

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2014, LNCS 8510, pp. 445–456, 2014.
© Springer International Publishing Switzerland 2014

A Practical Solution for the Automatic Generation
of User Interfaces – What Are the Benefits

of a Practical Solution
for the Automatic Generation of User Interfaces?

Miroslav Sili1, Christopher Mayer1,*, Martin Morandell1, Matthias Gira1,
and Martin Petzold2

1AIT Austrian Institute of Technology GmbH, Health & Environment Department,
Biomedical Systems, Donau-City-Str. 1, 1220 Vienna, Austria

2 ProSyst Software GmbH, Dürener Str. 405, 50858 Köln, Germany
{miroslav.sili,christopher.mayer,martin.morandell,
matthias.gira}@ait.ac.at, m.petzold@prosyst.com

Abstract. Older adults benefit from information and communication technolo-
gy solutions in the Ambient Assisted Living (AAL) domain. The offered user
interfaces for these ICT solutions often do not take the special needs, prefe-
rences and the physical and mental capabilities of older adults into account. The
project AALuis focuses on solutions to increase accessibility, adaptability and
usability of user interfaces in the AAL domain. The paper describes the func-
tionality of the AALuis layer and the different steps involved stakeholders have
to cover to benefit from the user interface generation framework. A detailed
comparison between the traditional user interface design and the AALuis ap-
proach lists similarities and identifies differences in the user interface genera-
tion process.

Keywords: Ambient Assisted Living, Human-Computer Interaction, User In-
terface, Framework, Task Model, Automatic Adaptation.

1 Introduction

Needs and wishes regarding the interaction with ICT solutions change over time and
vary between older adults. They depend on the user’s physical and cognitive capabili-
ties and his/her preferences. Thus, the user interface (UI), which can be critical to the
success or failure of an ICT service, needs to be flexible and adaptable to support the
user’s abilities. AALuis1 focuses on solutions within the Ambient Assisted Living
(AAL) domain and provides an open middleware layer to guarantee accessible and
usable UIs for different services [1].

1 www.AALuis.eu

446 M. Sili et al.

2 Objectives

The main objective of AAL
of ICT services to various
user’s preferred way. The
and its representation to the
work embedded into or con
UMO [3]. This concept su
(UID) and service provider
way. The end-user (EU) is
benefit from the consistent

The developed solution c
the automatically generated
tation enable reaction to c
with ICT solutions over tim
older adults is very heterog
offered to each single user b

AALuis uses an interacti
scribing the interaction flo

Fig. 1. The UI generation pro
CTT notation are used to gen
leads to the concrete UI in HTM

Luis is to provide the possibility to connect different ty
s user interfaces and offers thereby an interaction in
basic concept is to detach the functionality of the serv
e user, and to provide a standardized way to use the fram
nnected to existing platforms in use, such as HOMER [2
upports service developers (SD), user interface design
rs (SP) in providing the services in a usable and accessi
not directly affected by the separation of concerns, but
look and feel of user interfaces for various applications.
closes the gap between the functionality of the service

d UI (figure 1). Automatic UI generation and runtime ad
changing needs and preferences regarding the interact
me and variations between older adults. As the group

geneous the personalization and customization possibili
by AALuis are of high importance.
ion model in Concur Task Trees (CTT) notation [4][5]
ow of the service. The UI generation process takes i

ocess in AALuis. Service methods and the interaction mode
nerate intermediate steps in MariaXML. The final transforma
ML5.

ypes
the

vice
me-

2] or
ners
ible
can
.
and

dap-
tion
p of
ities

de-
into

el in
ation

 A Practical Solution for the Automatic Generation of User Interfaces 447

account the user’s preferences and capabilities as well as the context of interaction
(e.g., properties of available devices, etc.) [6]. The intermediate steps from the service
description to the concrete UI in HTML5 are represented in Model based lAnguage
foR Interactive Applications (MariaXML) [7].

Who are the main stakeholders to benefit from the UI generation framework and
what do they need to do to benefit? The solution mainly helps service developers,
service providers and finally older adults using the provided services and their func-
tionality. To finally reach the beneficial solution, of customized service interaction,
each stakeholder group has to conduct certain tasks, which are described in the meth-
odology section.

