
MatWare: Constructing and Exploiting

Domain Specific Warehouses
by Aggregating Semantic Data

Yannis Tzitzikas1,2, Nikos Minadakis1, Yannis Marketakis1, Pavlos Fafalios1,2,
Carlo Allocca1, Michalis Mountantonakis1,2, and Ioanna Zidianaki1,2

1 Institute of Computer Science, FORTH-ICS, Greece
2 Computer Science Department, University of Crete, Greece

{tzitzik,minadakn,marketak,fafalios,carlo,mountant,izidian}@ics.forth.gr

Abstract. In many applications one has to fetch and assemble pieces of
information coming from more than one web sources such as SPARQL
endpoints. In this paper we describe the corresponding requirements
and challenges, based on our experience, and then we present a pro-
cess and a tool that we have developed, called MatWare, for construct-
ing such semantic warehouses. We focus on domain-specific warehouses,
where the focus is given on the aspects of scope control, connectivity as-
sessment, provenance, and freshness. MatWare (Materialized Warehouse)
is a tool that automates the construction (and reconstruction) of such
warehouses, and offers methods for tackling the aforementioned require-
ments. Finally we report our experiences from using it for building, main-
taining and evolving an operational semantic warehouse for the marine
domain, that is currently in use by several applications ranging from
e-infrastructure services to smart phone applications.

Keywords: #eswc2014Tzitzikas.

1 Introduction

An increasing number of datasets are publicly available in various formats (in-
cluding Linked Data and SPARQL endpoints). For exploiting this wealth of
data, and for building domain specific applications, one has to fetch and assem-
ble pieces of information coming from more than one sources. These pieces can
then be used for constructing a warehouse that offers more complete browsing
and query services (in comparison to those offered by the underlying sources).
For instance, in the marine domain, there is not any individual source that
can answer queries of the form: “Given the scientific name of a species, find
the ecosystems, water areas and countries that this species is native to, and the
common names that are used for this species in each of the countries”.

There are domain independent warehouses, like the Sindice RDF search engine
[12], or the Semantic Web Search Engine (SWSE) [4], but also domain specific,

V. Presutti et al. (Eds.): ESWC 2014, LNCS 8465, pp. 721–736, 2014.
c© Springer International Publishing Switzerland 2014

722 Y. Tzitzikas et al.

like [14,9,5]. We focus on the requirements for building domain specific ware-
houses. Such warehouses aim to serve particular needs, particular communities
of users, consequently their “quality” requirements are higher. It is therefore
worth elaborating on the process that can be used for building such warehouses,
and on the related difficulties and challenges. In brief, and from our experi-
ence from running an operational semantic warehouse, the main questions and
challenges include:

– How to define the objectives and the scope of such a warehouse and how to
test that its contents meet the objectives?

– How to connect the fetched pieces of information? Common schemas, URIs
or literals are not always there.

– How to measure the value of the warehouse as well as the quality of the
warehouse (this is important for e-science)?

– How to keep such a warehouse fresh, i.e. how to automate its construction,
and how to monitor its quality (as the underlying source change)?

– How to tackle the various issues of provenance that arise?

In this paper we present our experience on defining such a process and the
tool that we have developed (MatWare) for realizing the process and running
an operational semantic warehouse for marine resources. The rest of the paper
is organized as follows: Section 2 describes the context, the main requirements,
and related works. Section 3 describes the adopted integration approach for
tackling the corresponding functional and non-functional requirements. Section 4
describes the tool MatWare and Section 5 describes how the MatWare-constructed
warehouse is currently being used in various applications. Finally, Section 6
concludes the paper. More details are available in the web1.

2 Context, Requirements and Related Work

2.1 Context and Requirements

Below we list the main functional and non functional requirements. The source of
these requirements is the iMarine project2 that offers an operational distributed
infrastructure that serves hundreds of scientists from the marine domain. As re-
gards semantic technologies, the objective is to integrate information from var-
ious marine sources, specifically from WoRMS3, Ecoscope4, FishBase5, FLOD6

and DBpedia7.

