algorithm.

2.3 Sequential MEC Decomposition Algorithms

The basic sequential algorithm for MEC decomposition of MDP graph G =
(V, E) is based on iterative SCC decomposition of G followed by transforming
the SCCs into MECs [1, 8, 9]. The algorithm consists of the following stages:

1. Compute the SCC decomposition of G. For SCC C, let U = {v € C |
Vit Eu(v) € C}.

GPU-Based Graph Decomposition 315

2. If U # 0, remove Attr(U) N C from G. (cf. Lemma 1.)

3. Every SCC C without an outgoing edge is a MEC 2 (cf. Lemma 2). As
justified by Lemma 1.2, remove Attr(C') for every C for which we established
that C is a MEC.

4. Recursively compute the MEC-decompositions of the sub-MDP graphs ob-
tained after the removal of the vertices in steps 2 and 3. (This is needed since
the removal of the vertices might have destroyed the strong connectivity of
some of the components.)

The first step of the algorithm, i.e., the SCC decomposition of the MDP graph,
can be done in O(m) time, where m = |E| is the number of edges, e.g., using,
e.g., Tarjan’s algorithm [3]. The second step can be done in O(m) time. There
are at most n = |V| iterations implied by step 3, since in each iteration at least
one vertex is removed. This yields an overall time complexity of O(m-n). Recent
works [22] and [13] present an adapted MEC-decomposition algorithm with time
complexity O(m-min(y/m,n?/3)) and O(n-k?.38-2%), respectively, where k is the
so-called tree width of G. We base our GPU algorithm on the basic algorithm,
since the recent algorithms involve steps that seem very hard to perform within
the many-core paradigm of GPUs, like the lock-step search phase of [22].

3 GPU-Based Graph Decomposition Algorithm

3.1 GPU Basics

Harnessing the power of GPUs is facilitated by specific Application Program-
ming Interfaces. In this paper, we assume a concrete NVIDIA GPU architecture
and the Compute Unified Device Architecture (CUDA) interface. Nevertheless,
the algorithms that we present here can be straightforwardly applied to any ar-
chitecture which provides massive hardware multithreading, supports the SIMT
(Single Instruction Multiple Threads) model, and relies on coalesced access to
the memory.

CUDA is an interface by NVIDIA which is used to program GPUs. CUDA ex-
tends C and FORTRAN. We use the C extension. GPU-specific features of CUDA
include special declarations to explicitly place variables in the various types of
memory (see Figure 1), predefined keywords containing the IDs of individual
threads and blocks of threads, synchronization statements for cooperation be-
tween threads, run time API for memory management (allocation, deallocation),
and statements to launch functions, referred to as kernels, on a GPU. In this
section we give a brief overview of CUDA, adequate for presenting our results in
subsequent sections. More details can be found in, for instance, [16, 21].

CUDA Programming Model. A CUDA program consists of a host program which
runs on the Central Processing Unit (CPU) and a (collection of) CUDA kernels.
Kernels, which describe the parallel parts of the program, are executed many
times in parallel by different threads on the GPU device, and are launched from

2 Since G has at least one bottom SCC, i.e. at least one SCC satisfies this criterion.

316 A. Wijs, J.-P. Katoen, and D. Bosnacki

the host. Most GPUs have the restriction that at most one kernel can be launched
at a time, but there are also GPUs available that allow to run multiple different
kernels on different threads. When launching a kernel, the number of threads
that should execute it needs to be specified. All those threads execute the same
kernel, i.e. code. Each thread is executed by a streaming processor (SP), see
Figure 1. In general, GPU threads are grouped in blocks of a predefined size,
usually a power of two. We refer to this size with BlockSize. A block of threads
is assigned to a multiprocessor. Each thread block is uniquely identifiable by its
block ID (referred to with the keyword Blockld) and analogously each thread
is uniquely identifiable by its thread ID (keyword Threadld) within its block.
Using these, it is possible to define other IDs, such as the GPU-global thread ID
Global-Threadld = (Blockld- BlockSize) + Threadld. The total number of threads
running is defined by NrOfThreads.

CUDA Memory Model. Threads Multiprocessor 1 Multiprocessor N

have access to different kinds

of memory. Each thread has

its own on-chip registers, ac-
cess to which is very fast.

