

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 359–369, 2014.
© Springer International Publishing Switzerland 2014

(De-)Composing Web Augmenters

Sergio Firmenich1, Irene Garrigós2, and Manuel Wimmer3

1 LIFIA, Universidad Nacional de La Plata and CONICET Argentina
sergio.firmenich@lifia.info.unlp.edu.ar

2 WaKe Research, University of Alicante, Spain
igarrigos@dlsi.ua.es

3 Business Informatics Group, Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

Abstract. Immersed in social and mobile Web, users are expecting
personalized browsing experiences, based on their needs, goals, and
preferences. This may be complex since the users’ Web navigations usually
imply several (related) Web applications. A very popular technique to tackle
this challenge is Web augmentation. Previously, we presented an approach to
orchestrate user tasks over multiple websites, creating so-called procedures.
However, these procedures are not easily editable, and thus not reusable and
maintainable. In this paper, we present a complementary model-based
approach, which allows treating procedures as (de)composable activities for
improving their maintainability and reusability. For this purpose we introduce a
dedicated UML profile for Activity Diagrams (ADs) and translators from
procedures to ADs as well as back-translators to execute new compositions of
these procedures. By combining benefits of end-user development for creation
and model-driven engineering for maintenance, our approach proposes to have
the best of both worlds as is demonstrated by a case study for trip planning.

1 Introduction

The evolution of the Web is a complex and constant process. Nowadays, immersed in
social and mobile Web, users are expecting a personalized browsing experience,
which adapt to their needs, goals, and preferences. One of the main limitations of how
to adapt the application to each user is the current use of the Web. When performing a
concrete task (e.g., organizing a trip) the user normally exceeds the application’s
boundaries, visiting several (related) Web applications. In cases like these, the user
may feel a loss of context every time she navigates from one application to another,
because the new application used has no way of tracking the previous user navigation.
This missing integration, and also a lack in customization, has a deep impact in the
user’s browsing experience.

These limitations motivated the development of mash-ups tools [21] in order to merge
a set of resources that are scattered among different websites into specialized
applications. One often occurring limitation is that mash-ups are used straightforward
when most of the tasks users perform are volatile and do not require the creation of
entirely new applications. In the same context of managing existing Web applications,
another technique that has emerged is called Web augmentation [3]. Web augmentation

360 S. Firmenich, I. Garrigós, and M. Wimmer

is the activity of navigating the Web using a “layer” over the visited websites. This layer
may manipulate the original UI of existing third-party websites; in this way, users
perceive an augmented website instead of the original one. Generally, these
augmentations are performed on the client-side, once the content is delivered from the
server. Normally, users having some kind of programming skills are the ones who
develop the software artifacts that perform these augmentations. Web augmentation as a
technique may be applied with different aims; from simple presentation changes to task-
based Web integration mechanisms.

In [6] we presented an approach based on Web augmentation to orchestrate user
tasks over multiple websites. It supports flexible processes by allowing the users to
combine manual and automated tasks from a repertoire of patterns of tasks performed
over the Web, creating so-called procedures, which are persisted in XML files.
Although the tools around our previous approach allow users to record their own
procedures by-example, and subsequently edit the details; larger editions, such as
replacing several tasks with other equivalent ones or building reusable chunks, is
challenging. However, this may be often required, since several large tasks such as
planning a trip involve several smaller ones (book flights, hotel rooms, cars, etc.) and
the requirements involved change, as well as the browsed websites. If the user wants
to change a larger part of the procedure, the process order may have to be changed,
additional tasks have to be intermingled, or complete procedures have to be
substituted or executed in series. The importance of these aspects has been studied
before in the field of Web applications [13] [17]. These are also relevant issues in the
context of Web Augmentation, not only because the Web changes constantly and
consequently the scripts may stop working, but also because the same script could be
reused in several Web pages under the same domain [13].

