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Abstract. Customers of e-commerce web sites frequently use the full text 
search to find the desired products. The ranking of the search result page  
depends on various criteria such as the matching of search terms or popularity 
of the product. E-commerce vendors usually use additional ranking criteria and 
may want to increase conversion rates by varying the rankings of the search 
hits. This paper proposes a method to measure the impact of changing the rank-
ing of the search result page. The method is applied to a b2b e-commerce shop 
with office products. 
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1 Introduction and Motivation for Research 

Although the estimates about global e-commerce trends vary, it is certainly true that 
e-commerce is growing fast; developed economies dominate the market, but emerging 
economies are expected to catch up soon. [1–5] According to the “e-commerce-
guideline”-study e-commerce revenues in Germany rose from 18.3 billion Euros in 
2010 to an estimated 25 billion Euros in 2012.[6] About 86% of Germany’s online 
retailers run their own web shop; of course other channels such as online auction plat-
forms are used as well.[6] 

Whenever a user wants to buy products from a specific web shop he can use various 
alternatives to find the desired product: rummage in product lists, browse products by 
category, use faceted search or use full text search. The full text search plays an essen-
tial role in an e-commerce system: up to 80% of the visitors use only the full text search 
to find the desired products – a phenomenon that seems to be learned from usage of the 
Google search engine. One third of the visitors leave a web shop because they cannot 
find the desired products – even if the products are offered. The search engine has to 
deliver search hits accurately and quickly and has to be tolerant of typing mistakes and 
synonyms, and the search has to understand industry jargon.[6] If the customer uses the 
full text search it leads to the question as to how the search hits in the search result page 
can be ordered. Several sort criteria can be identified and of course combined together 
such as matching of search text to product title and / or product description and / or 
product category, average customer review, popularity, price, and many others. Howev-
er, the ranking that is desired by the customer will be different to the desired ranking of 
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the company that runs the web shop. A company may want to rank products according 
to different criteria. It may, for example, rank those with the highest contribution mar-
gins highest or those which are discontinued items or fast moving consumer goods. 
Alternatively, it may be important for a company to rank goods which are on stock 
highest or which should be sold as quickly as possible for various other reasons. As a 
result of this, web shop operators try to combine and weigh several ranking criteria and 
assume that products that are displayed at the top of the page have better conversion 
rates and are thus ordered more often. A number of software products (like Factfinder, 
exorbyte, celebros, and many others) support these considerations. However, two ques-
tions remain: What is the impact on the conversion when a product is better ranked? 
And how can we measure this impact in an environment that does not support a simple 
parallel A/B test setting due to technical restrictions?  

The objective of this paper is to develop a method to measure the impact of varia-
tions of the search result page of a web shop, to apply this method and to evaluate the 
factual impact. In order to attain this objective, we set up a methodology as follows: 

1. Development of the measurement method.  
The quite technical complex infrastructures of larger web shops (web shop soft-
ware, combined with an ERP-system, a system that enables rankings according to 
specific product attributes, load balancers) and the complex environment (b2c- as 
well as b2b-customers with different price structures, product portfolios, etc.) pro-
hibit the application of a simple A/B-test setting. Hence a method to measure the 
impact of different rankings has to be developed. Due to these technical restric-
tions, the method is a trade-off between a scientifically sound measurement and a 
technically realizable measurement method. 

2. Implementation of the method.  
The method will be implemented with several tools, e.g. Google Analytics. 

3. Application of the method.  
The method will be used in one specific case (web shop with office materials). 

2 Related Work, Background 

A/B testing and multivariate testing are commonly used in web development; these 
methods allow website operators to run experiments on website users. A/B testing is 
an experiment that compares two versions (A and B) of a webpage; the versions are 
identical except for one variation. The versions are randomly displayed to the visitors; 
the version that contributes most to the goal conversions is the one which is preferred 
by the visitors. Multivariate testing is similar to A/B testing, but enables us to test 
more than two different versions at the same time. [7, 8] 

Several studies and publications focus on “success-factors” for e-commerce  
websites. A number of researchers investigate the connection between usability and 
the success of e-commerce sites: [9] evaluated commercial websites in order to find 
usability problems; [10] emphasize the importance of user-friendly interface of  
electronic shops; they applied heuristic evaluation to examine the usability of several 
e-commerce sites. As a result the authors provided a set of usability guidelines.  
Some researchers broadened the evaluations and also took related attributes into con-
sideration (e.g. design attributes [11], aesthetic design and complexity [12]). Some 
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researchers discuss convenience as an important factor for online shopping; conveni-
ence in e-commerce is defined as the range to which customers feel that a website  
is simple, sensory and user-friendly. [13, 14] Additionally, sometimes the cultural 
context in multilingual websites is considered as well (e.g. [15]). 

An important factor for the success of e-commerce sites is trust. Users often  
hesitate to place orders on web shops because of uncertainty about the vendor, vendor 
behavior or perceived risks. A variety of research work focusses on this topic,  
e.g. [16] developed a typology and trust measures for e-commerce, [17] investigate 
the impact of trust on purchase decisions in the context of e-products and e-services.  

The impact of online reviews and electronic word-of-mouth offers a broad range  
of research activities: e.g. [18] investigate the impact of online reviews on revenues  
of consumer electronics and video games. The authors show that reviews have signif-
icant impacts on revenues, but that the effect decreases over time. [19] determine the 
impact of online travel reviews, [20] test the impact of hotel reviews. 