1 http://www.ics.forth.gr/isl/MarineTLO and
http://www.ics.forth.gr/isl/MatWare

2 FP7, Research Infrastructures, http://www.i-marine.eu/
3 http://www.marinespecies.org/
4 http://www.ecoscopebc.ird.fr/EcoscopeKB/ShowWelcomePage.action
5 http://www.fishbase.org/
6 http://www.fao.org/figis/flod/
7 http://dbpedia.org/

http://www.ics.forth.gr/isl/MarineTLO
http://www.ics.forth.gr/isl/MatWare
http://www.i-marine.eu/
http://www.marinespecies.org/
http://www.ecoscopebc.ird.fr/EcoscopeKB/ShowWelcomePage.action
http://www.fishbase.org/
http://www.fao.org/figis/flod/
http://dbpedia.org/

MatWare: Constructing and Exploiting Domain Specific Warehouses 723

Functional Requirements
F1 Multiplicity of Sources.Ability to access multiple sources (including SPARQL

endpoints), get data from these sources, and ingest them to the warehouse.
F2 Mappings, Transformations and Equivalences. Ability to accommodate map-

pings, perform transformations and create sameAs relationships between the
fetched content for connecting the corresponding schema elements and enti-
ties.

F3 Reconstructibility. Ability to reconstruct the warehouse periodically (from
scratch or incrementally) for keeping it fresh.

Non Functional Requirements

N1 Scope control. Make concrete and testable the scope of the information that
should be stored in the warehouse. Since we live in the same universe, every-
thing is directly or indirectly connected, therefore without stating concrete
objectives there is the risk of continuous expansion without concrete objec-
tives regarding its contents, quality and purpose.

N2 Connectivity assessment. Ability to check and assess the connectivity of the
information in the warehouse. Putting triples together does not guarantee
that they will be connected. In general, connectivity concerns both schema
and instances and it is achieved through common URIs, commons literals
and sameAs relationships.

N3 Provenance. More than one levels of provenance can be identified and would
be desired, e.g. provenance at triple level (from what source that triple was
fetched), at URIs and values level (from what source we get a URI or value),
or at query level (what sources are being used to answer a query).

N4 Consistency and Conflicts. Ability to specify the desired consistency, e.g.
regarding the acceptance or rejection of different objects for a particular
subject-predicate pair in a triple, or ability to accommodate different objects
while making evident their provenance.

2.2 Related Approaches

Below we refer and discuss in brief the more related systems, namely OD-
CleanStore and Sieve.

ODCleanStore [11,8,7] is a tool that can download content (RDF graphs) and
offers various transformations for cleaning it (deduplication, conflict resolution),
and linking it to existing resources, plus assessing the quality of the outcome. It
names conflicts the cases where two different quads (e.g. sources) have different
object values for a certain subject s and predicate p. To such cases conflict
resolution rules are offered that either select one or more of these conflicting
values (e.g. ANY, MAX, ALL), or compute a new value (e.g. AVG). [7] describes
various quality metrics (for scoring each source based on conflicts), as well for
assessing the overall outcome.

724 Y. Tzitzikas et al.

Another related system is Sieve [10] which is part of the Linked Data Integra-
tion Framework (LDIF)8. That work also proposes metrics like schema complete-
ness and conciseness. However, such metrics are not useful for the case of domain
specific warehouses that have a top-level ontology, in the sense that the schema
mappings and the transformation rules can tackle these problems. This is true
in our warehouse (it is also assumed in the scenarios of ODCleanStore). Finally,
[1] contains an interesting discussion about completeness in query answering.

3 The Adopted Integration Approach

This section describes how we tackled the Functional and Non-Functional Re-
quirements, as well the entire construction process.

3.1 Tackling the Functional Requirements (F1-F3)

To tackle the need for multiplicity of sources (F1) and reconstructability (F3), we
developed a tool that can automate the construction (or reconstruction) of such
warehouses (it is called MatWare and it is described in more detail in Section
4). Regarding Mappings, Transformations and Equivalences (F2), it is always a
good practice to have (select or define) a top-level ontology as it alleviates the
schema mapping effort (avoids the combinatorial explosion of pair-wise map-
pings). Moreover, since the entities (instances of schemas, URIs) have to be
mapped too, there is a need for approaches that can automate this as much as
possible. In general there is a need for rules that can create sameAs relation-
ships. For this reason, MatWare exploits SILK9 which is a tool for discovering
relationships between data items within different Linked Data sources.

3.2 Scope Control

As regards scope (N1), we use the notion of competency queries. A competency
query is a query that is useful for the community at hand, e.g. for a human
member (e.g. a scientist), or for building applications for that domain. Therefore,
a list of such queries can sketch the desired scope and the desired structuring of
the information. Figure 1 displays the textual description of some competency
queries as they were supplied by the marine community.

These queries specify the required structuring of the ontology. It is a good
practice to have a top-level schema/ontology not only for alleviating the schema
mapping effort, but also for formulating the competency queries using that ontol-
ogy (instead of using elements coming from the underlying sources, which change
over time). For the iMarine project, and since there was not any ontology that
allowed formulating the desired queries, we defined the top-level ontology called
MarineTLO10 [14].