Therefore, one challenging aspect for those approaches that support users tasks
based on Web augmentation, is the maintenance of procedures, which has associated
two dimensions: (i) how to reuse existing augmentation units in order to support
complex scenarios (i.e., how to compose them to fulfill a larger goal), (ii) how to
decompose subtasks and make them reusable chunks. In order to tackle these
challenges, this paper extends our previous work with a modeling language based on
UML Activity Diagrams (ADs) to represent the procedure’s tasks involving dedicated
transformations from procedures to activities. Models allow raising the abstraction
level and the separation from the applications functional specification [19], which
improve the reusability and maintenance of the procedures. In this way, the
maintenance of existing procedures as well as the composition of new ones based on
existing building blocks is supported by graphical modeling. By having the
transformations from activities to procedures, we are able to execute new
compositions of Web augmenters. With this approach, we combine the benefits of
end-user development for creating procedures based on Web augmentation and
model-driven engineering for maintaining Web augmenters to have the best of both
worlds as is demonstrated by a case study for trip planning.

The remainder of this paper is as follows: Section 2 briefly summarizes our previous
work on Web augmentation and introduces an example used to illustrate our approach.
Section 3 elaborates on the proposed model-based approach for representing procedures.
Section 4 discusses the state-of-the-art on Web augmentation, and finally, we conclude
with pointers to future work in Section 5.

 (De-)Composing Web Augmenters 361

2 Background

Web augmentation is used for improving the user experience in several aspects. In
particular, we have previously proposed an approach for supporting Web tasks by
supporting users with procedures [6]. Procedures are programs focused on executing
augmentation tasks when some user interaction is detected. These artifacts support
tasks involving more than one application, and also give some mechanisms for
moving information from one application to another one. In order to specify
procedures we have previously designed a DSL based on XML that defines a
procedure as a sequence of tasks. This DSL has been improved in the context of this
work. The current version of the procedures metamodel is shown in Figure 1.

Fig. 1. The metamodel of the Web Augmentation DSL

The main concepts around the DSL are explained in the following.

• There are four types of tasks:
o Primitive tasks: are based on common actions that users perform when

navigating the Web (e.g., clicking an anchor).
o Augmentation tasks: are tasks that allow the execution of a specific augmenter

developed with our underlying framework for Web augmentation [7].
o DataCollection tasks: this kind of tasks enables procedures to contemplate data

collected by users. These tasks are also strongly related to DataCollectors and
Pocket, two tools distributed with the framework supporting the procedures,
which allow users to move information among Web applications.

o Composed tasks: these tasks make possible to group other instances of tasks in
order to manage them altogether. As an example, imagine the need of
executing an augmenter each time that the user collects some information. In
this case both tasks may be grouped in order to do repetitive the whole set.

• All tasks have three properties: (i) repetition property for specifying if the task
may be executed more than once; (ii) optional property allows skipping the

362 S. Firmenich, I. Garrigós, and M. Wimmer

execution of the task; (iii) automatic property is true, then the Web augmentation
framework automatically triggers the task.

• Tasks have attributes representing information needed for the execution, e.g., if an
augmenter is applied for filling in a form and it is marked as automatic, the
augmenter needs to know which form fields are filled with which value.

• Tasks may have preconditions. Preconditions are used to decide if the task will be
executed or not according to which information is currently available. There are
two main kinds of preconditions: on the one side, preconditions about collected
data, and on the other side, preconditions about navigation history.

Our approach gives support to the end-user with visual tools, deployed as Web
browser plugins, for creating and executing procedures. Figure 2 shows the editor: a
sidebar that allows users to specify tasks into the procedure while analyzing websites.
The tool provides an assisted mode: users may record their interaction with the Web
and the corresponding tasks will be added to the procedure automatically. This mode
contemplates primitive tasks, augmentation tasks, and data collection tasks. Figure 3
shows how to edit a particular task. It allows users to specify the name, pre and post-
conditions as well as values for both properties and attributes. If some sensitive
information is saved when recording the interaction, users may remove it by editing
the corresponding task.

Fig. 2. General view of the tool Fig. 3. Edition of a single task

In order to give more insights to the real use of procedures, consider the following
example (it will be used as a running example during the rest of the paper). The
example responds to the following situation:

“Peter is going to travel to Paris for vacation. In that context, he has to buy
flights from his town to there, and also book a taxi from the airport to
downtown. For accomplishing these tasks, he uses different websites, e.g.,
expedia.com and wecab.com. In each of these two subtasks, Peter has to
enter the same information. Besides booking flights and taxi, Peter is also
interested in getting touristic information about Paris and nearby areas”.