3 Brief State of the Art

In recent years, an increasing amount of research focused on the user interface and
thus on the representation of services in general and in particular for older adults. In
the following some selected and relevant research projects and their approaches are
described. GUIDE has focused on a novel adaptive accessibility framework and a
characterization of individual users for creating accessible TV applications [8]. MyUI
has addressed the provision of individualized UIs which are accessible to a broad
range of users by the collection of information about the user during the interaction
and updating the user profile accordingly [9]. EGOKI uses a similar approach as
presented in the paper. It is based on the UCH [10], which acts as a middleware for
ubiquitous interaction, and UIML for the abstract representation of the UIs [11]. The
Universal Remote Console (URC) framework facilitates pluggable and handcraft user
interfaces, which are designed for a specific target group, context of use and applica-
tion based on the so-called (user interface) socket [12]. The project universAAL fol-
lows an automatic UI generation approach [13] and is based on the usage of XForms
for the definition of an abstract data model combined with a set of abstract user inter-
face components [14]. The Cameleon Reference Framework (CRF) distinguishes four
layers of user interfaces, namely tasks and concepts, the abstract user interface, the
concrete user interface, and the final user interface [15]. A similar concept is applied
in the AALuis approach.

4 Methodology

In order to achieve the above mentioned objectives the layer is developed in a flexible
way. The different involved stakeholder groups (figure 2) have to cover the following
steps to benefit from the user interface generation framework.

Service developers (SD) need to develop the service functionality in a first step.
The service can be either included as a web service or as a separate Open Service
Gateway initiative (OSGi) [16] component. Besides the implemented service, the
interaction model, which represents the logical activities to be conducted to reach the
user’s goal, has to be provided using the CTT notation, a W3C working draft [17].
Alongside, a binding file in XML format connects concrete service methods to its

448 M. Sili et al.

corresponding CTT tasks. An optional content file can be used by the service devel-
oper to provide necessary additional resources for the UI generation (e.g., sign
language videos, pictures). If there is a need, user interface designers (UID) can
optionally update and change the used transformation rules for optimizing (e.g.,
corporate identity) the UI and add additional I/O modalities.

The service providers (SP) need to deploy the AALuis middleware layer and to
provide access to the connected services. Additionally, they have to enable the I/O
devices to be used by the end-user. These devices run a dedicated application respon-
sible for communication with the AALuis layer and presenting the final UI. A user
model can be selected and adapted to meet the user’s preferences and to map his/her
physical and cognitive capabilities, as used in the transformation process. These user
preferences can be modified at any time (real-time) by either the end-user or his/her
(in-) formal caregiver.

The end-user (EU) can directly use the AALuis service on all enabled I/O devices
and benefit from the dynamically adaptable UIs.

Fig. 2. Tasks to be fulfilled by the different stakeholder groups to benefit from AALuis

4.1 The User Interface Development Process

During the development process, service developers and UI designers have to consid-
er several steps from the service on the one side, towards the final user interface on
the other side. Table 1 depicts required and optional steps in a traditional, handcrafted
UI design process and in the AALuis UI design process. The aim of the table is to
uncover benefits, but also potential weaknesses, of the AALuis layer in comparison to
a traditional, handcrafted UI design process.

The comparison illustrates that both approaches have some steps in common (steps
A, D, E and F), but also that one step on the traditional approach (step H) and three
steps on the AALuis approach (steps B, C and G) are not necessary in the other ap-
proach. The different colors in the table refer to the different stakeholders to be in-
volved in each step. The blue color indicates the service developers, and in contrast
the green colors stand for the user interface designer. The service provider is repre-
sented by the yellow colors in step I. The final step J is performed by the end-user
interacting with the user interface and thus the service.

 A Practical Solution for the Automatic Generation of User Interfaces 449

The table illustrates also mandatory steps (A, B, C, D, E for handcrafted approach
and A, D, E for the AALuis approach) and optional steps (F and G for handcrafted
approach and F and H for the AALuis approach).

Table 1. Comparison of required and optional steps that different stakeholder groups have to
consider during the user interfaces generation process

Step A. The separation of the service from the final user interface is an important
issue in the UI development process. Both approaches have this step in common.
Regardless of the approach – the business logic defined in a remote web service or in
the same application – a back-end side is necessary, to which an UI can act as a front-
end. A clear separation between this back-end and the UI allows service developers to
focus on the service functionality, rather than on the user interface. They need not be
concerned with requirements for specific users or specific target groups regarding
service data representation. Responsibility for a suitable, user-specific representation
of data and interaction of a service is at the UI designer or in the case of AALuis
mainly in the layer itself.

