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Abstract. We propose PolyRef, a method for a polymorphic defense to
defeat automated attacks on web applications. Many websites are vul-
nerable to automated attacks. Basic anti-automation countermeasures
such as Turing tests provide minimal efficacy and negatively impact the
usability and the accessibility of the protected application. Motivated by
the observation that many automated attacks rely on interaction with
the publicly visible code transmitted to the browser, PolyRef proposes
to make critical elements of the underlying webpage code polymorphic,
rendering machine automation impractical to implement. We categorize
the threats that rely on automation and the available anti-automation
approaches. We present two techniques for using polymorphism as an
anti-automation defense.

1 Introduction

A web user interface (UI) is designed for manual use. The intent is that a human
interacts with a web UI in a browser, and the web browser acts as a user agent
to communicate with a web server. Unfortunately, by design the source code
(HTML, JavaScript, and CSS) of every web page is publicly visible, and thus
can be exploited by attackers in numerous ways including subjecting the website
to automated attacks.

The past decade has seen a staggering diversity and volume of automated
attacks on web applications. Man-in-the-Browser (MitB) attacks, such as the
notorious Zeus, seize control of the end user’s browser and can modify bank
transactions without possessing authentication credentials or compromising any
of the bank’s technology infrastructure. For example, in 2007 the online bank-
ing services of KBC Bank were compromised with MitB techniques despite
two-factor transactional authentication [1]. Credential stuffing attacks test a
list of authentication credentials stolen from one website on a different web-
site to discover where users have re-used their credentials. When originating
from a botnet, these attacks can be indistinguishable from legitimate traffic [11].
Business logic denial-of-service (DoS) attacks interact with a website and ex-
ercise resource-intensive business logic: these attacks knock over sites without
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requiring a significant volume of traffic. Furthermore, these attacks are unstop-
pable using traditional network DoS defenses [8].

Automation by attackers is not a new problem in web security. For lack of
better options, Turing tests are widely used to block automation. As attackers
have become more sophisticated about solving Turing tests, either with automa-
tion or human solvers, the tests have increased in difficulty to the point that
the failure rate of humans approaches the failure rate of bots. Combinations of
reputation and rate thresholds are currently promoted by application delivery
controller (ADC) and web application firewall (WAF) vendors, [2] but are largely
rendered obsolete by the widespread availability of botnets, which reside on the
same machines as the legitimate website users.

We propose PolyRef, a novel technique using polymorphism for defense, which
may offer a practical path to block certain classes of automation. Our approach
is driven by the observation that today’s automated interaction with a web-
site often requires interacting with page content transmitted to the browser.
By dynamically re-writing the page content, PolyRef impedes two types of at-
tack: HTTP attacks, which rely on known POST or URL parameters to directly
construct HTTP requests and DOM attacks, which manipulate DOM elements.

As shown in Fig. 1, PolyRef sits between a firewall and a web server. When
a web page sent by the web server arrives, PolyRef finds the target forms and
then applies reference and/or field polymorphism techniques. Note that the re-
placement happens for each page request. When the form is submitted, PolyRef
restores the field names of the form back to their original values.

Browser Firewall PolyRef Web Server

Internet

Fig. 1. PolyRef as a transparent proxy

We study several actual automated attack cases, and show how PolyRef uses
reference and field polymorphism to impede unwanted automation. We also dis-
cuss potential counter attacks for PolyRef and the limitations of PolyRef.

The contributions of this Paper are summarized below.

– The paper systematically analyzes automated attacks against web applica-
tions defining a representative threat model, identifying relevant vulnerabil-
ities, applications for automation, and implementation archetypes.

– We propose PolyRef, a new defense concept using polymorphism. We show
how PolyRef deflects current generation automated attacks, and analyze
impact of potential attacker evolution.

– We implement a prototype of PolyRef as a transparent proxy to protect web
servers. We evaluate PolyRef in two experiments: a fake account creation
attack and a Zeus MitB attack. The evaluation shows PolyRef is effective
to deflect these attacks. We also evaluate PolyRef with a real world large
e-commerce website and show latency is very low with caching turned on.
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2 Background: Automated Attacks

We observed that many notable attacks on websites seemed to be rooted in
automation, yet there are surprisingly few options for a viable defense. We set
out to appreciate the extent to which automation is a current problem and look
for options to mitigate the threat.