Moreover, threads within a

block can communicate via

the shared memory of a mul- Shared memory] Shared memory]
tiprocessor, which is on-chip ¢128B 128B¢
and also very fast. If multiple ’ 1 & L2 cache ‘
blocks are executed in paral- ¢

lel then the shared memory is

equally split between them. All ’
blocks have access to the global Fig. 1. Hardware model of CUDA GPUs
memory which is large (usu-

ally up to 5 GB), but slow, since it is off-chip. Two caches called L1 and L2
are used to cache data read from the global memory. The host has read and
write access to the global memory. Thus, the global memory is used for commu-
nication between the host and the kernel.

GPU Architecture. As already mentioned, the architecture of a GPU features a
set of streaming multiprocessors (SMs). Each of those contains a set of SPs. The
NVIDIA KepPLER K20M, which we used for our experiments, has 13 SMs, each
consisting of 192 SPs, which gives in total 2496 SPs. Furthermore, it has 5 GB
global memory.

CUDA Ezecution Model. Threads are executed using the SIMT model. This
means that each thread is executed independently with its own instruction ad-
dress and local state (registers and local memory), but their execution is orga-
nized in groups of 32 called warps. The threads in a warp execute instructions
in a synchronous manner, meaning that they move through the code in lock-
step. This limits the possibilities for data races, but it also means that so-called
divergence of thread executions can negatively impact performance of the com-
putation. Consider the if-then-else construct if C then A else B. If the threads

Global memory ‘

GPU-Based Graph Decomposition 317

in a warp start executing this, and there are both threads for which C holds and
threads for which it does not, then all the threads will together step through
both alternatives A and B. The ones that do not need to execute A (or B) will
have to ‘go along’ due to the SIMT model, but they will not actually execute
it. Avoiding thread divergence is one of the main worries when implementing a
program for the GPU.

Similarly, memory accesses of the threads in a single warp are serialized when
they need to access separate parts of the global memory. If these accesses can be
grouped together physically, i.e. if the accesses are coalesced, then the data can
be obtained using a single fetch, thereby greatly improving the runtime. Hence,
global memory access should be coalesced as much as possible. This is orthogo-
nal to the fact that in graph decomposition algorithms, accessing transitions is
irregular. Thus, achieving coalesced access is non-trivial. For sparse graphs, we
propose a technique to reduce irregular memory access later in this section.

3.2 Related GPU Implementations

Sparse graphs are usually stored in the Compressed Sparse Row format. An
integer array trans of size |E| is used to store all the transitions, in order of the
source state IDs, and an array offsets consisting of |[V|+ 1 integers provides the
start and end indices of the outgoing transitions of each source state, e.g. for
state 4, its outgoing transitions are stored in trans from position offsets[i] up to
and including offsets[i + 1] — 1.

The usual approach to perform a BFS-like search through a CSR descrip-
tion on a GPU involves the threads repeatedly scanning the offsets array us-
ing their ID, as in [27]; first, they start with reading offsets|[Threadld] and
offsets| Threadld + 1], later possibly moving to other offsets depending on the
total number of threads running and the size of the graph. Each time that offsets
have been read, and the corresponding source state is in the search frontier, the
relevant range of transitions can be accessed next, and, in cases that the target
states have not yet been visited, these are added to the new frontier.

Li et al. [7] remark that a GPU BFS which avoids a one-to-one mapping
between threads and nodes is preferable over the standard quadratic approach.
In other words, approaches like the one of Merrill et al. [28], which uses a work
queue, would be preferable. An important reason is that many threads otherwise
idle, and with large differences in the out-degree of nodes, work imbalance tends
to occur. With sparse matrices such as those underlying MDPs, however, this
is not a big concern. The out-degree of most states tends to be similar, and
small. In fact, in [29], an implementation of Merrill’s approach does not result in
further speedups for model checking problems, but it does require more memory.
Therefore, we opt for the standard approach to do BFS on a GPU.

