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Abstract. The manufacturing cell design problem aims at organizing a
manufacturing plant in cells that contain machines processing parts from
a same family for a given product. The purpose is to minimize the flow of
parts among cells so as to increase productivity while reducing costs. This
paper focuses on comparing metaheuristics and constraint programming
–from a modeling standpoint– when used to solve this problem.
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1 Introduction

The manufacturing cell design problem (MCDP) is a classic optimization prob-
lem from group technology. It aims at organizing a manufacturing plant in cells
that contain machines that process similar parts for a given product. The pur-
pose is to minimize the flow of parts among cells so as to increase productivity
while reducing costs. During the last years, this problem has been tackled with
different techniques which can be organized into two main groups: complete
search and approximate methods. Complete search methods explore the whole
set of potential solutions in order to reach a solution. These methods may be
unsuitable once the problem size increases, since it is not possible to explore
the complete combinatorial space in a limited period of time. In this context,
approximate methods are more appropriate since they attempt to examine only
promising regions of the search space. In the first group we can find approaches
devoted to the MCDP based on the classic linear programming [12], goal pro-
gramming [13,14], constraint programming [20], and Boolean satisfiability [19].
The second group is mainly composed of metaheuristics (MH), such as tabu
search [9], simulated annealing [22], particle swarm optimization [6], genetic al-
gorithms [21], and some hybridization of them [8,11].
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This paper focuses on comparing metaheuristics and constraint programming
–from a modeling standpoint– when used to solve this problem. This paper is
organized as follows: We firstly present the mathematical model representing
the MCDP, we provide then the discussion about the contrasts of metaheuristics
with respect to constraint programming when modeling this problem. Finally,
we give the conclusions and future work.

2 Modeling the MCDP

The optimization model for the MCDP is stated as follows. Let:

– M , be the number of machines,
– P , the number of parts,
– C, the number of cells,
– i, the index of machines (i = 1, . . . ,M),
– j, the index of parts (j = 1, . . . , P ),
– k, the index of cells (k = 1, . . . , C),
– A = [aij ] the M × P binary machine-part incidence matrix,
– Mmax, the maximum number of machines per cell.

The goal of the objective function is to minimize the number of times that a
given part must be processed by a machine that does not belong to the cell
that the part has been assigned to. Let:

yik =

{
1 if machine i ∈ cell k;
0 otherwise;

zjk =

{
1 if part j ∈ family k;
0 otherwise;

The mathematical model is as follows:

minimize

C∑
k=1

M∑
i=1

P∑
j=1

aijzjk(1− yik)

Subject to

C∑
k=1

yik = 1 ∀i,
C∑

k=1

zjk = 1 ∀j ,
M∑
i=1

yik ≤ Mmax ∀k,

3 Discussion

We have modeled and solved this problem via CP, Boolean satisfiability (see
details in [19]) and different metaheuristics (Tabu Search [7], Artificial Fish
Swarm [10], Cuckoo search [23], and Electromagnetism [24]). Several computer
science students have participated in these projects, and after this experience
we can highlight two important points.
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– The CP paradigm has an important advantage w.r.t metaheuristics. In CP,
there is no need to design a specific procedure to solve the given problem,
the user rather models the problem and a search engine finds a result. In
practice, when problems are solved using metaheuristics a specific algorithm
must be designed and implemented according to some pre-established pat-
terns. After the experience gained on the aforementioned projects, students
may take about 1 month in studying the metaheuristic and then another
month to implement the solution. In the context of CP, students may take
1 month in studying CP but only 2 weeks in implementing the solution.

– On the other side, metaheuristics have also an important advantage w.r.t.
CP. After implementation, an experimentation phase is required in order to
tune the solvers to reach the optimum. This phase requires a high expertise in
both contexts, metaheuristics and CP. However, due to the metaheuristics
is built from the scratch by the student, he naturally domains better its
implementation so it is easier to modify, tune and experiment with it. This
is not the case of CP, where the student uses a toolkit which is normally a
black-box that provides some kind of configuration but does not provide the
full control. It also exists the possibility of exploring the source code of the
toolkit, but this is really a hard task as common solvers includes several code
lines, most of them hard to handle and as a consequence hard to successfully
modify according to our requirements.

4 Conclusion

In this paper, we discussed the main differences between metaheuristics and
constraint programming when used for solving the manufacturing cell design
problem. In CP, it suffices to encode the mathematical model in the language
of the solver, while when metaheuristics are used it is necessary to implement a
specific algorithm to solve the problem. On the other side, an experimentation
phase may be easier to face off when metaheuristics are used since the user has
the full control of its implementation, which is not the case when CP is used.

A continual researchdirection is about facilitating the usermodeling and exper-
imentation phases, for instance to propose easy-to-use modeling languages [18],
modeling techniques [1], and modeling features [17,15,2]. The resolution of this
problem via CP in conjunction with autonomous search [16,4,5,3] may be also an
interesting direction to follow.
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