Definition 1. Automated Attack/Automation. An interaction performed by a
program on the user interface of a website where the user interface is intended
exclusively for use by a human.

2.1 Threat Model

To generalize the kinds of threats connected to automated attack of websites, we
made a list of archetypical example threats. The list is derived from surveys of
security practitioners for large scale websites in e-commerce, financial services,
healthcare, national government, and social media, and is also informed by key
threats listed in the OWASP Top 10.1 We discarded threats and vectors not
connected to automated attacks and the remainder are shown in the “Surveyed
Threats” column of Table 1.

The “Attack Vectors” column of the table lists examples of the corresponding
vulnerabilities that might be exploited by automation to realize a successful
attack:

Credential Stuffing— The attacker tests a list of authentication credentials
stolen from one website on other websites to discover where users have re-used
these same credentials. Particularly useful when multiple websites can be corre-
lated with the same credentials such as credit card and e-commerce sites.

Business Logic DoS—Denial-of-service attacks that interact with a website as
if they were a human operated browser and exercise resource-intensive business
logic. For example, loading a shopping cart on an e-commerce site often causes
numerous writes to an underlying database.

Fake Account— Accounts used for the sole purpose of manipulation. Often
created or exercised in a sufficiently large volume that they are impractical with-
out automation.

Account Aggregation— Account aggregation services (for example, mint.com)
collect and use login credentials to access their customer’s bank accounts elec-
tronically and scrape information from the bank’s website.

Carding— Small purchases used to verify the validity of stolen credit card
data. Often operated on a large volume of low quality data and therefore re-
liant on automation. Particularly damaging to certain e-commerce sites as the
chargeback fees can be much larger than the transactions.

Man-in-the-Browser (MitB)— A kind of man-in-the middle attack where the
attacker controls the user’s browser, and may observe or change information that
is transmitted between the browser and the website.

1 Open Web Application Security Project, www.owasp.org
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Table 1. Relationship of threats to automated attack vectors

Surveyed Threats
Attack
Vectors

Automation
Application

Vulnerability
Category

Account takeover
Database scraping

Credential
stuffing

Iteration
Inherent

Protection racketeering
Hacktivism
Masking of other attacks

Business logic
DoS

Comment SPAM
Rating/review skewing
Database scraping

Fake account

Customer disintermediation
Reduced security posture
Database scraping

Account
aggregation

Chargeback fees Carding
Credential harvesting
Account takeover
Transaction manipulation

MitB
Manipulation

Information leakage
Loss of control

XSS
CSRF

Inadvertent

XSS/CSRF— Non-persistent cross-site scripting and cross-site request for-
gery as defined by OWASP.

For the purpose of this threat model, we further narrowed the list of vulnera-
bilities and vectors to the cases where automation is required. For an attacker,
automation is applied for at least two fundamentally different reasons which are
noted in the “Automation Application” column of the table.

Iteration— A repeated interaction with a web user interface where a high
number of iterations are required to realize value.

Manipulation— A one-time operation performed autonomously by a program
over a specific web interface, because it is not practically accessible to a human
attacker at the time of attack.

We distinguish between Inadvertent and Inherent vulnerabilities to highlight
an observation2 that the majority of concerns for large scale websites are for
vulnerabilities not contemplated in the OWASP Top 10.

Inadvertent vulnerabilities Some attacks rely on vulnerabilities that are the
product of implementation errors or design failures. In theory, this category of
vulnerability never need exist and when discovered can be corrected without
impacting user experience, business requirements, or application functionality.
Many well known web application vulnerabilities such as CSRF, XSS, SQL in-
jection, and the remainder of the OWASP Top 10 belong to this category.

Inherent vulnerabilities Many modern website attacks rely on vulnerabilities
that are the byproducts of fundamental design requirements or conditions not

2 Perhaps our survey suffered from a type of selection bias where our sample had
sufficient budgets to remediate the better understood inadvertent vulnerabilities.
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under the control of the solution architect. For example, a credential stuffing
vulnerability stems from the requirement that sites must allow anonymous con-
nections to attempt authentication, or they fail to meet the most fundamental
business need: access from the Internet. To illustrate with a specific example,
consider that an attacker could abuse the common security protocol of locking
out an account after five consecutive login failures to create a denial-of-service
attack. Depending on the design objectives of website, the solution to stop lock-
ing out accounts may not be an option. Unlike inadvertent vulnerability attacks,
inherent vulnerabilities cannot be mitigated by “fixing” the application as the
“fix” is at odds with a design requirement.