 (De-)Composing Web Augmenters 363

In scenarios like this, users may take advantage of using Web augmentation
approaches, since these may support users on moving relevant information from one
application to other while using this information for executing augmenters in the
visited websites. It is important to note that not only each augmenter is configurable
(even replaceable by other similar ones) but also the subtasks (book flight or book
taxi) may be also reordered and replaced according with the user’s interest. Also the
information used for performing the tasks (both primitive and augmentation tasks)
may vary in distinct executions of the same procedure. It could be achieved by using
conceptual tags during data collection tasks. In this way, if different users prefer, for
example, different hotel’s location or airlines, the procedure can be defined for
consuming information through concept names such as “Hotel Location” or “Airline”
instead of concrete data.

Although this is a common scenario, the order used for each subtasks may vary for
different instantiations of the same scenario, when these are more complex. It may
vary even more when Web augmentation is involved, because it is desirable to allow
users to vary the augmentations applied in an easy way and to compose different
procedures to solve larger examples. Thus, we provide a complementary extension to
the end-user based development of Web augmenters, namely a model-based
maintenance approach as explained in the next section.

3 (De-)Composing Procedures – A Model-Based Perspective

In order to solve the before mentioned drawbacks, we present a model-based
approach, which allows treating procedures as composable activities. For this purpose
we introduce transformations from procedures to activities as well as back-
transformations to be able to execute new compositions of augmenters. In order to do
so, we first need to be able to represent the procedures on the model level. With this
goal in mind, we propose to use UML activity diagrams (ADs).

3.1 Model-Based Representation of Procedures

Representing procedures with ADs [16], in particular following the fUML execution
semantics proposed by the OMG [15], requires a systematic mapping between our
DSL and ADs. Here we follow existing methodologies for deriving UML profiles
from DSL metamodels [18,20]. After investigating ADs for the purpose of modeling
procedures, we identified a high overlap, although the later are, of course, more
specific as the former. The following table illustrates the identified mappings between
our DSL and ADs from a Web augmentation point of view, i.e., only the AD concepts
are shown that are corresponding to the DSL concepts.

In addition to the mappings, to explicitly represent the specifics of Web
augmenters (cf. Table 1 – column comments), we introduce a Web Augmentation
profile for ADs. By using this profile, we are able to provide information preserving
the transformations between the executable procedures expressed as XML files and
the corresponding ADs. This property is one of the main building blocks of our
approach to allow the continuous development on the front-end side (recording and
testing procedures) as well as on the model side (maintaining and composing

364 S. Firmenich, I. Garri

Table 1. Mapping of

procedures). Figure 4 sho
introduce a stereotype) as w
we only introduce tagged
corresponding properties in
much as possible the UML

Fig. 4. Web Augment

To summarize the syntax
the main metaclass for our
metaclass, because ADs a
contains all the elements sh
mapped to the Activity me

Web Augmentation
Procedures

UML A
Diag

Procedure Activity D

Task Activity

PrimitiveTask Activity

AugmentationTask Activity

DataCollectionTask Activity

ComposedTask Activity

Attribute Property

Precondition Constrain
(LocalPreC

Postcondition Constrain
(LocalPost

igós, and M. Wimmer

f Web Augmentation concepts to UML activity diagrams

ows the introduced stereotypes (for each meta-class
well as the extended metaclasses of UML. Please note t
values in the profile for properties of the DSL that m

n the base UML metaclasses. By this, we ensure to reuse
language and to keep the profile concise and minimal.

tation Profile – an Extension for UML Activity Diagrams

x of the developed profile, we use the Activity metaclas
extension. We map the Procedure metaclass to the Acti
are UML internally represented by a root activity t
hown within the ADs. Also the different kinds of Tasks
etaclass. Because the Activity metaclass inherits from

Activity
grams

Comments

iagram runInBackground attribute has no direct mapping to UML,
rest has direct mapping to UML

Optional, automatic, repetitive attributes have no direct mapping
to UML, rest has direct mapping to UML

May be mapped to Action metaclass, but to allow for properties,
Activity is used as metaclass

Same comment as for PrimitiveTask

Same comment as for PrimitiveTask

Activity may contain other activities by using CallBehaviorAction

Value and example attributes have no direct mapping to UML, rest
has direct mapping to UML

t
Condition)

Precondition subclasses have no direct mapping to UML

t
tCondition)

Postcondition subclasses have no direct mapping to UML

we
that

miss
e as

s as
ivity
that
are
the

Classifier metaclass in UM
required for reflecting the A
may also be nested, by us
another activity from a con
concept of the Web Augme