Interestingly, to our best knowledge we could not find scientific papers that re-
search the impact of the ranking of search results in e-commerce shops. One can find 
many blogs and more or less reliable “studies” about this topic (e.g. [21]); especially 
in the area of search engine optimization we can find many hints, blog posts and “stu-
dies”. We can summarize the discussions simply as: the better the ranking of a search 
hit, the better the conversion rate is. Unfortunately, there are no publicly available 
reliable investigations about the impact of search rank on the conversion rate of a 
product in e-commerce systems. 

3 Measurement Method 

The setup of the measurement method is proposed as follows: 

• Experimental setup.  
We define a control group and an experimental group of products in three different 
product categories. The control groups have the “usual” ranking factors; the expe-
rimental groups are based on other ranking factors. Since it is technically not poss-
ible to measure the effects (comparable to an A/B test setting) temporally parallel, 
the measurements are carried out alternately in time sequence (see figure below). 
In order to avoid biases, we use product categories that have no seasonal fluctua-
tions and chose weeks that contain no bank holidays. 

Table 1. Setup of timing 

 Week 
1 2 3 4 5 6 7 8 

Category 1 control group 1 X  X  X  X  
experimental group 1  X  X  X  X 

Category 2 control group 2 X    X  X  
experimental group 2  X  X  X  X 

Category 3 control group 3 X    X  X  
experimental group 3  X  X  X  X 
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• Tracking.  
In order to track the effects, we set up a web analytics tool (Google Analytics). 
Several settings and prerequisites have to be undertaken: event tracking and  
e-commerce tracking have to be configured and the tracking code has to be imple-
mented in the web shop. The event tracking should detect that (i) the full text 
search was used, (ii) a product of one of the monitored categories was put into the 
basket from the search engine result page or from the subsequently loaded product 
page, (iii) a product of one of the monitored categories was put on the watch list. 
The e-commerce tracking logs the transaction data. 

• Export and data analysis.  
The gathered data have to be exported from the analytics tool and merged with the 
exported product data from the ERP-system that contains the detailed configuration 
ranking settings. 

Discussion of the setup and remaining challenges:  

• Trade-off  
As mentioned above, the proposed measurement method is a trade-off between a 
scientifically sound measurement and a technically and economically possible 
measurement.  

• Deleted cookies, different browsers  
Most web analytic tools rely on cookie tracking which means there is already an 
inaccuracy resulting from the use of different browsers or deleting existing coo-
kies. 

• No transfer of the referrer  
Our javascript event tracking needs for the tracking of "add to basket" clicks from 
the product page (after the use of the full text search) the referrer. Some company's 
firewalls don't transfer it, so this may lead to fuzziness of the tracking. 

• Impact of situation in b2b-webshops  
Since the measurement takes place in a b2b-environment, we were able to find find 
an order scenario as follows: user A puts products in basket, user B approves the 
basket and places the order. Thus, the question as to how this scenario could be 
measured (or excluded) arises. 

• Effects of users’ behavior  
The web shop offers the users a watch list to collect products for later ordering; the 
impact on the usage is not easy to measure. 

• Inaccuracies due to different browsers  
Most of the common web analytics tools use cookie tracking. Therefore inaccura-
cies can arise if different browsers are used or if existing cookies are deleted. 

• Temporal connections  
We have to face order scenarios where a user searches a product und puts it in the 
basket, but orders the basket a couple of days later. In this scenario the question 
remains concerning how the temporal connection between the search event and the 
order event can be established. 
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4 Application of Measurement Method, Results 

4.1 Application of Measurement Method 

We applied the suggested measurement method to a specific web shop: the web shop 
is a b2b-web shop and contains office products. The b2b-scenario implies that differ-
ent customers are offered a different product spectrum and that customers may have 
different prices, terms and conditions. 

As described in the section above, we defined three different product categories: 
file folder (108 products), text highlighter (116 products) and correction products and 
correction fluids (30 products). These product categories were chosen because there 
are no seasonal fluctuations. The next step was to implement the tracking functions; 
we decided to use Google Analytics. In order to track the interesting measures, we 
had to implement the following functions: 

• E-Commerce tracking  
The first step was to activate the e-commerce tracking option. After activation one 
can use the Javascript-functions “_addTrans()”, “_addItem()” and “_trackTrans()” 
to track transactional data. 

• Tracking site search  
This option is an elective one, but it is useful to record search terms. 

• Event tracking   
Subsequently, the event tracking has to be implemented. Google Analytics offers 
the Javascript-function “_trackEvent(category, action, opt_label, opt_value, 
opt_noninteraction)” to track events. The following events have to be taken into 
consideration: (i) search leads to products in the defined categories, (ii) product is 
put into the basket (directly from the search engine result page or indirectly from 
the product-detail page), and (iii) product is put on the watch list. The function 
“_gaq.push” fires the tracking events to Google Analytics. 

As described in chapter 3, the measurement took place during 8 weeks between  
mid-September and mid-November. Both the control group the experimental group 
contained the same product categories and products. The only difference was that 
different ranking weights (“spread configuration”) were applied to the experimental 
group. The meaning of the spread is as follows:  

• Spread 0: no devaluation 
• Spread 1: devaluation of 0.33% 
• Spread 2: devaluation of 0.66% 
• Spread 3: devaluation of 0.99% 

We hypothesize that products that are devaluated with a spread-configuration (i)  
are put into the basket less often and (ii) are less often ordered. The comparison takes 
place by using the control group (no spread configuration applied) and the experimen-
tal group (spread configuration is active). 
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