2.2 Methods of Automated Attacks

We classify the methods of automated attacks into three categories, each with
fundamentally different approaches:HTTP attack, DOM attack, and GUI attack.

HTTP attack— This approach relies on manipulating the target of attack by
transmitting GET or POST messages, but without any appreciation of how the
target page would be rendered in a browser. A common example is a credential
stuffing attack where a simple POST request is transmitted with the username
and password key-value pairs. Another variation employed for manipulation in-
stead of iteration is a CSRF attack where the HTTP GET is in the form of URL
embedded in an HTML email message.

DOM attack— This attack operates inside a browser and uses JavaScript to
feed input into DOM elements and perform submission. In DOM attacks, the
target web page and all referenced content including JavaScript is loaded in
a browser. The attack software now examines the DOM and feeds input into
input elements of a target form. Because DOM attacks drive a real web browser,
JavaScript, application state, cookies, nonces, sessions, properly set referrers,
and other dependencies that arise in a complex web application are handled
seamlessly. MitB attacks take this form (e.g., Fig. 13). Most existing inherent
vulnerability attacks, which exploit automation test tools such as Selenium and
HtmlUnit, also take this form (e.g., Fig. 11).

GUI attack— A more complicated option is when the attacker takes full con-
trol of a real browser to render the image of the target web page and interact
with the web page by directing mouse movement/click and keystrokes. It can
position the input focus by tab key press, x, y coordinates, or relative vectors,
and then stream keystrokes into fields of focus. DOM manipulation is not nec-
essary in this method. Note that GUI attacks need full control of a real browser
and cannot be performed inside a web page by JavaScript. Although JavaScript
in a web page can simulate a mouse event and cause browsers to fire the de-
fault action for the event (e.g., navigate to the link’s href, or submit a form),
browsers do not perform the default action for simulated keystroke events by
JavaScript (e.g., browsers do not assign the value to an input field), and the ac-
tual mouse location cannot be changed by JavaScript. Many automated attacks
presently implemented with the HTTP or DOM approaches could be adopted to
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the GUI approach by implementing them in open source automation test tools
like PhantomJS.

Note that CSRF is limited to the HTTP approach, as it has no possibility
to control the browser or to access the DOM of the target domain due to the
same-origin policy limit. Non-persistent XSS is limited to the HTTP approach
or the DOM approach, as it has no control of a browser. Other attacks may
choose any of the three methods. The choice of methods depends on the attack
requirements, and the methods are used differently due to the required attacker
resources and the properties of the targeted web application.

2.3 Scope

In this paper, we focus on HTTP and DOM attacks. GUI attacks are out of
scope. As PolyRef forces an adversary to perform GUI attacks with keyboard and
mouse activity, the behavioral biometric method [13,14] mentioned in Section 3,
which can tell the difference between mouse and keystroke behaviors of a human
and those of a bot, can be used to complement the PolyRef method.

2.4 Requirements for a Theoretical Ideal Mitigation Solution

Having defined automation as a fundamental and significant threat it seems clear
a protection is needed. We were not able to identify any well accepted industry
term of art for this class of solution and chose the term “botwall,” a portmanteau
of botnet and firewall.

Definition 2. Botwall. A website security layer intended to mitigate program-
matic or automated use of a website user interface that is intended exclusively
for use by a human.

We propose the following design objectives for an ideal botwall:
Preventive— Able to deflect automation.
Transparent— Does not impact the user experience.
Comprehensive— Broadly useful; not a point solution.
Facile— Easily applied to legacy websites.

3 Related Work

There is a wealth of research on web security, we survey the most relevant
works here. Numerous protection techniques have been introduced during the
last decade which create some friction for automation. However, all of them
either have a low efficacy or a negative impact on usability.

Turing Test— CAPTCHAs [22] are widely used on web to mitigate some
automated attacks. However, CAPTCHAs negatively impact the usability and
the accessibility of the protected application [23]. In addition, CAPTCHAs do
not work for MitB attacks.
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Browser Detection— Examination of headers such as “user-agent” or explo-
ration of expected browsers capabilities like running a JavaScript program that
calculates the answer to a selected problem.