As mentioned before, the AALuis layer is able to generate user interfaces for any
kind of service. Generally a service can be described as a piece of software program

Step Traditional UI generation process AALuis UI generation process

A (SD) Define the service (business logic)

B (UID) Select the target device (tab-
let, PC, TV, other)

-

C (UID) Select the application type
(web, native, hybrid)

-

D (UID) Implement UIs for the target
device

(SD) Create the interaction model

E (UID) Implement connectors, han-
dlers, listeners etc. to connect the
service and the UIs

(SD) Create the binding file which
defines connections between the
service and the interaction model

F (UID) Optional: Implement or adopt
UIs for different target devices

(UID) Optional: Crate new trans-
formations for new target devices
which are not provided so far

G (UID) Optional: Adopt UIs to spe-
cial user needs

-

H - (UID) Optional: Adopt the trans-
formation if the generated UIs do
not fulfil the expected results

I (SP) Publish the service and the UIs

J (EU) Use the service and the UIs

450 M. Sili et al.

that is able to exchange data with a user or another service. By using this description
it becomes clear, that AALuis can be used for remote located web services but also
for the interaction with a local application or device. The following two examples
illustrate the usage of the AALuis layer with two complementary types of services:

• AALuis in the context of interaction with a local heating control device in a smart
home environment.

• AALuis in the context of an external mobile caregiver and its “meals on wheels
ordering” web service.

To facilitate the service inclusion process for already existing services, but also to
reduce frame conditions for new, upcoming services two different approaches for the
service integration in the AALuis have been developed. Services can be integrated via
the Simple Object Access Protocol (SOAP) [18] but also via the OSGi specification.
The former offers a great opportunity for service developers because it allows the
service implementation on any machine, any platform or in any programming lan-
guage. The only two constrains for this approach are: a) the service is reachable via
LAN or WAN and b) the service is accessible via SOAP. The latter approach, the
service definition via the OSGi specification, is especially useful for local devices or
for local services provided by an OSGI based AAL middleware platforms like
HOMER and universAAL [19].

Step B. In the traditional UI generation process the UI designer has to select a spe-
cific target device or at least to be aware of its technical constraints. In contrast, the
AALuis approach comes already with a default set of supported target devices, like
the tablet/smartphone, PC or TV. Thus, using the AALuis layer neither service devel-
opers nor user interface designers have to select a specific target device for the new
service.

Step C. Step C is closely related to Step B. In many cases application types are de-
termined by the device constrains. However, in the traditional approach UI designers
have to decide the best suited application type for the service and for the selected
target device(s). Service developers using the AALuis approach do not need to decide
this for a new service. The built in set of default target devices are already imple-
mented as hybrid applications. They benefit from the native hard- und software ad-
vantages of the specific target device but use also web based methods for the commu-
nication with the AALuis layer.

Step D. Traditional, handcrafted UIs can be built in many different ways. UI design-
ers may use their preferred programming langue to generate a graphical user interface
(GUI), use HTML for web based UIs or proprietary implementations for specific
devices. One of the advantages of this approach is the possibility to tailor a specific
UI for a specific use case. At the same time, this can be considered a disadvantage of
tailored UIs, since every new service requires a newly tailored user interface.

 A Practical Solution for the Automatic Generation of User Interfaces 451

Regarding the interaction model, handcrafted UIs have an implicit user-service in-
teraction model. The front-end knows how to handle user actions and how to send
them to the service in the back-end. The services in the back-end know how to update
the UI in the front-end. In contrast, AALuis needs, an explicit interaction model. The
interaction model describes possible interaction steps between the user on the one side
and the service on the other side in a formal way. This formal description becomes
necessary when both sides have the potential to alternate. AALuis provides automatic
generated user interfaces (alternation on the one side) for different services (alterna-
tion on the other side).

For the interaction model in AALuis the Concur Task Trees (CTT) notation is
used. The CTT notation distinguishes between interaction, system, user and abstract
tasks. Interaction tasks are performed by user interactions with the system. User tasks
represent internal cognitive or physical activities performed by the user and abstract
tasks are used for complex actions which need sub-tasks of different categories [20].
Service developers may use a graphical user interface tool, namely the Concur Task
Trees Environment (CTTE), to design and test interaction models for their services
[21].

