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Abstract. Human performance modeling has become more and more
popular in cognitive science recently. This paper applies a time-fuel opti-
mal control model to model the human control strategies in a simplified
RVD task. Preliminary comparisons had been made between the model
performance and the performance of human operators. Results show that
the model can model the performance of human operators and individ-
ual differences. Discussion reveals that the human control strategies in
the simplified RVD task depend on a ratio of two time estimates. This
finding can provide useful guide for the further cognitive modeling of the
RVD tasks.
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1 Introduction

Manually controlled rendezvous and docking (RVD) is a challenging space task
for astronauts. The operator performing RVD task observes the information dis-
played on the monitoring interface and manipulates the controllers to complete
the manual RVD task. The RVD system includes two controllers in the chaser
spacecraft: one translation controller, which controls the X, Y, and Z axes of the
chaser’s position, and one orientation controller, which controls the yaw, pitch,
and roll of the chaser’s attitude. The monitoring interface directly displays the
Y-Z control plane, in which Y axis is the horizontal direction and Z axis is the
vertical direction. X axis represents the distance between the chaser spacecraft
and the target spacecraft. The distance information can be perceived by human
operator through the alterable size of the target spacecraft image displayed on
the monitoring interface. Initial conditions of the chaser’s position and attitude
can be configured in the RVD simulation system.

Recently, modeling human performance has become more and more popular
in cognitive science since it can provide a flexible and economical way to evaluate
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the design of human-machine interaction [1–3]. We are interested in modeling
human performance in RVD tasks.

The present study investigates the human control strategies in the elimina-
tion of only the Y axis deviation between the chaser spacecraft and the target
spacecraft, which is a basic and simplified RVD task. To complete this task, the
operator needs to eliminate both the position deviation and velocity deviation
in the approaching process, which means that the relative position deviation
and the relative velocity deviation between the chaser spacecraft and the target
spacecraft is approximately zero when the X-axis distance of the two spacecrafts
is zero. The translation controller is used to accelerate and decelerate the chaser
spacecraft. The operator must eliminate the Y axis deviation with minimal time
cost and minimal fuel cost which is measured by the summation of the absolute
value of the instantaneous acceleration.

We suppose that operators’ performance, especially the performance of the
well-trained operators, is close to the optimal control performance in the simpli-
fied RVD tasks. As a result, the time-fuel optimal control model, which aims to
minimize the time cost and fuel cost simultaneously in a control task, is employed
to model human control strategies in performing the simplified RVD task.

The goal is to use the model to better understand the cognitive processes
associated with the performance, to support the future cognitive modeling of
RVD tasks.

2 Model

The basic and simplified RVD task whose target is to eliminate the Y-axis devia-
tion can be viewed as a time-fuel optimal control problem. The task is illustrated
in Fig. 1. The chaser spacecraft of which the initial position deviation is y0 and
the initial velocity deviation is Vy0 is represented by the circle. The target space-
craft which can be viewed as fixed is represented by the origin. The operator can
use the translation controller to provide a constant instantaneous acceleration
for the chaser spacecraft which can be positive or negative. The positive direc-
tions of the position deviation y, the velocity deviation Vy , and the acceleration
are the same.

We assume that the initial time is zero and the constant acceleration is repre-
sented by a. The dynamical system of the simplified RVD task is a second-order
system which is governed by

ẏ = Vy, V̇y = u . (1)

where u is a bounded scalar control variable:

− a ≤ u ≤ a . (2)

Let x1 = y, x2 = Vy, and we get

ẋ1 = x2, ẋ2 = u . (3)
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Fig. 1. The illustration of the simplified RVD task

Given x1(0) = y0, x2(0) = Vy0 and the free terminal time tf , the time-fuel
optimal control problem is to find u to minimize

J =

∫ tf

0

[ρ+ |u(t)|] dt . (4)

with specified terminal conditions

x1(tf) = 0, x2(tf) = 0 . (5)

In (4), ρ(> 0) is the time weight parameter and larger ρ represents smaller time
cost. The former of J denotes the weighted time cost while the latter of J denotes
the fuel cost.