Pivot selection is an important step in SCC decomposition, which is non-
trivial to implement efficiently on a GPU, since all threads need to agree on the
pivots used for the newly discovered regions before launching new BFSs, and
the regions need to be distinguishable by means of unique IDs. Several elaborate
schemes for this have been presented. In [5], an additional array of size |V| is

318 A. Wijs, J.-P. Katoen, and D. Bosnacki

used, and all threads assigned to states in regions that need to be searched try to
write their ID to a common entry in this array. Determining which entry should
be targeted is done using a region counting scheme and renumbering heuristics.
Also in [7], such an array is used, but instead of racing to entries, a random
number generator is implemented, state IDs are written to designated entries,
and a prefix sum is used to count the number of new regions. Finally, Hong et
al. [6] maintain set representations while doing the forward and backward BFSs,
and use these to select pivots. We claim that our solution, which we explain
in this section, is more elegant than earlier attempts, and at least as efficient.
Instead of essentially trying to use a region counter, we simply use the pivot IDs
themselves to identify regions, and our procedure requires no additional memory,
instead using the results and trans arrays.

In addition to our new pivot selection, we also contribute compared to earlier
work by using SM local caching of states, and restructuring the input to increase
the number of coalesced memory accesses. Finally, we merge the frontier and
explored set representations with the graph representation, thereby being more
economic with the memory, and avoiding additional memory lookups.

3.3 SCC Decomposition on the GPU

Data representation. For the encoding of a transition, first of all note that for
our problems, the probability distributions in MDP graphs are not relevant,
only 1) the target states, and 2) the distribution group a transition belongs to.
In our implementations, we desire to work with 32-bit integers, as opposed to
64-bit integers, since CUDA provides special atomic read and write operations
for them. Hence, we assume that for each transition, an encoding of the group
and the target state together fits in a 32-bit integer. Our program actually checks
this: first, it is determined for the input what the maximum number of groups
per source state is, say m. Then, the log(m) highest bits of each transition integer
are reserved for the group encoding.

To produce the desired output, i.e. the SCC decomposition, we allocate mem-
ory for another integer array results of size |V|. After decomposition, its content
indicates which states belong to which SCC. Any two states i, j belong to the
same SCC iff results[i] = results[j].

Besides the original input, when memory allows, we also store the transposed
MDP graph on the GPU. Since the original representation is tailored for a (for-
ward) BFS, the transposed graph will be for a backward BFS. If there is not
enough memory, then a kernel is available for scanning offsets and trans to
perform a backward BFS, which is possible, but requires more memory accesses.

Finally, for bookkeeping purposes, we reserve the three highest bits in each
entry of offsets and results. The highest bit of entry ¢ is used to indicate that
state 7 is no longer involved in the current search iteration, i.e. it is already
identified as part of a component. The second and third highest bits in offsets
and results entries are used to keep track of the search frontier and the set of
explored states in the forward and the backward BFSs, respectively. We reason
that this is acceptable: with this restriction, it is still possible to refer to 229

GPU-Based Graph Decomposition 319

offsets e offsets

ENEAEIEn

Fig. 2. Fetching transitions before and after restructuring

trans ‘too‘tm‘tozﬁlo‘tu‘tm)‘tao‘ trans

states, i.e. about 537 million states. For a graph to be decomposed by our GPU
implementation, at least 2-|V|+ |E|+1 integers are needed. A typical GPU has
up to 5 GB global memory, which allows up to 1.3 billion integers to be stored,
hence 29 bits is sufficient to refer to all the states of a graph that can be handled.

Restructuring input for coalesced memory access. In a BFS iteration, offsets are
read in a coalesced way by the fact that the threads in a warp, with consecutive
IDs, access an uninterrupted range of offsets. For the transitions in ¢rans, though,
this is a different matter, which is illustrated on the left in Figure 2. For the sake
of clarity, we assume in this example that the warp size is 3. In the figure,
transition tgg is the first outgoing transition of state sg, t1g is the first one of
state s1, and so on. Since the transitions are stored in separate blocks in trans,
it is clear that access to trans will not be coalesced.

To fix this, we interleave the transition entries such that for all the states
assigned to a warp, their first transitions are stored in an uninterrupted block,
followed by all the second transitions, and so on. This allows to fetch transitions
in a coalesced way. The drawback of this is that padding might be required to
ensure that each thread accesses the same number of entries. On the right of
Figure 2, the interleaved version of the example is given. We call a block of
transitions ordered in this fashion which is assigned to a warp a segment. To
avoid extensive padding, though, we use a hybrid representation. For a user-
defined out-degree upper-bound u, which we call the segment interval, all the
states with at most u outgoing transitions are renumbered to appear in the first
part of offsets and trans, and all the other states are placed at the tail end. In
the corresponding first part of trans, restructuring is applied, but on the tail
part it is not. This allows to avoid that states with unusually many transitions
cause the introduction of too many padding entries across the whole trans array.