Reputation— Reputation methods are based on information about the histor-
ical activity of endpoints and their connection to activities of ill repute. These
methods hinge on being able to establish the unique identity of the endpoint.
Common approaches of creating a unique identity include IP address, cookies,
and fingerprinting [10, 18]. IP address methods are not reliable because of dy-
namic IP addressing. Cookie methods are easily bypassed by removing tracking
cookies [19]. The fingerprint algorithm collects information such as browser fonts,
timezone, and installed plugin to uniquely identify a browser. Fingerprints may
be used in combination with other techniques to facilitate a whitelist of known
customer devices, or blacklists of problematic devices.

Honeypot— In the honeypot method, faked fields, links, and forms are inserted
in the web page. They are invisible to users and only bots can perform the tasks
in the honeypot. As honeypot forms are not real forms, honeypot methods cannot
be used to prevent inherent vulnerability attacks such as MitB and credential
stuffing. This method has been used to detect bots performing reconnaissance
attacks [4]. This method can be used to complement PolyRef. PolyRef makes
forms polymorphic and the “original” forms can be used as a honeypot.

Rate Threshold— Rate thresholds can be used to detect bots performing it-
eration attacks. Some application delivery controllers (load balancers) and web
application firewalls (WAFs) detect bots by measuring volume and speed in the
context of endpoint identity [2]. Often these implementations rely entirely on
the IP address for endpoint identity but may also use cookies or browser finger-
printing. This solution is at best a modest barrier today given the widespread
availability of botnets to distribute the traffic from rather broad selections of
endpoints with a low request rate. This technique generally fails on the efficacy
prong of our test as attackers may limit their request rate or generate requests
from a botnet to bypass this form of detection. Furthermore, it also fails on the
user impact test as well: IP rate-limiting may generate false positives in cases
where multiple users are NATed through the same IP address.

Behavioral Biometrics— User keyboard and mouse activity can also be used
to detect bots. The method injects a piece of JavaScript code in web pages
which collects the user keyboard and mouse activity. The activity is sent back
to web servers, and the web servers check if the results fit an expected human
behavior distribution. This technique has been used to detect game bots [13],
chat bots [14], and twitter and blog bots [6, 7].

Token—The secret validation token method [15, 17, 21] is a approach to de-
fend against CSRF attacks. A secret validation token is attached to each HTTP
request. If a request is missing a validation token or if the token does not match
the expected value, the server rejects the request. Ollmann [20] proposed token-
based methods to protect web applications against some malicious automated
scanning tools. One disadvantage of this approach is that a website must main-
tain a large state table to validate the tokens.
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Header Validation— Referer header checking is a common method to prevent
CSRF. The header contains the URL of the site making the request, and thus
can differentiate a same-site request from a cross-site request. A website can pre-
vent CSRF by checking if a request was issued by the site itself. One problem of
referer header checking is that it causes privacy leaking. Barth et al. [5] proposed
a defense against CSRF by introducing an origin header with POST requests
in the browser. It provides the security benefit of the referer header while re-
sponding to privacy concerns. Czeskis et al. [9] proposed a developer-friendly
and complete coverage method called Allowed Referrer Lists (ARLs) to prevent
CSRF. An ARL is a whitelist of referrer uniform resource locators (URLs) that
allows browsers to withhold sending ambient authority credentials for websites
wishing to be resilient against CSRF attacks.

Multi-Factor Authentication— It can be used to prevent password dictionary
attacks and credential stuffing attacks. The approach requires the presentation of
two or more of the three authentication factors: a knowledge factor (“something
only the user knows”), a possession factor (“something only the user has”), and
an inherent factor (“something only the user is”). However, this approach cannot
stop MitB attacks [3].

Out-of-Band Verification— It is an effective method of combating MitB at-
tacks. It overcomes MitB attacks by verifying the transaction details to the user
over a channel other than the browser (for example, an automated telephone
call or SMS). The downside of Out-of-Band Verification is a negative impact to
the user experience from more and slower steps.

4 Proposal: PolyRef

The idea of PolyRef is motivated by the observation that all automated attacks
are based on the fixed web page of a web user interface. PolyRef makes the web
page of any web user interface polymorphic: the web page is different every time
it is served. The variation introduced by PolyRef makes it hard for the attacker
to predict how to automatically operate a future page. In this paper, we define
Polymorphism as follows:

Definition 3. Polymorphism. [As applied in this paper] Any technique which
makes key elements of a web user interface (for example, HTML/JavaScript
references) sufficiently varied for each request so that future constructions of the
page are non-deterministic and render automated operation impractical.