Moreover, we extend th
Attribute metaclass of the
definition of an actual valu
the Constraint metaclass of
and post-condition types co

Concerning the semantic
sequence of tasks, by definin
of tasks involved in a proce
also exploit other control
conditions, etc. However, t
version of the Web augment
representation on the executi
the data flow, i.e., to repres
DSL, by making use of the
using this type of links, we a
that are set externally before
values after the execution of
may have input and output p
Pins are a powerful modelin
pins, input pins may be defin
for a given pin) for the exec
data exchange between two a

Fig. 5. Procedur

Fig. 6. Compo

(De-)Composing Web Augmenters

L, activities may contain properties. This is exactly wha
Attribute concept of Tasks. Besides these aspects, activi
sing the CallBehaviourAction that is also able to trig
ntext activity. By this, we can simulate the CompositeT
entation DSL.
he metaclass Property with a stereotype to represent

DSL and to introduce additional attributes to allow
ue and an example value for properties. Finally, we ext
f UML with specific stereotypes to reflect the specific p

ontemplated in our DSL.
cs of ADs, we consider an explicit control flow, normall
ng control flow links. This is quite analogue to the seque

edure and the information flow among these. In addition,
l structure possibilities of ADs such as parallelizat
these constructs are not explicitly available in the curr
tation DSL and thus, have to be compiled to a more verb
ion level. In addition to the control flow, we explicitly mo
ent the pocket and data collectors of the Web augmentat
 object flow links supported by UML activity diagrams.
are able to connect activity parameter nodes, i.e., parame
e calling a certain activity as well as parameters that prov
f an activity to its environment, with so called pins. Activi
pins that represent input and output parameters, respectiv
ng concept in UML, e.g., by setting the multiplicity of in
ned as mandatory or optional (i.e., a value is available or
cution of an activity. By linking output pins with input p
activities is defined.

re OrganizeTrip in UML Activity Diagram Notation

osite Task Book Flight as UML Activity Diagram

365

at is
ities
gger
Task

the
the

tend
pre-

ly a
ence
, we
tion,
rrent
bose
odel
tion
 By

eters
vide
ities

vely.
nput

not
pins,

366 S. Firmenich, I. Garrigós, and M. Wimmer

Consider again our main example. If we take only one of the main subtasks, such as
book flights (a CompositeTask called BookFlight), an activity diagram with stereotype
«procedure» is generated (cf. Figure 5) for visualizing the execution of the sequence of
tasks as illustrated in Figure 6. In this specific case, and for reason of conciseness, we
only contemplated AugmentationTasks, but the given activity may also include several
PrimitiveTasks allowing the procedure developer to specify specific user interactions.
Again we use the CallBehaviorActions to call the primitive and augmentation tasks.

3.2 Transformation Chain: Procedures to Activities and Back Again

In order to allow for a transparent transition from Web Augmentation (WA) DSL
expressed in XML to UML activity diagrams (ADs) and back again, we implemented
a bi-directional transformation chain consisting of a set of transformations as
explained in the following paragraphs. More information on the implementation may
be found at our project website1.

Model Injection/Extraction Transformations. We developed an XML 2 WA DSL
transformation that parses the XML-based representations and produces models
conform to an Ecore-based WA DSL metamodel. In addition, we developed a WA
DSL 2 XML transformation for printing models back to executable XML code. These
transformations have been implemented in Groovy2 due to its dynamic programming
features and the support by the XmlSlurper and XmlMarkupBuilder APIs.

DSL/UML Integration Transformations. We developed a WA DSL 2 UML AD
transformation that produces UML models from WA DSL models and applies
automatically the Web augmentation profile to the UML models. In addition, we also
developed the inverse transformation that takes a profiled UML model and produces a
WA DSL model. These transformations have been implemented in ATL [11] due to
its support for EMF models as well as UML models and the possibility to deal with
profile information within the transformations.