8 http://www4.wiwiss.fu-berlin.de/bizer/ldif/
9 http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

10 Documentation and examples are available in
http://www.ics.forth.gr/isl/MarineTLO.

http://www4.wiwiss.fu-berlin.de/bizer/ldif/
http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/
http://www.ics.forth.gr/isl/MarineTLO

MatWare: Constructing and Exploiting Domain Specific Warehouses 725

#Query For a scientific name of a species (e.g. Thunnus Albacares or Poromitra Crassiceps), find/give me:

Q
1

the biological environments (e.g. ecosystems) in which the species has been introduced and more general

descriptive information of it (such as the country)

Q
2

its common names and their complementary info (e.g. languages and countries where they are used)

Q
3

the water areas and their FAO codes in which the species is native

Q
4

the countries in which the species lives

Q
5

the water areas and the FAO portioning code associated with a country

Q
6

the presentation w.r.t Country, Ecosystem, Water Area and Exclusive Economical Zone (of the water area)

Q
7

the projection w.r.t. Ecosystem and Competitor, providing for each competitor the identification

information (e.g. several codes provided by different organizations)

Q
8

a map w.r.t. Country and Predator, providing for each predator both the identification information and the

biological classification

Q
9

who discovered it, in which year, the biological classification, the identification information, the common

names - providing for each common name the language and the countries where it is used in.

Fig. 1. Some indicative competency queries

After deciding the schema level, the next step is to specify the contents of the
underling sources that should be fetched and stored (as they are, or transformed)
to the warehouse. In many cases, this requires using various access methods
(SPARQL endpoints, HTTP accessible files, JDBC) and specifying what exactly
to get from each source (all contents, or a specific part). For instance, and for
the case of the iMarine warehouse, we fetch all triples from FLOD through its
SPARQL endpoint, all triples from Ecoscope obtained by fetching OWL files
from its web page, information about species (ranks, scientific names and com-
mon names) from WoRMS accessed through the Species Discovery Service of the
gCube infrastructure11, information about species only from DBpedia’s SPARQL
endpoint, and finally information about species, water areas, ecosystems and
countries from the relational tables of FishBase.

3.3 Connectivity Assessment

Connectivity (N2) has two main aspects: schema connectivity and instance con-
nectivity. For the first, we use the top level ontology and schema mappings for
associating the fetched data with the schema of the top level ontology12. Based
on these we can transform and ingest the fetched data. Some data can be stored
as they are fetched, while others have to be transformed, i.e. apply a format
transformation and/or a logical transformation for being compatible with the
top-level ontology.

As regards the connectivity of instances, one has to inspect and test the con-
nectivity of the “draft” warehouse, i.e. the warehouse produced by ingesting the
fetched information. This is done through the competency queries as well as
through a number of connectivity metrics that we have defined. The main met-
rics are: (a) the matrix of percentages of the common URIs and/or literals (it
shows the percentage of common URIs/literals between every pair of sources),

11 https://i-marine.d4science.org/web/guest/about-gcube
12 In our case we use rdfs:subClassOf, rdfs:subPropertyOf and

owl:equivalentClass properties.

https://i-marine.d4science.org/web/guest/about-gcube

726 Y. Tzitzikas et al.

(b) the complementarity factor of the entities of interest (it is the number of
sources that provided unique triples for each entity of interest), (c) the table
with the increments in the average degree of each source (it measures the in-
crement of the graph-theoretic degree of each entity when it becomes part of
the warehouse graph), and (d) the unique triple contribution of each source (the
number of triples provided by a source which are not provided by any other
source). The values of (a),(b),(c) allow valuating the warehouse, while (c) and
(d) mainly concern each particular source. The metrics are elaborated in detail
in [15], while an example is given in Figure 10. In comparison to the quality
metrics introduced by other works (like those mentioned in Section 2.2) which
focus more on conflicts, we focus on connectivity, which is important for a ware-
house that has wide scope, rich structured conceptual model, and requirements
for answering queries which contain “long” (not trivial) path expressions.

Based also on the results of the previous step, the next step is to formulate
rules for instance matching, i.e. rules that can produce sameAs relationships for
obtaining the desired connections. These rules are formulated by the curator
by manually inspecting the contents of the sources. This is done only the first
time; the formulated rules are automatically applied in the subsequent ware-
house reconstructions. Specifically we apply the instance matching rules (SILK
rules in our case) for producing (and then ingesting to the warehouse) sameAs
relationships. Moreover we apply some transformation rules to further improve
the connectivity of the warehouse, specifically for changing or enhancing the
data which are fetched from different sources in order to comply to the ontology
or to overcome limitations of inference.