Algorithm. To illustrate our implementation of FBT for GPUs, we will discuss
some of its more interesting aspects. Essentially, every step of Alg. 1 is paral-
lelised by means of a separate kernel. In addition to this, we also have a kernel for
the combination of lines 4 and 5, i.e. the BFSs. In this hybrid kernel, iterations
of both BFSs are performed simultaneously during a single scan of the offsets.
Alg. 2 describes the GPU forward BFS. A local cache is allocated in shared
memory. The size of this cache is defined in the host code, i.e. externally, as
its declaration mentions. Its contents is initialised as empty. At lines 3-7, the
offsets entries assigned to the executing thread are read and checked. Note that
GPU specific notions such as NrOfThreads and BlockSize have been defined in

320 A. Wijs, J.-P. Katoen, and D. Bosnacki

Algorithm 2. GPU-FWDBFS with local caching

Require: number of iterations Nrlters

Ensure: Nrlters local BFS iterations from the given search frontier have been performed
extern volatile shared unsigned int cache [|

2: <initialise cache>
for (i + Global-Threadld; i < |V|; i < i + NrOfThreads) do

4: srcinfo < offsets[i]
if INFRONTIER(srcinfo) then

6: offsets[i] +— MOVETOEXPLORED(srcinfo)
EXPLORE(srcinfo)

8: for (iter <— 1; iter < Nrlters; iter ++) do
for i < Threadld; i < cachesize; i < i + BlockSize do

10: srcinfo < cacheli]
if srcinfo # empty then
12: cacheli] + empty
EXPLORE(srcinfo)

Section 3.1. Two of the three highest bits in the offsets entries indicate whether
the corresponding state is 1) in the search frontier or not and 2) has been explored
or not. If a state is in the frontier, it is removed and set to explored by the
operation MOVETOEXPLORED at line 6. After that, the state is explored.

This approach to BFS requires many complete scans of offsets to detect the
current frontier and explore states. Since global memory is slow, this is a major
performance bottleneck. To mitigate this, we have opted for using SM local
state caches residing in the shared memory. The GPU-FWDBFS kernel accepts a
given number of iterations Nrlters. In the first iteration, the usual scanning is
performed, but in addition to being added to the frontier in the global memory,
newly discovered states are added to the cache. After the first iteration, lines
8-13 are executed, in which the cache is scanned for exploration work.

In Alg. 3, the GPU explore procedure is described, which is in the implemen-
tation actually directly integrated with GPU-FWDBFS. First, stepsize is defined
depending on whether the transitions belonging to state ¢ to be explored reside
in a segment or not. If so, the variable thcont is set, which at line 7, when all the
threads in a warp exchange their value of thcont (the BROADCAST procedure),
results in the entire warp commencing with the exploration, since at least one
thread needs to explore. At line 9, srcregion stores the FBT search region (see
Section 2.2) to which state ¢ belongs. Note that at lines 11-12, if the thread is
scanning a segment, the upper bound offset can be derived using the segment
interval, and reading a second offsets entry can actually be avoided. The seg-
ment interval indicates the number of transition entries for each source state in
a segment. Starting at line 15, the successors of i are read. Threads that are only
reading entries to assure coalesced accesses do not execute lines beyond line 17.
At line 20, ISACTIVE checks if the search region of the target state j of transition
t has already been identified as an SCC in a previous round. This is the case if
both the second and third highest bits of results[j] are set. If it is not part of
a detected SCC, and both the source and target state of ¢ are part of the same
search region (line 22), where tgtregion represents the search region of the target
state (line 21), then the target state is elligible for addition to the frontier. If
its offsets entry indicates that the state is newly discovered, then, depending

GPU-Based Graph Decomposition 321

on the current search iteration, the target state is or is not added to the local
cache (lines 25-27). Besides this, nextlter is set, which is read by the host after
each search iteration to determine whether another iteration is required. Also,
the target state is added to the search frontier (lines 30-31). Finally, in the final
iteration, no states are added to the cache, since after the final iteration, kernel
execution will stop anyway, and the contents of the shared memory does not
survive once a kernel has terminated.