Unlike the use of polymorphism for the construction of malware, it is not our
objective to protect intellectual property, obfuscate design, or even impede the
manual reverse engineering of a given case, but to make the next case unpre-
dictable or impede automatic program analysis.

We propose two types of polymorphism: reference and field polymorphism.
Note that PolyRef is not limited to these two types. It can accommodate new
types of polymorphism for any elements of HTML as attack evolves.
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4.1 Reference Polymorphism

In reference polymorphism, HTML symbols such as form names, field names, and
element identifiers are replaced with random character strings. Fig. 2 shows an
example where the form name Login, the field name lastname and the element
identifier lastname id are randomized.

Fig. 2. Form Name and Element ID
transformation

Fig. 3. Example JavaScript with trans-
formed HTML reference

Fig. 4. Example JavaScript with a vari-
able name randomized

Fig. 5. Sequence code determines the
order of field alternation

Fig. 6. Stacked display preserves user
experience

Form name and element identifier randomization will prevent attackers from
directly locating a field. For example, using the JavaScript statement document.-
getElementByID(lastname id) to locate lastname field in Fig. 2 will not work
anymore. As form name and element identifier may also be referenced in Java-
Script/CSS, the randomization should be consistent. Fig. 3 shows an example
of JavaScript changed with HTML symbol randomization.

Similarly, symbols in JavaScript should also be randomized. The JavaScript
shown in Fig. 3 makes it clear to an attacker that the field b24mpqdfKX should
contain a last name due to the JavaScript variable name lastname. A simple
regular expression could allow an attacker to script the scraping of the field name
from the page. Fig. 4 shows that we extend the concept of HTML polymorphism
to JavaScript.

4.2 Field Polymorphism

Reference polymorphism is effective for HTTP attacks and existing DOM at-
tacks. However, it is vulnerable to advanced DOM attacks. Advanced DOM
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attacks can indirectly find fields to defeat reference polymorphism. For exam-
ple, instead of looking for the field lastname, an adversary could refer to it as
the third field of the first form in DOM or even find fields based on the page
structure after page rendering.

We propose field polymorphism to impede advanced DOM attacks. In field
polymorphism, a field is broken into multiple fields. Keystrokes are distributed
between the multiple fields in a pattern that is unique for each page served.

As shown in Fig. 5, focus is alternated between several input fields as each
keystroke is typed. The alternation sequence is defined by a constant (sequence
code), and a unique code is embedded into the dynamically generated JavaScript
added to each page. From the website visitor’s perspective, the user experience
remains largely unchanged, as all fields are stacked in the display and appear
like one field. (See Fig. 6.)

Examination of the POST shows the characters of a single field split between
multiple name-value pairs. The constant required to reassemble the sequence
was determined in advance, encrypted by a shared key only residing in the
PolyRef server. It is embedded in the return POST as a hidden field. In Fig. 7,
“KYTr29y7rhKJP6” is the hidden field containing the encrypted constant.

Fig. 7. Value distributed across multiple fields Fig. 8. Business logic attack

5 Case Study

We study several real-world automated attack cases, and show how PolyRef
defeats them with only reference polymorphism. Note that we only consider
contemporary attacks (i.e., attacks that already exist today) in this Section. We
will discuss future attacks in Section 8.

5.1 Cross-Site Request Forgery

Let’s look at a cross-site request forgery (CSRF) attack on bank.com. It has a
web page with a form that allows its customers to transfer money.

Assume Alice wants to transfer $50 to Bob. Although the POSTmethod is used
in the money transfer form, bank.com has accidentally allowed GET requests as
well. Our malicious attacker, Mallet, exploits the vulnerability to automate a
form submit with the URL http://bank.com/transfer.jsp?to account=Mall

et&amount=1000 which will transfer $1000 from an unwitting victim to himself.
There are a couple of ways Mallet can trick Alice into submitting the URL.

One way is to include the request as an HTML image element in an email to Alice.
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Her browser will make the request automatically as if it were any other image
content on a page <img src=http://bank.com/transfer?to account=Mallet

&amount=1000>. If Alice’s bank keeps her authentication information in a cookie,
and if the cookie has not expired, then the attempt by Alice’s browser to load the
image will submit the transfer request along with her cookie, thus authorizing a
transaction without Alice’s knowledge.