Step E. Step E focuses on the connection between the service, and the user interface
and the interaction model, respectively. Handcrafted UIs have usually a concrete con-
nection to the service via a specific controller, some handlers or listeners. The UI is
aware of the service in the back-end and vice versa. This awareness is not directly
present in the AALuis approach, because the layer is designed to generate multiple
user interfaces for multiple services. In this case, each service needs to be connected
to the interaction model and not to a concrete user interface. Figure 3 illustrates two
common and very often used design patterns (figure 3a and figure 3b) for software
development and their connection between the front-end (viewer or user interface)
and the back-end (model or service). Moreover, figure 3 clarifies the correlation re-
lated to the front-end-back-end communication between the design pattern in figure
3b and the AALuis approach in figure 3c.

Fig. 3. Visualization of data and event flow in the a) Model Viewer Controller (MVC) design
pattern, the b) Model Viewer Presenter (MVP) design pattern and in the c) AALuis approach

a) MVC design pat-
tern

b) MVP design pat-
tern

c) AALuis approach

452 M. Sili et al.

The MVC design pattern was developed at Xerox PARC in the late 1970’s [22]. As
illustrated in figure 3a, the pattern is based on three components the viewer, the con-
troller and the model. The model contains the data which should be represented by the
viewer. In most cases this component also contains the business logic and the back-
end service, respectively. The model is loosely coupled with the viewer and separated
from the controller. It may send notifications towards the viewer about change events
in the related data. The viewer is responsible for rendering the retrieved model data. It
also relays user actions towards the controller. The controller determinates how to act
on user actions and updates the model data accordingly. In most cases the controller
has a reference to the view and may cause the viewer to update the current shown
view.

The MVP design pattern, as illustrated in figure 3b, was developed at Taligent in
the 1990’s [23][24]. The viewer and the model have the same functionality as in the
MVC design pattern. In contrast to the MVC design pattern, the MVP completely
separates the view from the model. In this case, the communication is carried out by
the presenter. Seen from the viewer side, the presenter is responsible to receive user
actions and to cause the viewer to update the current shown view. Considered from
the model side, the presenter is responsible to receive change events from the model
and to cause an update on the models data.

The AALuis approach, as illustrated in figure 3c, follows roughly a MVP design
pattern. The interaction model acts as the presenter in the MVP design pattern and it
is aware of the viewer but also of the service and model, respectively, or the business
logic. The viewer in the AALuis approach achieves the same goal as in the MVP
pattern. The main difference is that AALuis automatically generates the viewer on-
the-fly and the interaction model is used as the basis for this transformation process.
The service contains the data that the viewer should present but also the business
logic. A simple binding file in XML format connects the interaction model with the
service. Moreover the binding file defines the mapping between interaction tasks
(CTT tasks) and input/output parameters of the service functionality.

Step F. Step F is optional in both approaches. In the traditional, handcrafted UI de-
sign process, the UI designer has to generate either new UIs for a new target device or
at least to adapt the previously designed UI to its capabilities (e.g. screen resolution,
I/O modality, etc.). This step may generate significant additional cost because the step
needs to be repeated for every new service.

In the AALuis approach, the integration of a new, currently unsupported, target
device is the first optional step that may require UI designer involvement. In contrast
to the handcrafted approach, this adaption happens only once per new device and is
independent of the service functionality. A device included in this way may serve
afterwards various services without the need of a repetitive adaption.

The transformation is composed of three separate phases. The output of the first
transformation is the Abstract User Interface (AUI), which is modality and device
independent. Based on the AUI the Concrete User Interface (CUI) is generated. The
CUI is more specific and modality and device dependent. The final phase uses the
CUI to create the Renderable User Interface (RUI). This represents the final user

 A Practical Solution for the Automatic Generation of User Interfaces 453

interface and is already enriched with preferred user settings. The AUI and the CUI
are represented in MariaXML whereas the RUI may vary from used device and output
modalities. The current implementation returns HTML5 as output but also other out-
put formats like VoiceXML [25] are possible and already under development.

Step G. Step G, the adoption of user interfaces to special user needs, is optional for
traditional UI creation, and obsolete for the AALuis approach. Traditionally, to
achieve accessibility and making a service, or interaction, available to as many people
as possible, demands a high level of expertise in the domain of assistive technologies
and underlying impairments. A thorough understanding of the target group of the
service at hand, and additionally multiple international standards, guidelines, like the
Web Content Accessibility Guidelines (WCAG) [26] or legal obligations, may also
apply.