Similar to GPU-FWDBFSs, we also have a backward BFS variant operating
on the transposed graph, if present, and a backward BFS variant operating on
the original graph, which works different from Alg. 3, since it involves in each
iteration checking that from a state, the current frontier can be reached. Keeping
track of the contents of the frontier and the set of explored states is done by using
the bookkeeping bits in results. Besides this, we have a hybrid approach, in which
both an iteration of the forward BFS and the backward BFS is performed. All
these different versions allow to manage at the host level which searches should
be performed in the next iteration, based on the feedback given by the threads.

Finally, the other main challenge is in selecting pivots. After merging the
results of the forward and backward BFS in the bookkeeping bits of results,
we resolve this by hashing the current regions of states to locations in trans.
Note that state ¢ belongs to search region results[i]. For this state, location
results[i] + REACHEDINBWD(results[i]) + 2+ REACHEDINFWD (results[i]), will be
accessed in trans, with REACHEDINBWD and REACHEDINFWD indicating whether
the state has been reached in the backward or forward BFS, respectively. Since
this location may actually be beyond the bounds of results, pivot selection is
performed in several iterations, in each iteration j only considering the regions
with a hash between j-|E| and (j+1)-| E|. Once a thread has determined the hash
h, it will try to ‘claim’ the corresponding trans[h| entry by atomically writing the
ID of its state with the highest bit set to lock the entry. Exactly one thread ¢ will
be able to do this, after which that thread will store the original trans[h] entry
temporarily in results[i], and all other threads read the new contents of trans[h],
and write this new region information into their results entries. The enforced
data races are used to pseudo-randomly choose pivots. Finally, to revert trans
back to its original content, after pivot selection, thread i swaps results[i] and
the unlocked trans[h]. Note that with this approach, SCCs are actually identified
by their pivots, and any number of pivots can be selected in parallel.

3.4 MEC Decomposition on the GPU

Our GPU implementation for MEC decomposition is based on the basic algo-
rithm presented in Section 2. For step 1, we use our GPU SCC decomposition.
For step 2, we first reset the second and third highest bookkeeping bits in results
to reuse them as follows: one bit is used to indicate that a state should be re-
moved, and the other bit is used to mark newly discovered MECs. First, a single
scan of the input suffices to identify the sets U of the various SCCs. Whenever a
state 7 in the SCC with ID pivot is identified to be in U, we lock entry trans|[pivot]
to indicate that this SCC cannot be a MEC, and we mark results[i] for removal.

322 A. Wijs, J.-P. Katoen, and D. Bosnacki

Algorithm 3. EXPLORE with local caching for GPU

Require: offset entry srcinfo of a state ¢
Ensure: if 7 is in search frontier, then the successors of 7 are added to search frontier, and ¢ is moved
to the explored set
thcont = 0
2: if i < 32 - #segments then
stepsize < 32
4: thcont =1
else
6: stepsize < 1
BROADCAST (thcont)
8: if thcont then
srcregion < GETREGION(results[i])

10: offset1 < GETOFFSET(srcinfo)

if stepsize = 32 then
12: offset2 < offsetl + (32 - segmentinterval)

else
14: offset2 < GETOFFSET(offsets[i + 1])

for (j < offsetl; j < offset2; j < j + stepsize) do
16: t « trans[j]

if INFRONTIER(srcinfo) then
18: k < GETTGTSTATE(t)
r < results[j]
20: if 1IsAcTiveE(r) then
tgtregion < GETREGION(7)
22: if srcregion = tgtregion then
tgtinfo < offsets[k]
24: if 1sNEw(tgtinfo) then
if iter < Nrlters — 1 then
26: if =sTorREINCAcHE(K) then
nextlter < true
28: else
nextlter < true

30: ADDTOFRONTIER(tgtinfo)

offsets[k] < tgtinfo

After that, we compute the intersections of the attractor sets of the U and the
SCCs that they belong to; states in those sets are marked for removal. In step 3,
results is scanned and all entries with region pivot and trans|[pivot] unlocked are
marked as being in a MEC. Subsequently, we repeatedly compute the attractor
sets of those MECs and mark the entries for removal. Concluding, in a single
scan, locked trans entries are unlocked, to be removed results entries are set to
a defined ‘empty’ value (and their offsets entry is locked), and discovered MECs
are locked as well. Locking of offsets and results entries means that the highest
bit is set, and those entries are effectively removed from the search.