We can see that in this case, the CSRF attack must have fixed symbols for the
forms parameters to work. Polymorphic references therefore stop these attacks.

5.2 Business Logic Denial-of-Service

Denial-of-service attacks have moved up the web stack from early Smurf attacks
to syn floods to more modern socket exhaustion attacks. The next generation of
DoS attacks focus on computationally intensive requests on back-end servers.

For web applications that must remain up-to-date or for content that cannot
be cached for other reasons, distributing content on a worldwide content delivery
network (CDN) is not an option. Thus requests must reach back to centralized
back-end servers. One example of an attack that reaches back to a back-end
server is a branch locator function.

An attacker could craft a POST like the one shown in Fig. 8 that asks a website
for branch locations. This computationally intensive request could be made at
arbitrary rates from a botnet until the server collapses under the computational
load.

This attack is difficult to stop using current defenses. It bypasses CDN caching
and does not rely on volume to overwhelm servers. It contains no malicious
signature as it is, in fact, a perfectly valid request. However, if the site operator
stops automation the attack is stopped.

It is clear to see that the attack shown in Fig. 8 will fail by applying reference
polymorphism.

6 Design and Implementation

We constructed a prototype of PolyRef, implemented as a special case of a trans-
parent HTTP proxy located adjacent to the web server. When a web page passes
through this special proxy, PolyRef finds the target forms and then replaces se-
lected content with a revised version applying reference polymorphism described
in Section 4. Note that a different polymorphic variant is applied for each page
request. When the form is later submitted, the same special proxy restores the
key/value pairs of the form to the expected content so the protected web appli-
cation continues to operate without modification. Since many websites terminate
SSL at the load balancer, our special proxy would never see HTTPS and hence
our implementation does not handle SSL directly.

Our implementation addresses the following scenario: A company — without
modifying its own web servers — installs PolyRef as per Fig. 1. The implementa-
tion therefore needs to handle the complexity of modern web page design, includ-
ing the use of CSS and JavaScript. There are two distinct phases for handling
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each web page. The first is a pre-computation phase, in which PolyRef learns
the relevant symbols. This phase is performed automatically the first time a new
page is processed and then cached, and hence can employ heavyweight tech-
niques. Following the pre-computation phase is the application phase, in which
the polymorphic techniques are applied. Our description below focuses on the
pre-computation phase.

6.1 Web Page Transformation

If an HTTP response contains a web page, PolyRef will transform it to its
polymorphic version with the polymorphic techniques described in Section 4.
The transformation is trivial, if the page contains only plain HTML without
CSS and JavaScript. However, today almost all web pages contain CSS and
JavaScript. We must make symbols consistent among JavaScript, HTML, and
CSS; otherwise, the functionality may be broken.

The process of the web page transformation is as follows. In the first step,
we find target forms for transformation. The target forms are configured in a
profile. We use a HTML parser to parse the web page into a DOM tree. The
target forms are identified in the DOM tree. To keep consistency, once we find
all relevant symbols, we need to accurately identify all references to them in
CSS and JavaScript. A simple regular expression match may have problems.
For example, the string username in line 12 of Fig. 9 is a reference to the field
username, while the one in line 16 is not. To make symbols consistent among
JavaScript, HTML, and CSS, in the second step, we parsed JavaScript and CSS
into abstract syntax trees (ASTs). ASTs can tell us if a symbol is a property of
a form. For example, as shown in Fig. 10 (2), username is the property of the
form; while username in Fig. 10 (1) is not.

There are cases where relying on ASTs alone is not enough. For example,
variable pwd in line 11 of Fig. 9 will be used to get the reference to field password

and should be made consistent. To handle these cases, we do a static analysis in
the analyzer step. We exploit several compiler optimization techniques such as
constant folding and propagation in this step. By exploiting constant folding and
propagation, the value of variable in line 11 of Fig. 9 will be made consistent.
After all references are identified, symbols are randomized consistently across
HTML, JavaScript, and CSS, and a new web page is generated in the serializer
stage.

In this implementation, two cases are handled with human assistance. First,
the fields of forms may be referenced in the eval function. Second, forms may
be dynamically generated by JavaScript. Future work could potentially address
these cases via more sophisticated automation or – changing the model slightly
– combining the earlier approach with annotations or support at the web server.