Finally we have to test the produced repository and evaluate it. This is done
again through the competency queries and the metrics. Specifically, by inspecting
the proposed metric-based matrixes one can very quickly get an overview of the
contribution of each source and the tangible benefits of the warehouse.

3.4 Provenance

As regards provenance (N3), we support four levels of provenance: (a) at con-
ceptual modeling level, (b) at URIs and values level, (c) at triple level, and (d)
at query level.

As regards conceptual level (level a), for the case of iMarine, part of the
provenance requirements are covered by the ontology MarineTLO. Specifically
MarineTLO models the provenance of species names, codes, etc. (who and when
assigned them). Therefore there is no need for adopting any other conceptual
model for modeling provenance (e.g. OPM13), also because the data fetched from
the sources do not have any kind of provenance information, and the warehouse
construction does not have any complex workflow that need special documenta-
tion through a provenance model.

13 http://openprovenance.org/

http://openprovenance.org/

MatWare: Constructing and Exploiting Domain Specific Warehouses 727

As regards the level of URIs and values (level b), we adopt the namespace
mechanism for reflecting the source of origin of an individual14. In addition,
during the construction of a warehouse, there is the option of applying a uni-
form notation “@source” (where source can be FLOD, Ecoscope, WoRMS, Fish-
Base or DBpedia) to literals. This notation is useful in querying for indicating
how each result derived by the warehouse was produced. An example of this
functionality in shown in Figure 2 for the case of the scientific name and au-
thorship of a species. This notation allows asking source-centric queries in a rel-
ative simple way by using the SPARQL filter as follows: FILTER(langMatches
(lang(?literal), ‘‘source’’)). The shortcoming of this approach is that it
is not possible to store both the source and the language of a literal, and that
before storing the data to the warehouse a data transformation step (i.e. the
attachment of @source) is required. Although this approach has the above limi-
tations and “misuses”the semantics of an RDF feature (the language tag), this
level can be a reasonable choice in cases where all data should be stored in a
single graph space and the storage of language is not required (e.g. if all liter-
als are in one language). If these pre-conditions are not met, then one should
use the triple level provenance, that is described below, since it overcomes these
limitations.

Fig. 2. Scientific Name and Authorship information of Yellowfin Tuna

As regards the triple level (level c), we store the fetched (or fetched and
transformed) triples from each source in a separate graph space. This is useful
not only for provenance reasons, but also for refreshing parts of the warehouse,
as well as for computing the connectivity metrics that were described earlier.
Furthermore, and compared to level b, it leaves the data intact since there is no
need to add any extra information about their provenance. Finally, the separate
graph spaces are also useful for the fourth level described below.

As regards the query level (level d), MatWare offers a query rewriting func-
tionality that exploits the contents of the graph spaces for returning the sources
that contributed to the query results (including those that contributed to an in-
termediate step). Let q be a SPARQL query that has n parameters in the select
clause and contains k triple patterns of the form (?si ?pi ?oi), e.g.:

14 E.g. for the cases of Ecoscope, FLOD and DBpedia we use the namespaces, that these
sources already provide, while for WoRMS we use http://www.worms.org/entity#

as a namespace and for FishBase we use http://www.fishbase.org/entity#.

728 Y. Tzitzikas et al.

SELECT ?o_1 ?o_2 ... ?o_n

WHERE {

?s_1 ?p_1 ?o_1. ?s_2 ?p_2 ?o_2. ?s_k ?p_k ?o_k }

The rewriting produces a query q′ that has n + k parameters in the select
clause: the original n variables plus one variable for each of the k triple patterns
in the query. Specifically, for each triple pattern, say (?si ?pi ?oi), of the original
query, we introduce a variable ?gi (for getting the source of the triple) and in q′

the triple pattern is replaced by the graph pattern ?gi{?si ?pi ?oi}. Eventually,
the rewritten query will be:

SELECT ?o_1 ?o_2 ... ?o_n ?g_1 ?g_2 ... ?g_k

WHERE {

graph ?g_1 {?s_1 ?p_1 ?o_1}.

graph ?g_2 {?s_2 ?p_2 ?o_2}.