This knowledge and practices have to be applied to every single user interface to
achieve accessibility. Appliers of AALuis on the other hand, can forget the above
mentioned methods and strategies. Accessibility is provided “out-of-the-box”. The
user generation process of AALuis utilizes a user context model, which is currently
based on the MyUI approach. Through the description of the user, his/her preferences,
capabilities and limitations, AALuis automatically selects suitable input/output de-
vices and creates suitably adopted user interfaces for them. In contrast the traditional
UI designer may have to target larger categories (e.g. visually impaired, hearing im-
paired, etc.) of users to limit resource spending. He also has to ensure that each user
employs the “correct” UI, suited best for him.

Thus Step G, adopting the UI to a certain user is managed by the AALuis layer
automatically and does not demand additional human interference, to achieve accessi-
bility or usability.

Due to the nature of AALuis, it is also possible to react to future requirements of
accessibility that go beyond the current state. Adopting the user profile, the transfor-
mation process, or adding device technology is possible. This would immediately
benefit all other services and users as well.

Step I. Step I is mandatory for both approaches. The service providers have to dis-
tribute services and UIs accessible to the end-users. Unfortunately it is not possible to
generalize the distribution possibilities for traditional UIs because this can be realized
in different ways. Concerning AALuis, service providers have to fulfil the following
distribution tasks:

• Deploy the AALuis middleware layer and make it available to the target devices
via LAN or WAN.

• Initialize a default user preference set for each AALuis user.
• Enable and configure I/O devices so that they are able to connect to the deployed

AALuis middleware layer.

Step J. The final Step J represents the end-user who interacts with the provided UIs
and the underlying services. This step is also common for both approaches.

454 M. Sili et al.

5 Results and Conclusion

This paper has given an overview of the functionality of the AALuis layer and its
practical deployment of automatic user interface generation. The presented compari-
son between the traditional, handcrafted approach and the AALuis approach listed
similarities, and identified differences in the UI generation process. Although both
procedures are able to produce user interfaces that satisfy the needs and preferences of
the end-user, the comparison has shown that the two approaches differ regarding the
effort each stakeholder has to fulfil to achieve this goal. One of the most significant
findings to emerge from this comparison is that the AALuis layer is able to generate
UIs for different services without any involvement of the user interface designer. In
general, the overall goal of AALuis project is to provide a common tool which is able
to reduce the development costs for new and innovative user interfaces and services
especially for the target group of older adults. AALuis is currently still in the devel-
opment stage. The upcoming user trials will help to identify weaknesses in the UI
generation process as well as in the interaction with the implemented services. AA-
Luis will be released as open source in autumn 2014.

Acknowledgement. The project AALuis is co-funded by the AAL Joint Programme
(REF. AAL-2010-3-070) and the following National Authorities and R&D programs
in Austria, Germany and The Netherlands: bmvit, program benefit, FFG (AT), BMBF
(DE) and ZonMw (NL).

References

1. Mayer, C., Morandell, M., Hanke, S., Bobeth, J., Bosch, T., Fagel, S., et al.: Ambient As-
sisted Living User Interfaces. In: Gelderblom, G.J., et al. (eds.) Everyday Technology for
Independence and Care, AAATE 2011. Assistive Technology Research Series, vol. 39, pp.
456–463. IOS Press (2011)

2. Fuxreiter, T., Mayer, C., Hanke, S., Gira, M., Sili, M., Kropf, J.: A modular platform for
event recognition in smart homes. In: 2010 12th IEEE International Conference on e-
Health Networking Applications and Services (Healthcom), pp. 1–6. IEEE (2010)

3. Verklizan: Intelligent software for monitoring centres, http://verklizan.info/
content/umo-platform/system-overview/ (accessed: January 2014)

4. Paternó, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In: Proceedings of the IFIP TC13 International Conference on
Human-Computer Interaction, INTERACT 1997, pp. 362–369. Chapman & Hall (1997)

5. Paternó, F.: Concur Task Trees: An Engineered Notation for Task Models. In: The Hand-
book of Task Analysis for Human-Computer Interaction, pp. 483–503. Lawrence Erlbaum
Associates (2003)

6. Mayer, C., et al.: User interfaces for older adults. In: Stephanidis, C., Antona, M. (eds.)
UAHCI/HCII 2013, Part II. LNCS, vol. 8010, pp. 142–150. Springer, Heidelberg (2013)

 A Practical Solution for the Automatic Generation of User Interfaces 455

7. Paternó, F., Santoro, C., Spano, L.C.: MARIA: A universal, declarative, multiple abstrac-
tion-level language for service-oriented applications in ubiquitous environments. ACM
Trans. Comput.-Hum. Interact. 16, 19:1–19:30 (2009)