It is important to note that SCCs discovered in a MEC decomposition iter-
ation must necessarily be subsets of SCCs discovered in the previous iteration.
This means that we can reuse earlier results to select multiple pivots at the start
of an iteration, thereby starting multiple FBT searches in parallel.

4 Experiments

We conducted experiments to measure the performance of our implementations
using a representative set of benchmark models taken from the standard dis-
tribution of the PRISM model checker and additional models provided through

GPU-Based Graph Decomposition 323

Table 1. SCC decomposition results of Tarjan and several GPU configurations

Model V| |E| out #CC Tar FO0,1 F0,7 F3,1 F3,7 FO,1-nh
wlan.2500 12.6M 28.1M 2.23 12.5M 6.17 29.16 20.71 119.00 61.90 26.73
phil.7 11.0M 98.5M 8.97 1 23.47 0.70 0.71 1.14 1.18 0.73
diningerypt.t.10.(0.5) 42.9M 279.4M 6.51 42.9M 41.42 1.63 1.62 1.74 1.75 2.08
test-and-set.7 51.4M 468.5M 9.12 4672 103.92 30.33 36.04 95.67 92.40 19.12
leader.7 68.7M 280.5M 4.08 42.2M 68.08 45.02 5.35 110.18 12.27 47.84
phil _1ss.5,10 72.9M 425.6M 5.84 1 99.75 3.28 3.30 6.46 6.34 3.25
coin.8.3 87.9M 583.0M 6.63 5.4M 135.61 125.94 9.10 582.59 42.04 179.00
mutual.7.13 76.2M 653.7M 8.58 1121.31 4.08 3.72 4.97 4.66 4.71

zeroconf dl.F.200.1k.6 118.6M 273.5M 2.31 118.6M 97.91 28.63 6.12 28.98 6.23 28.63
firewire dl.800.36.(0.2) 129.3M 293.6M 2.27 129.3M 104.07 26.71 6.71 26.97 6.87 26.60

its dedicated website.? In fact, we have selected all available MDP models that
were scalable to interesting proportions while not requiring more memory than
our GPU could handle, and were accepted by the latest version of PRISM. All
experiments were performed on machines running CENTOS LINUX, with an IN-
TEL E5-2620 2.0 GHz CPU, 64 GB RAM, and an NVIDIA Kepler K20m GPU.
This GPU has 2496 cores and 5 GB global memory.

For all GPU experiments, we launched |V|/512 blocks of 512 threads each,
i.e. one thread per state. This keeps the amount of work per thread minimal,
and does not introduce idle threads that keep the scheduler busy.

For comparison, we used a CPU implemen-
tation of Tarjan’s SCC decomposition. Ta- Table 2. MEC dec. results
ble 1 presents the graph characteristics of the

cases and the runtimes in seconds running ™Me°del BM GM
the CPU and GPU implementions, the lat- wlan.2500 32.33 21.46
ter in a range of different configurations. The phil.7 51.22 0.73
‘out’ column provides the average out-degree, diningerypt.t.10.(0.5) 140.85 1.80
while the ‘#CC’ column displays the number test-and-set.7 203.50 36.70
of SCCs in the graph. ‘Tar’ stands for Tarjan, leader.7 239.80 7.48
and Fi,j represents GPU FBT with ¢ search phil_Iss.5,10 281.32 3.45
iterations per BFS kernel launch using the lo- coin.8.3 363.07 12.63
cal cache, and j being the interval (out-degree =~ mutual.7.13 -N 302.66 3.83

upperbound) used for restructuring the input. zeroconf_dLF.200.1k.6 390.05 6.23
Finally, FO, 1-nhis an FBT search in which we firewire _dl.800.36.(0.2) 470.96 6.90
have disabled the hybrid search kernel.

Most graphs have a very particular structure; several consist practically en-
tirely of trivial SCCs, and others are a single SCC. We have not preselected
any models, so it is interesting to note this phenomenon. It merits further study
whether most MDP problems boil down to MDP graphs of one of these types.