...

graph ?g_k {?s_k ?p_k ?o_k}}

A real example follows. Consider the query “For a scientific name of a species
(e.g. Thunnus Albacares) find the FAO codes of the water areas in which the
species is native”. Its evaluation will return the corresponding FAO codes, in-
formation that obviously comes from FLOD. However the fact that Thunnus
Albacares is native in a specific Water Area comes from Fishbase, which is a
fact that the end user will not be aware of, if the corresponding graph space will
not be returned. The upper part of Figure 3 shows the initial SPARQL query
(which has 2 triple patterns), while the lower part shows the query as it has
been derived after applying the rewriting described above. The answer of the
last query is shown in Figure 4(left) which shows the sources that contributed
to the result.

SELECT ?faocode WHERE {
?ecoscope:thunnus_albacares marineTLO:isNativeAt ?waterarea.
?waterarea marineTLO:LXrelatedIdentifierAssignment ?faocode }

SELECT ?faocode ?waterarea_graphspace ?faocode_graphspace WHERE {
graph ?waterarea_graphspace

{ecoscope:thunnus_albacares marineTLO:isNativeAt ?waterarea }
graph ?faocode_graphspace

{?waterarea marineTLO:LXrelatedIdentifierAssignment ?faocode } }

Fig. 3. Rewriting a query for keeping the provenance of the intermediate results

As another example, consider the query “Find the Scientific Name of a
Species”. This query will return the scientific names of the species according
to the various sources as shown in Figure 4(right).

Intuitively, one can conceive the query evaluation process as a pipeline defined
by the triple patterns, and the values shown in the additional (due to the rewrit-
ing) columns of the answer are the names of the graph spaces (in our setting
this corresponds to sources) that contributed to each step of that pipeline.

MatWare: Constructing and Exploiting Domain Specific Warehouses 729

Fig. 4. Left: The results of the enhanced query (of Fig. 3), Right: Scientific Names
(enriched with source provenance)

3.5 Consistency and Conflicts

Instead of specifying or deciding how to cope with the different values coming
from the sources (as in [8]), we instead (as shown in the provenance section)
show to the user the information that is provided by each source. This is more
transparent, and allows the involved authorities to spot (and hopefully fix) the
various errors.

3.6 The Entire Process

Figure 5 sketches the construction process. The main effort has to be dedicated
for setting up the warehouse the first time, since in that time one has to se-
lect/define the schema, the schema mappings, the instance matching rules, etc.
Afterwards the warehouse is reconstructed periodically for getting refreshed con-
tent, without requiring human intervention. For monitoring the warehouse after
reconstructing it, MatWare computes the connectivity metrics after each recon-
struction. By comparing their values in the previous and new warehouse, one

Warehouse construction and

evolution process

Define requirements in terms
of competency queries

Fetch the data from the selected sources
(SPARQL endpoints, services, etc)

�������

Transform and Ingest to the Warehouse

Inspect the connectivity of the
Warehouse

Formulate rules creating sameAs
relationships

Apply the rules to the warehouse

��	��
���

�������

��������

������ ��	
���

Ingest the sameAs relationships
to the warehouse

Test and evaluate the Warehouse
(using competency queries, metrics)

�������

���������

��	
����

����	��

����

����

����

MatWare

MatWare

MatWare

MatWare

MatWare

Fig. 5. The process for constructing and evolving the warehouse

730 Y. Tzitzikas et al.

can understand whether a change in the underlying sources affected negatively
the quality (e.g. connectivity) of the warehouse.

For example, consider that we want to refresh the warehouse because the data
coming from WoRMS have been changed and suppose that the schema of that
source has not been changed. It is evident that we do not have to re-construct
the warehouse from scratch since all the other sources will be the same. Instead
we remove all the triples about WoRMS from the warehouse by removing them
from the corresponding graph space. We also remove all same-as triples between
WoRMS and any other source in the warehouse. In the sequel, we get the new
contents for that source, ingest them to the warehouse and run again the steps
for applying the transformation rules and the production of the same-as triples
between the (new) contents of WoRMS and other sources. Finally we test and
evaluate the warehouse as before. It is clear that if the schema of the source has
been changed then we should also modify the mappings between that source and
the top-level ontology.

4 The Warehouse Construction Tool MatWare

The main functionality of MatWare is the automatic creation and maintenance of
a semantic warehouse. In brief, it is capable to: (a) download data from remote
sources (e.g. FLOD, Ecoscope, WoRMS, FishBase, DBpedia), (b) create Virtu-
oso repositories, (c) ingest the data to the warehouse, (d) apply the necessary
transformation rules to the data, (e) create sameAs links between the entities of
the different sources, (f) create the inference ruleset, (g) refresh the repository,
(h) run the competency queries, and (j) compute the connectivity metrics. It
has been implemented in Java and it uses the Sesame/Virtuoso APIs. It has a
modular architecture which is illustrated in Figure 6.