8. Duarte, C., Langdon, P., Jung, C., Coelho, J., Biswas, P., Hamisu, P.: GUIDE: Creating
Accessible TV Applications. In: Gelderblom, G.J., et al. (eds.) Everyday Technology for
Independence and Care, AAATE 2011. Assistive Technology Research Series, vol. 29,
pp. 905–912. IOS Press (2011)

9. Peissner, M., Häbe, D., Janssen, D., Sellner, T.: MyUI: generating accessible user interfac-
es from multimodal design patterns. In: Proceedings of the 4th ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, EICS 2012, pp. 81–90. ACM, New York
(2012)

10. Zimmermann, G., Vanderheiden, G.: The Universal Control Hub: An Open Platform for
Remote User Interfaces in the Digital Home. In: Jacko, J.A. (ed.) HCI 2007. LNCS,
vol. 4551, pp. 1040–1049. Springer, Heidelberg (2007)

11. Miñón, R., Abascal, J.: Supportive adaptive user interfaces inside and outside the home. In:
Ardissono, L., Kuflik, T. (eds.) UMAP Workshops 2011. LNCS, vol. 7138, pp. 320–334.
Springer, Heidelberg (2012)

12. ISO/IEC. ISO/IEC 24752. Information Technology - User Interfaces - Universal Remote
Console. Part 1: Framework. 1st edn. ISO/IEC (2008)

13. Stocklöw, C., Grguric, A., Dutz, T., Vandommele, T., Kuijper, A.: Resource Management
for Multimodal and Multilingual Adaptation of User Interfaces in Ambient Assisted Living
Environments. In: Stephanidis, C., Antona, M. (eds.) UAHCI/HCII 2013, Part III. LNCS,
vol. 8011, pp. 97–106. Springer, Heidelberg (2013)

14. Boyer, J.M.: XForms 1.1. W3C Recommendation (October 20, 2009),
http://www.w3.org/TR/xforms/

15. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puter 15(3), 289–308 (2003)

16. OSGi Service Platform Core Specification (2011), http://www.osgi.org/
download/r4v43/osgi.core-4.3.0.pdf (accessed: February 2014)

17. W3C MBUI - Task Models, http://www.w3.org/TR/2012/
WD-task-models-20120802/ (accessed: October 2013)

18. W3C SOAP Version 1.2 Part 1: Messaging Framework (2nd edn.),
http://www.w3.org/TR/soap12-part1/ (accessed: February 2014)

19. Hanke, S., Mayer, C., Hoeftberger, O., Boos, H., Wichert, R., Tazari, M.-R., Wolf, P., Fur-
fari, F.: universAAL – an open and consolidated AAL platform. In: Ambient Assisted
Living, pp. 127–140. Springer (2011)

20. Miroslav, S., Matthias, G., Christopher, M., Martin, M., Martin, P.: A Framework for the
Automatic Adaptation of User Interfaces. In: Assistive Technology: From Research to
Practice: AAATE 2013, pp. 1298–1304 (2013)

21. Mori, G., Paternó, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. IEEE Transactions on Software Engineering 28(8),
797–813

22. Burbeck, S.: Applications Programming in Smalltalk-80(TM): How to use Model-View-
Controller, MVC (1992), http://st-www.cs.illinois.edu/users/smarch/
st-docs/mvc.html (accessed: February 2014)

456 M. Sili et al.

23. Potel, M., MVP: Model-View-Presenter; The Taligent Programming Model for C++
and Java (1996), http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
(accessed: January 2014)

24. Zhang, Y., Luo, Y.: An architecture and implement model for Model-View-Presenter pat-
tern. In: 2010 3rd IEEE International Conference on Computer Science and Information
Technology (ICCSIT) (2010) doi: 10.1109/ICCSIT.2010.5565090

25. W3C Voice Extensible Markup Language (VoiceXML) 3.0,
http://www.w3.org/TR/voicexml30/ (accessed: January 2014)

26. W3C Web Content Accessibility Guidelines (WCAG) 2.0, http://www.w3.org/TR/
2008/REC-WCAG20-20081211/ (accessed: February 2014)

	A Practical Solution for the Automatic Generation of User Interfaces – What Are the Benefits of a Practical Solution for the Automatic Generation of User Interfaces?
	1 Introduction
	2 Objectives
	3 Brief State of the Art
	4 Methodology
	4.1 The User Interface Development Process

	5 Results and Conclusion
	References