Fig. 7. Composing Web Augmentation Tasks with Hypertext Models

3.3 Composing Web Augmenter Models and Hypertext Models

One additional benefit of having Web augmenters explicitly modeled is the possibility
to compose them with traditional Web design models such as supported by WebML,

1 https://sites.google.com/site/decomposingwebaugmenters
2 http://groovy.codehaus.org

Enter Trip
Details

NewTrip

Show
Bookings

TripSummary

«AugmentationTask»
Organize Trip

Hypertext Model

Web Augmenter Delegation

 (De-)Composing Web Augmenters 367

OO-H [10], or UWE [12]. By this, Web augmentation techniques may be used by
Web applications by delegating to pre-defined Web augmenters or Web augmenters
may be developed for a specific Web application and integrated in the hypertext
models of such applications. Consider the following example. Assume one would like
to provide for a Web application that offers specific events the possibility to book a
hotel room at an external website. Navigating to the external website with the specific
information such as place and time may be provided by the hypertext model. This
information may be passed by typical transport links transferring parameters to the
Web augmenter activity (as it is done for standard hypertext nodes) and the Web
augmenter activity may provide information of the booked hotel room back to the
hypertext model again as parameters of a transport link. In Figure 7 we show such a
composition of a hypertext model and a Web augmenter activity for the WebML
language. We leave as subject for future work the creation of Web augmenter units
for WebML based on the WebRatio inherent extension mechanism and the integration
of the profile presented in this paper with the UWE profile for modeling hypertext
models. We think this is an important line of future work to close the gap between
traditional Web modeling and Web augmentation.

4 Related Work

Several approaches for supporting Web user tasks have been created, and different
abstraction levels have been used. For example, CoScripter [1] proposes a DSL for
supporting recurrent tasks, which may be parameterized in order to alter the data used
in each step. The main idea of CoScripter is to automate some tasks by recording the
user interactions (based on DOM events) and then the script may reproduce the same
steps automatically. A similar approach, ChickenFoot [2], also proposes a DSL that
raises the abstraction level of JavaScript programs in order to emulate user behaviour
easily. However, although these approaches support slight changes in the task
processes, considerable changes over these cannot be contemplated. These tools allow
modifying end-user programs to vary the way that tasks are going to be performed,
but usually, the augmentation effect is limited to a predefined subset of possibilities.

Although we share the philosophy behind these approaches, we think that further
efforts should be made for making this kind of tools closer to the actual use of the
Web, because users navigate the Web in a volatile way, and some tasks may be
achieved in different ways (Web applications involved, data used, navigation) under
different circumstances. In previous work we have presented our approach called
procedures. Although this involves a composition of tasks where each task may be
preconditioned and parameterized, the reuse of parts of procedures related to a
particular subtask is not foreseen. All the mentioned approaches would improve
taking into account some aspects from task modelling such as HAMSTERS [14], in
which “abstract tasks” may be defined and the execution order may be more flexible.

The most related work in this context is [4], which proposed to model the user
navigation using state machines in order to create the so-called webflows. This work
defines a DSL, which allows users to specify the navigation flow as well as the data
associated with each transition. One of the main differences to our work is the fact
that [4] does not foresee the inclusion of third-party augmentations (i.e. developed by

368 S. Firmenich, I. Garrigós, and M. Wimmer

users), which again implies a limitation of augmentation effects. In our approach, this
is contemplated by the execution of augmenters [7]. Finally, [9] define a UML profile
for data mashups, but the integration with Web augmenters is not considered.

5 Conclusions and Future Work

Web augmentation is an emerging trend that allows users to improve their
experiences while navigating the Web. Several approaches have been proposed to
improve websites with different goals, from accessibility aspects over data integration
to complex user task support, which is the focus of this work.

Although there are currently several works aiming to support specific navigation
scenarios, user navigation is not always systematic as current approaches assume. In
this way, one of the main challenges in this context is to support users even under
volatile requirements. There are several other issues in the middle, such as how easy
users may define their own artifacts for these approaches. The key is to find a good
trade-off between the expressivity of the approach (what can be specified) and the
usability of the tools (how it is specified). Reaching this point is challenging, and in
this work, we aim to address a solution of maintaining procedures by using activity
diagrams, where each activity represents a relevant subtask in a more general
navigation scenario. Of course, the target users of the proposed modeling approach
may no longer be end-users, but Web engineers may decompose, recompose, and
maintain already existing Web augmenters and integrate these pieces in their
developed hypertext models. The next steps imply defining mechanisms for including
the transformations developed in this work in our Web augmentation tools and
performing experiments with different kinds of users. Since our underlying Web
augmentation framework allows tracking the user interaction, we plan to incorporate
aspect orientation concepts [8] in order to further (de)compose procedures when
cross-cutting concerns occur.