Query Rewriter
(for provenance)

Importer

Competency
Query Checker

Source
Registry

Fetcher (plugin-based)

Transformer
(plugin-based)

SPARQL HTTP JDBC

Connectivity
Metrics

Calculator
and

Report Writer

internet

Entity
Matcher

TripleStore Manager
(plugin-based)

Virtuoso

Architecture of MatWare

Configuration files
Triple Store
Credentials

Competency
Queries

Schema
mappings

SILK rules

Graph
names prefix

Fig. 6. The architecture of MatWare

Configurability is very important and in MatWare it is achieved by changing
the context of an xml file (config.xml). To create a warehouse from scratch, one
has to specify the type of the repository, the names of the graphs that correspond
to the different sources, and the URL, username and password for connecting

MatWare: Constructing and Exploiting Domain Specific Warehouses 731

to the repository. These options are enough for creating the warehouse and im-
porting the data from the sources. In addition, one can specify the next actions
to be performed which include: downloading the data from each source (by pro-
viding the fetcher classes as plugins), execution of the transformation rules (by
providing the transformer classes as plugins), creation of sameAs links between
the entities of the various sources (by providing the SILK rules as xml files), cal-
culation of the connectivity metrics, refreshing of the warehouse for the case of
a source that changes, creation of the virtuoso ruleset, querying the repository,
deletion of graphs. In addition one can specify the folder containing the locally
stored content, and whether an existed graph should be overwritten or not.

In case one wants to add a new source, the following actions are needed:
(a) include the fetcher class for the specific source as plug in, (b) provide the
mapping files, (c) include the transformer class for the specific source as a plug
in and (d) provide the SILK rules as xml files.

5 The Resulting Warehouse and Its Current Exploitation

5.1 The Resulted MarineTLO-Based Warehouse

Here we discuss the MarineTLO-based warehouse15, which is outcome of the
above process carried out using MatWare. Its first version is described in [14].
Now it is operational16 and it is exploited in various applications. The objective
of the warehouse is to provide a coherent set of facts about marine species. Just
indicatively, Figure 7 illustrates some information about the species Thunnus

albacareswhich are stored in different sources (here FLOD, Ecoscope, WoRMS,
FishBase and DBpedia). These pieces of information are complementary and
are assembled for enabling advanced browsing, querying and reasoning. This is
also evident from Figure 8 which shows the underlying sources that contribute
information regarding the main concepts of the MarineTLO ontology.

Figure 9 shows an overview of the warehouse’s contents, as fetched and trans-
formed from the various sources. As regards its evolution, a new release of the
warehouse is published every two months. The current warehouse contains in-
formation for about 37,000 marine species. In total, it contains 3,772,919 triples.
The current warehouse takes about 7 hours17 to reconstruct from scratch. This
process includes: downloading the sources (60 min), importing the data in the
repository (230 min), applying the transformation rules (40 min), producing
sameAs links using SILK (30 min), and computing the mertics (100 min). As re-
gards query evaluation, the time required to answer a competency query ranges
from 31 ms to 3.4 seconds. The query rewriting for provenance (which is done

15 Complete documentation, competency queries, SILK rules and examples are avail-
able in http://www.ics.forth.gr/isl/MatWare/#products

16 URL of the warehouse (restricted access):
http://virtuoso.i-marine.d4science.org:8890/sparql

17 Virtuoso and machine specs: OpenLink Virtuoso V6.1, Windows 8.1, 64-bit, Intel i3
dual-core, 4 GB RAM.

http://www.ics.forth.gr/isl/MatWare/#products
http://virtuoso.i-marine.d4science.org:8890/sparql

732 Y. Tzitzikas et al.

Thunnus Albacares

YFT

FAOCode isIdentifiedBy

hasCodeType

Benguela

Ecosystem

Katsuwonus

Pelamis

usuallyIsBiotic
ComponentOf

usuallyIsPreyOf
usuallyIsPredatorOf

Tuvalu

isNativeAt

scientificName
Assignement

Thunnus

Albacares

Bonatterre

1788

assignedName

authorship

asssignedDate

isReferencedBy

Thunnus Albacares

(Bonatterre, 1788)