6.2 HTTP Request Restoration

When the transformation is made, the mapping between symbols and random-
ized values is encrypted and added to the target form as a hidden field. When
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Fig. 9. HTML consistency example Fig. 10. AST examples

an HTTP POST request arrives, PolyRef decrypts the mapping and restores the
names in the name-value pairs of the HTTP POST back to original values so the
underlying web application requires no changes to work with the PolyRef. Note
the encryption key is a only known by PolyRef and can be periodically rotated.

7 Evaluation

We designed three experiments to evaluate the prototype implementation of
PolyRef. The first two experiments tested the effectiveness, and the third exper-
iment tested the performance. We will discuss future attacks in Section 8.

7.1 Fake Account Creation Attack

In this Section, we first demonstrate a fake account creation attack, and then
show the result after applying PolyRef. We examined the Top 10 Alexa websites,
found four of them (Facebook, Yahoo, Twitter, and LinkedIn) did not require
CAPTCHAs in the account creation page. We used Facebook as an example for
our attack. To avoid directly attacking Facebook, we mirrored the front page
(login and account creation page) of Facebook.com. We wrote a simple back-end
which stored the created accounts in a database.
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Fig. 11. Fake account creation function. It be-
gins by creating a Firefox driver and visit-
ing the account creation page. It then uses
the web driver API find element by id and
find element by name to find all fields of the
account creation form. It fills the fake account
data into the fields by send keys API and
pick select item and pick radio item func-
tions. Finally, it clicks the form submission.

Victim
(Infected wtih Zeus)

Hacme
Bank

PolyRef

Fig. 12. Zeus MitB experiment setup

Fig. 13. Page injection Config for
Hacmebank. The config tells Zeus to
find the Hacme bank transfer account
page to inject two pieces of code.
The first one hijacks onclick func-
tion of “transfer” button. The sec-
ond one performs the malicious trans-
fer: replaces the transfer destination
to the attacker’s account 05. Param-
eter set url sets the attack target;
Parameter data before describes the
data to search for before the injec-
tion; Parameter data inject is the
actual script that will be injected.

The attack is written as a Python script using Selenium Webdriver API.
Selenium is a software testing framework for web applications. The attack script
exploits SeleniumWebdriver API to drive a Firefox browser to launch the attack.
Fig. 11 shows the source code of the fake account creation function. It only
contains tens of lines of Python code. Note that the Python import header is
ignored for brevity.

We used the attack script to attack our mirrored Facebook.com and we suc-
cessfully created 1000 accounts. We deployed a PolyRef in front of the mirrored
Facebook.com. We launched the attack again, and all 1000 attempts failed. We
tested the account creation manually through the user interface and creation
still works with PolyRef deployed.

7.2 Zeus MitB Attack

In this experiment, we show how Zeus performs a Man-in-the-Browser attack.
Then, we demonstrate how our PolyRef blocks Zeus’s attack.

Experiment Setup. Fig. 12 shows the setup of this experiment. We used
McAfee’s Hacme Bank, a security training bank application built on Microsoft
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IIS/.Net framework. It is a database driven application. Hacme Bank provides a
minimal representation of a financial institution such as authenticated accounts
with balances and fund transfers between accounts.

Alex is a customer of Hacme Bank. Unfortunately, Alex’s laptop is infected
with Zeus malware. When Alex logs into Hacme Bank, the Zeus malware hijacks
the session by page injection and secretly transfers money to attacker Mallet. One
benefit of page injection is that Zeus is able to bypass two-factor authentication.

Victim Alex’s machine is installed with Windows 7, Service pack 1, and IE 10
is installed and used as the browser. The victim machine was infected with our
custom Zeus, created with a Zeus 2.0.8.9 builder. It is configured with a page
injection file webinjects.txt, shown in Fig. 13.

Experiment. In the experiment, we show account transfers from a clean ma-
chine and a machine infected with Zeus. We created user Alex and two accounts
01 and 02. We also deposited $10000 and $100 into these two accounts, respec-
tively. We started the victim machine without Zeus infection. We logged into
Hacme Bank as Alex. We did an account transfer: $1000 from account 01 to 02.
The account balance of account 01 and 02 became $9000 and $1100, respectively.

Then, we infected the victim machine with the Zeus sample created in our
setup. We did another transfer after infection: $500 from account 01 to 02. The
account balance shows $500 was deducted from account 01, but the balance of
account 02 did not increase. The transaction details show the transfer destination
is account 05 instead of account 02. This transaction was hijacked by Zeus.