References

1. Bogart, C., Burnett, M., Cypher, A., Scaffidi, C.: End-user programming in the wild: a
field study of CoScripter scripts. In: VL/HCC, pp. 39–46 (2008)

2. Bolin, M., Webber, M., Rha, P., Wilson, T.: C. Miller R.: Automation and customization
of rendered web pages. In: UIST, pp. 163–172 (2005)

3. Díaz, O.: Understanding Web augmentation. In: Grossniklaus, M., Wimmer, M. (eds.)
ICWE Workshops 2012. LNCS, vol. 7703, pp. 79–80. Springer, Heidelberg (2012)

4. Diaz, O., De Sosa, J., Trujillo, S.: Activity fragmentation in the Web: empowering users to
support their own webflows. In: Hypertext, pp. 69–78 (2013)

5. Díaz, O., Arellano, C., Iturrioz, J.: Interfaces for Scripting: Making Greasemonkey Scripts
Resilient to Website Upgrades. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 233–247. Springer, Heidelberg (2010)

6. Firmenich, S., Rossi, G., Winckler, M.: A Domain Specific Language for Orchestrating
User Tasks Whilst Navigation Web Sites. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE
2013. LNCS, vol. 7977, pp. 224–232. Springer, Heidelberg (2013)

 (De-)Composing Web Augmenters 369

7. Firmenich, S., Winckler, M., Rossi, G., Gordillo, S.: A crowdsourced approach for
concern-sensitive integration of information across the web. JWE 10(4), 289–315 (2011)

8. Garrigós, I., Wimmer, M., Mazón, J.-N.: Weaving Aspect-Orientation into Web Modeling
Languages. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS,
vol. 8295, pp. 117–132. Springer, Heidelberg (2013)

9. Gaubatz, P., Zdun, U.: UML2 Profile and Model-Driven Approach for Supporting System
Integration and Adaptation of Web Data Mashups. In: Grossniklaus, M., Wimmer, M.
(eds.) ICWE Workshops 2012. LNCS, vol. 7703, pp. 81–92. Springer, Heidelberg (2012)

10. Gómez, J., Cachero, C., Pastor, O.: Extending a Conceptual Modelling Approach to Web
Application Design. In: Wangler, B., Bergman, L. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 79–93. Springer, Heidelberg (2000)

11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci.
Comput. Program. 72(1-2), 31–39 (2008)

12. Koch, N., Kraus, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering - An
Approach Based on Standards. In: Web Engineering, pp. 157–191 (2008)

13. Li, J., Gupta, A., Arvid, J., Borretzen, B., Conradi, R.: The empirical studies on quality
benefits of reusing software components. In: COMPSAC, pp. 399–402 (2007)

14. Martinie, C., Palanque, P., Winckler, M.: Structuring and composition mechanisms to address
scalability issues in task models. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque,
P., Winckler, M. (eds.) INTERACT 2011, Part III. LNCS, vol. 6948, pp. 589–609. Springer,
Heidelberg (2011)

15. Object Management Group. Unified Modeling Language (UML), Superstructure, Version
2.4.1 (2011), http://www.omg.org/spec/UML/2.4.1

16. Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.0 (2011), http://www.omg.org/spec/FUML/1.0

17. Rossi, G., Schwabe, D., Lyardet, F.: Abstraction and Reuse Mechanisms in Web
Application Models. In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops
2000. LNCS, vol. 1921, p. 76. Springer, Heidelberg (2000)

18. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML. In:
ISORC, pp. 2–9 (2007)

19. Van Deursen, A., Visser, E., Warmer, J.: Model-driven software evolution: A research
agenda. In: Workshop on Model-Driven Software Evolution (2007)

20. Wimmer, M.: A semi-automatic approach for bridging DSMLs with UML. IJWIS 5(3),
372–404 (2009)

21. Yu, J., Benatallah, B., Casati, F., Florian, D.: Understanding mashup development. IEEE
Internet Computing 12(5), 44–52 (2008)

	(De-)Composing Web Augmenters
	1 Introduction
	2 Background
	3 (De-)Composing Procedures – A Model-Based Perspective
	3.1 Model-Based Representation of Procedures
	3.2 Transformation Chain: Procedures to Activities and Back Again
	3.3 Composing Web Augmenter Models and Hypertext Models

	4 Related Work
	5 Conclusions and Future Work
	References