Froese R, and D Pauly

Editors 2013 Fishbase

N. Baily

2013

title

inSource

author

date

Spanish

assignedName

hasLanguage

Albacare

Spain
usedIn

commonName
AssignementThunnus

Scombridae

Peciformes

Actinopterygii

Chordata

Animalia

belongsTo

belongsTo

belongsTo

belongsTo

belongsTo

belongsTo

ECOSCOPE

FLOD

FishBase

DBPedia

WoRMS

Fig. 7. Integrated information about Thunnus albacares from different sources

Concepts Ecoscope FLOD WoRMS DBpedia FishBase
Species � � � � �

Scientific Names � � � � �

Authorships � � �

Common Names � � � � �

Predators � �

Ecosystems � �

Countries �

Water Areas � �

Vessels � � �

Gears � � �

EEZ �

Fig. 8. Concept coverage by the sources in the MarineTLO-based warehouse

automatically by MatWare) does not increase the query evaluation time. After
each reconstruction, MatWare computes the various connectivity metrics and ex-
ports them in the form of an HTML page, as shown in Figure 10. This not only
enables monitoring the quality of the warehouse, but it is also a kind of quan-
titative documentation of the warehouse. For instance, and for the warehouse
at hand, by considering the values of the complementarity factors and the in-
crement of the average degrees (recall Section 3.5) we can understand that the
resulting warehouse not only contains concrete information for each entity from
all sources, but we can also see how much the average degree of these entities
has been increased in the warehouse.

MatWare: Constructing and Exploiting Domain Specific Warehouses 733

Fig. 9. Overview of the MarineTLO-based warehouse

Fig. 10. Metric’s results displayed in HTML

5.2 Applications over the Warehouse

Here we describe three applications that exploit the current warehouse

A. Fusion of Structured and Unstructured Data at Search Time. One
big challenge nowadays is how to integrate structured data with unstructured
data (documents and text). The availability of harmonized structured knowledge

734 Y. Tzitzikas et al.

about the marine domain is currently exploited for a semantic post-processing
of the search results. Specifically the work done in the context of iMarine so far,
described in [2,3], proposed a method to enrich the classical (mainly keyword
based) searching with entity mining that is performed at query time. The left
part of Figure 11 illustrates the process, while the right part depicts a screen
shot from a prototype search system.

query
terms (top-L) results

(+ metadata)

Entity

Mining

Semantic

Analysis

Visualization/Interaction
(faceted search, entity

exploration, annotation,

top-k graphs, etc.)

entities / contents

semantic

data

web
browsing

contents

Yannis Tzitzikas et al., MTSR 2013,

Thessaloniki

MarineTLO

Warehouse

Fig. 11. Semantic post-processing of search results

In particular, the results of entity mining (entities grouped in categories) com-
plement the query answers with information which can be further exploited by
the user in a faceted and session-based interaction scheme [13]. This means that
instead of annotating and building indexes for the documents (or web pages),
the annotation can be done at query time and using the desired entities of in-
terest. These works show that the application of entity mining over the snippets
of the top hits of the answers can be performed at real-time, and indicated
how semantic repositories can be exploited for specifying the entities of interest
and for providing further information about the identified entities. For applying
these methods over the full-contents it is worth exploiting multiple machines. A
MapReduce-based decomposition is described in [6].

B. Fact Sheet Generator. FactSheetGenerator18 is an application provided
by IRD aiming at providing factual knowledge about the marine domain by
mashing-up relevant knowledge distributed across several data sources. Figure
12(left) shows the results of the current FactSheetGenerator when searching for
the species Thunnus albacares.

C. Android Application. We have developed (and currently improve) an An-
droid application, called Ichthys that exploits the contents of the warehouse
for providing to end users information about marine species in a user friendly
manner. A few screens are shown in Figure 12(right).

18 http://www.ecoscopebc.ird.fr/

http://www.ecoscopebc.ird.fr/

MatWare: Constructing and Exploiting Domain Specific Warehouses 735

Fig. 12. Left: Thunnus albacares in FactSheetGenerator, Right: Screens from the
Ichthys Android application

6 Concluding Remarks

We have described the main requirements and challenges, stemming from our
experience in designing, building, maintaining and evolving an operational se-
mantic warehouse for marine resources. We have presented the process and the
tools that we have developed for supporting this process with emphasis on scope
control, connectivity assessment, provenance, and freshness. To tackle these re-
quirements and automate the warehouse construction process we have developed,
MatWare, an extensible tool for supporting and automating the above process.
In future we plan to elaborate on improving the scalability as the volume of
data grows (e.g. using a single graph space that materializes all triples for offer-
ing efficient query answering, while keeping also the separate graph spaces for
provenance reasons). Furthermore, we plan to further work on the evaluation of
the quality of the warehouse’s contents.