The solution of the problem is as follows[4]:

u∗ =

⎧⎨
⎩

+a, while(x1, x2) ∈ R3

−a, while(x1, x2) ∈ R1

0, while(x1, x2) ∈ R2 ∪R4

. (6)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1 = {(x1, x2) : x1 ≥ − 1
2ax2|x2|, x1 > − ρ+4

2ρa x2|x2|}
R2 = {(x1, x2) : x1 < − 1

2ax2|x2|, x1 ≥ − ρ+4
2ρa x2|x2|}

R3 = {(x1, x2) : x1 ≤ − 1
2ax2|x2|, x1 < − ρ+4

2ρa x2|x2|}
R4 = {(x1, x2) : x1 > − 1

2ax2|x2|, x1 ≤ − ρ+4
2ρa x2|x2|}

. (7)
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and ⎧⎪⎪⎨
⎪⎪⎩

r+ = {(x1, x2) : x1 = 1
2ax

2
2, x2 ≤ 0}

r− = {(x1, x2) : x1 = − 1
2ax

2
2, x2 ≥ 0}

β+0 = {(x1, x2) : x1 = − ρ+4
2ρa x

2
2, x2 ≥ 0}

β−0 = {(x1, x2) : x1 = ρ+4
2ρa x

2
2, x2 ≤ 0}

. (8)

Figure 2 shows the state space trajectories and switching curves for the opti-
mal control example. We implement the time-fuel optimal control model using
MATLAB software.
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Fig. 2. The state space trajectories and switching curves for the optimal control ex-
ample

3 Model Validation

Three initial RVD task conditions are set and four participants, including two
experts and two less-skilled persons, each performed six trials of RVD tasks in
the RVD simulation system under the same initial conditions. The three initial
RVD task conditions are: (1) position deviation is 2.2 m, and velocity deviation
is positive 0.1 m/s, which means that the chaser spacecraft is flying away the
target spacecraft in Y axis direction; (2) position deviation is 2 m, and velocity
deviation is 0 m/s; (3) position deviation is 4 m, and velocity deviation is 0 m/s.
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It should be noted that all the three conditions are just about Y axis and the
initial Z-axis deviation and attitude deviation are both zero. The initial X-axis
position deviation is 20 m, and the X-axis velocity deviation is always negative
0.2 m/s, which means that the chaser spacecraft is moving close to the target
spacecraft at a constant velocity in X-axis direction.

For each participant and each initial condition, we implemented the simulation
using the time-fuel optimal control model. The model had to adjust the time
weight parameter ρ to better fit the human data.

Preliminary comparisons have been made between the model performance and
the performance of human operators.

Figure 3 displays the position deviation and the velocity deviation during
the simplified RVD task with initial condition 1 for both the model and for an
expert. Figure 4 displays the position deviation and the velocity deviation during
the simplified RVD task with initial condition 1 for both the model and for a
less-skilled participant. The illustrations in Figure 3 and Figure 4 are intended
to show that, the performance produced by the model is qualitatively similar to
the performance produced by human participants under the initial condition 1.
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Fig. 3. The performance of one of experts in the simplified RVD task with initial
condition 1. Left: position deviation. Right: velocity deviation. Solid line: model. Dash-
dot line: human operator.
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Fig. 4. The performance of one of less-skilled participants in the simplified RVD task
with initial condition 1. Left: position deviation. Right: velocity deviation. Solid line:
model. Dash-dot line: human operator.

Besides, we can find that the time cost of experts is smaller than that of less-
skilled participants some difference between experts and less-skilled participants.
In other words, less-skilled participants were ’hurry’ to complete the RVD task
while experts were ’calm’.

Table 1 shows the Pearson’s linear correlation coefficients of the position de-
viation. Table 2 shows the Pearson’s linear correlation coefficients of the velocity
deviation. The correlation analysis had been implemented through cutting the

Table 1. The Pearson’s linear correlation coefficients of the position deviation

Initial condition Expert 1 Expert 2 Less-skilled 1 Less-skilled 2

1 0.9962 0.9896 0.9946 0.9919
2 0.9999 0.9987 0.9970 0.9933
3 0.9932 0.9990 0.9992 0.9985

Note: all p values are less than 0.0001.
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Table 2. The Pearson’s linear correlation coefficients of the velocity deviation

Initial condition Expert 1 Expert 2 Less-skilled 1 Less-skilled 2

1 0.9402 0.9256 0.9372 0.9233
2 0.7880 0.7038 0.8573 0.5971
3 0.8896 0.8751 0.5120 0.7675

Note: all p values are less than 0.0001.

Table 3. The time weight parameters (ρ in (4)) of all participants and initial conditions

Initial condition Expert 1 Expert 2 Less-skilled 1 Less-skilled 2

1 0.1 0.1 0.5 0.5
2 0.1 0.05 0.5 0.5
3 0.2 0.13 0.5 0.75

human data to the length of the model data. From the two tables, we can con-
clude that the model can fit the human data very well.