For graphs consisting of only one SCC, speedups of around 30 times can be
observed. This is not surprising, since these can be analysed in a single GPU

3 All relevant material is available at http://www.win.tue.nl/~awijs/gpudecompose.

http://www.win.tue.nl/~awijs/gpudecompose

324 A. Wijs, J.-P. Katoen, and D. Bosnacki

search iteration. When there are many trivial SCCs present, the trimming pro-
cedure is very influential. The efficiency of the trimming procedure is bound by
the average out-degree of a graph; the more connected a trivial SCC state is to
other states, the more potential there is for detecting other trivial SCCs in the
next trimming iteration. For this reason, the diningcrypt case can be decomposed
quickly compared to the zeroconf and firewire cases.

Concerning the latter two cases and other cases with many non-trivial SCCs,
it can be observed that the input restructuring works very well (F0,7). In most
cases, speedups of about 15 times can be observed. This is significant when con-
sidering that in related work [5], only speedups up to 5-6 times were measured
for graphs representing model checking problems. Besides the restructuring, the
new pivot selection procedure and the data representation likely also play a role
in the improved speedup, but it is hard to determine how much, since these are
core aspects of our implementation that we cannot easily disable. An experimen-
tal comparison with the work of [5] seems useful, however their implementation
cannot handle graphs of similar size, due to the fact that eight bits are used per
integer for bookkeeping, whereas we only use three. In addition, their implemen-
tation does not accept MDP graphs, so some reimplementation work would be
required. It is clear, however, that coalesced data access, which is improved by
using the restructuring option, is the main cause for the improved speedups. The
controlled experiments in which we disabled the hybrid search kernel (F0,1-nh)
shows that using the kernel at best only causes a minor speedup. In some cases,
disabling it even results in speedups, because it results for those particular graph
structures in fewer memory accesses. The contribution of the local caches is min-
imal (cases F3,1 and F3,7), and in some cases using them causes a slowdown.
An overall negative result has been obtained for wlan. Its graph has a structure
which considerably limits the trimming procedure. It both has a low average
out-degree and only a few states from which trimming can be instantiated.

In Table 2, results for MEC decomposition are presented. BM stands for
Basic MEC decomposition on the CPU, using Tarjan’s SCC decomposition for
the first step. GM is GPU MEC decomposition using the overall best setup
without caches and with restructuring (F0,7). Speedups up to 79 times were
measured. The cause for the increased speedups is that the additional steps
after SCC decomposition in BM can be performed extremely efficient in parallel
on a GPU, since they require (fully coalesced) scanning of the input arrays.

5 Conclusions

We presented GPU algorithms for finding SCCs and MECs in sparse graphs.
The implementations exhibit speedups of 15-30 times for SCC decomposition
and up to 79 times for MEC decomposition. A critical improvement for SCC
decomposition compared to related work is achieved by improving (coalesced)
data access. The extra steps for MEC decomposition are very suitable for GPUs.

For future work, we plan to address similar problems in probabilistic model
checking [1], and to integrate the algorithms in model checking tools.

GPU-Based Graph Decomposition 325

References

Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

2. Wang, C., Bloem, R., Hachtel, G.D., Ravi, K., Somenzi, F.: Compositional SCC

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

analysis for language emptiness. Formal Methods in System Design 28, 5-36 (2006)
Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM J. Com-
put. 1(2), 146-160 (1972)

Bloem, R., Gabow, H.N., Somenzi, F.: An Algorithm for Strongly Connected Com-
ponent Analysis in n log n Symbolic Steps. Formal Methods in System Design 28,
37-56 (2006)

Barnat, J., Bauch, P., Brim, L., Ceska, M.: Computing Strongly Connected Com-
ponents in Parallel on CUDA. In: IPDPS, pp. 544-555. IEEE (2011)

Hong, S., Rodia, N., Olukotun, K.: On Fast Parallel Detection of Strongly Con-
nected Components (SCC) in Small-World Graphs. In: SC 2013, p. 92. ACM (2013)
Li, G., Zhu, Z., Cong, Z., Yang, F.: Efficient Decomposition of Strongly Connected
Components on GPUs. Journal of Systems Architecture 60(1), 1-10 (2014)
Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857-907 (1995)

de Alfaro, L.: How to specify and verify the long-run average behavior of proba-
bilistic systems. In: LICS, 454-465. IEEE Computer Society (1998)