We then deployed the PolyRef. We did a final transfer: $400 from account 01
to account 02. We checked the account balance and transaction details. There are
no malicious transactions. The result shows PolyRef successfully deflected the
Zeus MitB attack. The Zeus MitB attack failed to reference the account transfer
form WelComeForm and the payment destination field ctl03 txtExternalPaymen

tAccount in the doTransfer function (Fig. 13) because of the reference poly-
morphism.

7.3 Performance

In this experiment, we showed that the additional latency to deliver the login
page for a popular e-commerce website is very low—if we cache the results of
our first-time analysis. We ran PolyRef on a laptop with a quad-core Intel CPU
and 16G memory. We used the laptop as a proxy to visit the login page of the
tested website, stubhub.com3. The average additional latency to load the login
page is shown in Table 2. We tested the latency with 1 to 32 concurrent threads
in 6 tests, and each test was performed for 60 seconds. We used Apache JMeter
to measure the result. Note that we started our test after page analysis cache
was created during the first visit. Although the first-time analysis of the page
(particularly the JavaScript) is time-consuming, it only needs to be done once.

3 One of the largest online ticket marketplaces.
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Table 2. The latency generated by PolyRef

Concurrent threads 1 4 8 16 24 32

Average latency (ms) 4 4 6 10 13 13

8 Discussion

We view PolyRef as the first step in polymorphic defense for websites. Adver-
saries, once they learn about PolyRef, may be able to tailor their attack tech-
niques to target PolyRef’s current defenses. In this section we discuss potential
challenges and next steps, and we encourage future research on polymorphic
defenses for web security.

8.1 Attacker Response

Field polymorphism raises the bar for advanced DOM attacks. An adversary may
respond to field polymorphism by automatically extracting the sequence code
from the dynamically generated JavaScript for each page served. It may be not
hard for a skilled adversary to manually reverse the obfuscated JavaScript code
of a page and extract the sequence code. However, DOM attacks have to perform
automatic static analysis, as the sequence code is unique for each page served.
Automatic static analysis of JavaScript is difficult, if not impossible, due to a
number of dynamic features [16] and hard-to-understand semantic features [12]
of JavaScript. In addition, the dynamically generated JavaScript can be highly
obfuscated which makes the automatic analysis even harder. Obfuscation tech-
niques including, but not limited to, variable and function name replacement,
dead code insertion, encryption, string and number encoding, eval hiding, and
opaque predicates, can be used to impede future attacks.

Eval hiding — hides the usage of eval function. Eval is commonly used to run
code stored as a string in a variable which makes static analysis hard or even
impossible. To hide uses of eval function, eval functions are assigned to various
randomly named variables.

Opaque predicate — is defined as an expression for which the outcome is
predetermined to be always true or false. The most simple example of this is
expression if (true). Opaque predicates can thwart static analysis by constructing
expressions that are not so simple to determine without evaluating them inside
the targeted environment.

8.2 Limitations

The limitation of PolyRef is that it does not prevent GUI attacks (where the
attacker controls a real browser and interacts by directing mouse movement
and keystrokes) as defined in Section 2. A GUI attack is equipped with a fully
functional browser and sends OS mouse and keyboard events to the browser to
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simulate human interaction. It positions the input focus by x, y coordinates or
relative vectors, and then streams keystrokes into the field of focus. As the attack
relies on fixed x, y coordinates of web UI elements, a new type of polymorphism—
view polymorphism, where view will be varied for each page served, may be
used to impede such attacks. For example, locations of forms and fields can be
changed slightly for each HTTP request, so that the x and y coordinates are
unpredictable. In practice, moving a form slightly down in the browser may
not affect the user experience. On the other hand, as mentioned in Section 2,
the attack relies on simulating keyboard and mouse activity so the behavioral
biometric method [13, 14] mentioned in Section 3, which can tell the difference
of mouse and keystroke behaviors between human and bot, could be used to
complement PolyRef. Finally, the impact of GUI attacks is limited; that method
does not enable CSRF or non-persistent XSS attacks.

9 Conclusion

We propose PolyRef, a method for a polymorphic defense to defeat automated
attacks on web applications. PolyRef broadly deflects many types of automated
attacks. As a preventive technique, it does not have false positive or false nega-
tives. Further, the PolyRef concept is transparent to the web server, and most
importantly, it has no deleterious user impact.
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