However, there are still some obvious differences between the model data and
the human data. We can divide the whole process to three steps. Step 1 is to
accelerate toward the origin. Step 2 is to move toward the origin at the constant
velocity. Step 3 is to decelerate toward the origin. From the velocity deviation
in Fig. 3 and Fig. 3, we can easily find that Step 1 of the human is longer than
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Fig. 5. The mean fuel cost of the model and participants. Dashed line: the model. Solid
line: experts. Dotted line: less-skilled participants.
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that of the model and Step 2 of the human is shorter than that of the model.
Besides, the model is much more stable than the human in Step 3. The model
achieved the excellent performance. Table 3 shows the time weight parameters
(ρ in (4)) of all participants and initial conditions. The time weight parameters
(ρ in (4)) of experts are larger than that of less-skilled participants significantly
(p < 0.001). Remember that larger ρ represents smaller time cost. So the time
cost of experts is smaller than that of less-skilled participants. This has been
verified by Fig. 3 and Fig. 4.

Figure 5 displays the mean fuel cost of the model and participants. The fuel
cost of the model is much smaller than participants. Compared with less-skilled
participants, the fuel cost of experts is much smaller.

In summary, the time-fuel optimal control model can model the performance of
the human operators in the simplified RVD tasks and the time weight parameter
(ρ in (4)) in the model can account for individual differences.

4 Discussion

Our goal is to investigate the human control strategies in the simplified RVD
tasks. First, let us review the strategies of the time-fuel optimal model. In (6), the
value of the optimal control (u∗) depends on which state region does the current
state, that is (x1, x2), locate in. And the state regions in (7) are determined by
four parabolas in (8). As the state regions in Fig. 2 is centrosymmetry, we just
consider the right state plane (x1 > 0) which include two parabolas that are r+
and β−0. The state x2 has two cases that are x2 < 0 and x2 ≥ 0.

Case 1: x2 < 0. Rewrite r+ and β−0 as follows

r+ = {(x1, x2) : a
x1

x2
2

=
2

2
, x2 < 0} . (9)

β−0 = {(x1, x2) : a
x1

x2
2

=
ρ+ 4

2ρ
, x2 < 0} . (10)

Then replace x1 with y and x2 with Vy in ax1

x2
2

a
x1

x2
2

= a
y

V 2
y

=

y
Vy

Vy

a

=
Treach

Tdec
. (11)

where Treach is the time to reach to the origin at the current velocity and Tdec is
the time to decelerate the current velocity to zero at the constant acceleration
a.

The strategies of the model depend on the result of the comparison among
Treach

Tdec
, 1

2 ,
ρ+4
2ρ . If Treach

Tdec
> ρ+4

2ρ , the optimal control is −a which means accelerat-

ing toward the origin. If 1
2 < Treach

Tdec
≤ ρ+4

2ρ , the optimal control is 0 which means

moving constantly toward the origin. If Treach

Tdec
< 1

2 , the optimal control is +a
which means decelerating toward the origin.
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Case 2: x2 ≥ 0. We can also explain this case with (11). x2 = Vy ≥ 0 means
that the objcet is not moving or moving away from the origin. So, the Treach

is much bigger than Tdec. The optimal control should be −a which is the same
with (6).

Overall, the strategy of the model is determined by Treach/Tdec.
As human performance in simplified RVD tasks is similar to that of the opti-

mal control model, we deduce that the control strategies of the human operators
also depend on the time ratio Treach/Tdec which had been verified in the in-
terviews of the expert operators. But for the human, Treach/Tdec is the time
estimates other than the precise time calculations for the model. Treach is the
estimated time for the chaser to reach the target at the current velocity, and
Tdec is the estimated time for the chaser to decelerate the current velocity to
zero at a constant acceleration.

The differences between the performance of the human operators and the per-
formance of the optimal control model can be explained by the biased estimates
of Treach/Tdec of the human operators in the different docking phases.

In the docking phase when the chaser is relatively far away from the target
in Y axis direction, the estimated time ratio of the human operators is larger
than that of the optimal control model, so the acceleration time duration of the
human operators is longer. In the docking phase when the chaser is relatively
close to the target, the estimated time ratio of human is smaller than that of
the optimal control model, so the deceleration moment is earlier.

In addition, the time estimate ability is different between different people.
Consequently, the time weight parameters of experts are larger than that of
less-skilled participants.

5 Conclusions

Present study suggests that although the time estimate of the human operators
is biased, human control strategies in simulated RVD tasks can still be modeled
through the time-fuel optimal control model. The control strategies of the hu-
man operators in the simplified RVD tasks depend on the time estimate ratio
Treach/Tdec. This finding will not only support RVD training and selection, but
also provide useful guide for the cognitive modeling of the RVD tasks. Future
study will focus on the control strategies in more realistic and complex RVD
tasks and the implementation of control strategies in a cognitive architecture
such as ACT-R[5].
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