Acknowledgement. This work was partially supported by the ongoing project
iMarine (FP7 Research Infrastructures, 2011-2014).

References

1. Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness Statements about
RDF Data Sources and Their Use for Query Answering. In: Alani, H., et al. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013)

2. Fafalios, P., Kitsos, I., Marketakis, Y., Baldassarre, C., Salampasis, M., Tzitzikas,
Y.: Web Searching with Entity Mining at Query Time. In: Salampasis, M., Larsen,
B. (eds.) IRFC 2012. LNCS, vol. 7356, pp. 73–88. Springer, Heidelberg (2012)

3. Fafalios, P., Tzitzikas, Y.: X-ENS: Semantic Enrichment of Web Search Results
at Real-Time. In: Proceedings of the 36th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Dublin, Ireland, July 28 -
August 01 (2013)

736 Y. Tzitzikas et al.

4. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching
and Browsing Linked Data with SWSE: The Semantic Web Search Engine. Web
Semantics: Science, Services and Agents on the World Wide Web 9(4) (2011)

5. Hu, Y., Janowicz, K., McKenzie, G., Sengupta, K., Hitzler, P.: A Linked-Data-
Driven and Semantically-Enabled Journal Portal for Scientometrics. In: Alani, H.,
et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 114–129. Springer, Heidelberg
(2013)

6. Kitsos, I., Magoutis, K., Tzitzikas, Y.: Scalable Entity-based Summarization of
Web Search Results Using MapReduce. In: Distributed and Parallel Databases
(2013) (accepted, online first)

7. Knap, T., Michelfeit, J.: Linked Data Aggregation Algorithm: Increasing Com-
pleteness and Consistency of Data

8. Knap, T., Michelfeit, J., Daniel, J., Jerman, P., Rychnovský, D., Soukup, T.,
Nečaský, M.: ODCleanStore: A framework for managing and providing integrated
linked data on the web. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 815–816. Springer, Heidelberg (2012)

9. Makris, K., Skevakis, G., Kalokyri, V., Arapi, P., Christodoulakis, S., Stoitsis, J.,
Manolis, N., Rojas, S.L.: Federating Natural History Museums in Natural Europe.
In: Garoufallou, E., Greenberg, J. (eds.) MTSR 2013. CCIS, vol. 390, pp. 361–372.
Springer, Heidelberg (2013)

10. Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: Linked Data Quality Assessment and
Fusion. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops, pp. 116–123.
ACM (2012)

11. Michelfeit, J., Knap, T.: Linked Data Fusion in ODCleanStore. In: International
Semantic Web Conference, Posters & Demos (2012)

12. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: a Document-Oriented Lookup Index for Open Linked Data. Int. J.
Metadata Semant. Ontologies 3(1), 37–52 (2008)

13. Sacco, G., Tzitzikas, Y.: Dynamic Taxonomies and Faceted Search: Theory, Prac-
tice, and Experience, vol. 25. Springer-Verlag New York Inc. (2009)

14. Tzitzikas, Y., et al.: Integrating Heterogeneous and Distributed Information about
Marine Species through a Top Level Ontology. In: Garoufallou, E., Greenberg,
J. (eds.) MTSR 2013. Communications in Computer and Information Science,
vol. 390, pp. 289–301. Springer, Heidelberg (2013)

15. Tzitzikas, Y., Minadakis, N., Marketakis, Y., Fafalios, P., Alloca, C., Mountanton-
akis, M.: Quantifying the Connectivity of a Semantic Warehouse. In: Proceedings of
the 4th International Workshop on Linked Web Data Management (LWDM 2014),
in Conjunction with the 17th International Conference on Extending Database
Technology (EDBT 2014) (2014)

	MatWare: Constructing and Exploiting
Domain Specific Warehouses
by Aggregating Semantic Data

	1 Introduction
	2 Context, Requirements and Related Work
	2.1 Context and Requirements
	2.2 Related Approaches

	3 The Adopted Integration Approach
	3.1 Tackling the Functional Requirements (F1-F3)
	3.2 Scope Control
	3.3 Connectivity Assessment
	3.4 Provenance
	3.5 Consistency and Conflicts
	3.6 The Entire Process

	4 The Warehouse Construction Tool MatWare

	5 The Resulting Warehouse and Its Current Exploitation
	5.1 The Resulted MarineTLO-Based Warehouse
	5.2 Applications over the Warehouse

	6 Concluding Remarks
	References