Ummels, M., Wojtczak, D.: The Complexity of Nash Equilibria in Stochastic Mul-
tiplayer Games. Logical Methods in Computer Science 7 (2011)

Bruyeére, V., Filiot, E., Randour, M., Raskin, J.-F.: Meet your expectations with
guarantees: Beyond worst-case synthesis in quantitative games. In: STACS. LIPIcs,
vol. 25, pp. 199-213. Schloss Dagstuhl (2014)

Chatterjee, K., Henzinger, M.: Faster and Dynamic Algorithms for Maximal End-
Component Decomposition and Related Graph Problems in Probabilistic Verifica-
tion. In: SODA, pp. 1318-1336. SIAM (2011)

Chatterjee, K., Lacki, J.: Faster Algorithms for Markov Decision Processes with
Low Treewidth. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 543-558. Springer, Heidelberg (2013)

Fleischer, L.K., Hendrickson, B.A., Pinar, A.: On identifying strongly connected
components in parallel. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800,
pp. 505-511. Springer, Heidelberg (2000)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011)

Bosnacki, D., Edelkamp, S., Sulewski, D., Wijs, A.J.: Parallel Probabilistic Model
Checking on General Purpose Graphic Processors. STTT 13(1), 21-35 (2011)
Barnat, J., Brim, L., Ceska, M., Lamr, T.: CUDA Accelerated LTL Model Check-
ing. In: ICPADS, 34-41. IEEE (2009)

Edelkamp, S., Sulewski, D.: Efficient Explicit-State Model Checking on General
Purpose Graphics Processors. In: van de Pol, J., Weber, M. (eds.) SPIN 2010.
LNCS, vol. 6349, pp. 106-123. Springer, Heidelberg (2010)

Wijs, A.J., Bosnacki, D.: Improving GPU Sparse Matrix-Vector Multiplication for
Probabilistic Model Checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98-116. Springer, Heidelberg (2012)

Bosnacki, D., Edelkamp, S., Sulewski, D., Wijs, A.: GPU-PRISM: An Exten-
sion of PRISM for General Purpose Graphics Processing Units. In: PDMC 2010,
pp. 17-19. IEEE (2010)

326

21.

22.

23.
24.

25.

26.

27.

28.

29.

A. Wijs, J.-P. Katoen, and D. Bosnacki

Wijs, A., Bosnacki, D.: GPUexplore: Many-Core On-The-Fly State Space Ex-
ploration. In: Abraham, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 233-247. Springer, Heidelberg (2014)

Chatterjee, K., Henzinger, M.: An O(nz) Time Algorithm for Alternating Biichi
Games. In: SODA, pp. 1386-1399. SIAM (2012)

Dijkstra, E.W., Feijen, W.H.J.: A Method of Programming. Addison-Wesley (1988)
McLendon III, W., Hendrickson, B., Plimpton, S., Rauchwerger, L.: Finding
Strongly Connected Components in Distributed Graphs. J. Parallel Distrib. Com-
put. 65, 901-910 (2005)

Orzan, S.: On Distributed Verification and Verified Distribution. PhD thesis, Free
University of Amsterdam (2004)

Barnat, J., Moravec, P.: Parallel Algorithms for Finding SCCs in Implicitly Given
Graphs. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS
2006 and PDMC 2006. LNCS, vol. 4346, pp. 316-330. Springer, Heidelberg (2007)
Harish, P., Narayanan, P.J.: Accelerating Large Graph Algorithms on the GPU
Using CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.)
HiPC 2007. LNCS, vol. 4873, pp. 197-208. Springer, Heidelberg (2007)

Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU Graph Traversal. In:
PPoPP, 117-128. ACM (2012)

Stuhl, M.: Computing Strongly Connected Components with CUDA. Master’s the-
sis, Masaryk University (2013)

	GPU-Based Graph Decomposition into Strongly Connected and Maximal End Components
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Processes and Maximal-End Components
	2.2 SCC Decomposition Using Forward-Backward Search
	2.3 Sequential MEC Decomposition Algorithms

	3 GPU-Based Graph Decomposition Algorithm
	3.1 GPU Basics
	3.2 Related GPU Implementations
	3.3 SCC Decomposition on the GPU
	3.4 MEC Decomposition on the GPU

	4 Experiments
	5 Conclusions
	References

