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Abstract. Graphical user interfaces are usually first sketched out manually as 
hand drawing pictures and then must be realized by software developers to be-
come prototypes or usable user interfaces. This motivates our proposal of a 
smart CASE tool that can understand hand drawing sketches of graphical user 
interfaces, including forms and their navigations, then automatically transform 
such draft designs into real user interfaces of a prototype or an application. By 
using the ideas of modeling and model-transformation in model driven engi-
neering, the authors also propose a mechanism to generate graphical user inter-
faces as forms targeting different platforms. Experimental results show that our 
sketch recognition to understand hand drawing graphical user interfaces can 
achieve the accuracy of 97.86% and 95% in recognizing 7 common UI controls 
and arrows for navigation respectively. Our model transformation engine can 
generate user interfaces as forms for applications on 3 different platforms of 
mobile devices, including Windows Phone, Android, and iOS. This approach 
follows the trend to develop a new generation of smart CASE tools that can un-
derstand and interpret conceptual software design models into concrete software 
elements and components to assist the software development process in a natu-
ral way. 

Keywords: picture-driven, graphical user interface, code generation, mobile 
device, multi-platform. 

1 Introduction 

Graphical User Interface changed the way people interact with computers and compu-
ting systems more intuitively and attractively. By using GUI, a user can easily under-
stand and follow the workflow of a business process in an application. In software 
development process, early phases are very important, especially in the phase of ga-
thering software requirements. To understand and collect correct and enough informa-
tion of requirements, developers usually sketch out key ideas, including main user 
interfaces and their navigations (c.f. Figure 1a), to discuss with customers.  

Although there are different tools to assist developers design user interfaces, such 
utilities still do not have the capability to understand hand drawing user interfaces and 
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• Model-driven code generator: from the spatial structure of symbols, an Abstract 
User Interface (AUI), a platform-independent UI model of an application, is gener-
ated. This AUI model plays the role of the common model to generate different 
Concrete User Interfaces (CUIs), platform-dependent user interfaces of the same 
application.  

The main contributions of our proposal are to propose a histogram-of-gradient 
based feature for sketch recognition; to decompose the whole sketch image into se-
parable forms and controls with navigation; and to develop a framework for multi-
platform code generation based on model-driven architecture. 

The content of the paper is as follows. In Section 2, the authors briefly review 
some approaches of sketch recognition problem and UI control code generation. Our 
proposed system and experimental results are presented in Section 3 and 4 respective-
ly. Conclusions and future work are discussed in Section 5. 

2 Background and Related Work 

2.1 Sketch Recognition 

Sketch recognition is a special case of visual object recognition. There are some 
common approaches for sketch recognition, such as template matching or local fea-
ture based matching. Template matching approaches [2] [3] use color information of a 
template as the main factor to determine the similarity between the template and an 
extracted pattern from a source image. Edge-based template matching[4] can work 
well with a low-texture object such as a sketch but it is not robust with some small 
changes of the sketch. 

Local feature based approaches such as SIFT[5], SURF[6] are robust with scale 
and rotation transformations but these methods are only effective when working with 
high-texture objects. For the special case of objection recognition problem, a sketch 
object often has extra useful information such as its shape and directions of movement 
in the drawing of the sketch. This information can be extracted based on edge fea-
tures. HoG[7] is a typical feature descriptor that counts the occurrences of gradient 
orientations in localized portions of an image. This feature is well known in pede-
strian detection problem in static image. To work with various types and shapes of 
sketches, machine learning is a very common approach to think about. There are 
many learning algorithms and learning models such as: SVM[8], Neural Network[9], 
Bag of Features[10]. These algorithms often require a large dataset with high compu-
tational cost. So in this project, we try to make the implementation process as simple 
as possible. 

2.2 Model Driven Code Generation for Multi Platform Applications 

With the rapid development of different mobile platforms, an application can be de-
veloped with multiple distributions targeting multiple platforms. It would be waste of 
time and effort to redesign user interfaces of an application when it is migrated to a 
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new mobile platform. Model-driven approach is one of the promising solutions to 
help developers in porting applications for multi platforms[11]. 

In Model-Driven Development (MDD[12]), a software is first designed with high 
level models that do not depend on any specific technical background. These models 
are then transformed into low level models that are dependent on a specific platform 
and linked to a particular technology[13]. By this way, it would be convenient to de-
velop the same application on different platforms simply by transforming the abstract, 
high level models of the software into different concrete, low level models, even to 
the source code in a specific development environment. 

To solve the problem of generating the same UI design (from sketch drawing) to 
various mobile platforms, we inherit the concept of Platform Independent Model and 
Platform Specific Model[13]. A Platform Independent Model (PIM) user interface is 
independent from any specific mobile platforms while a Platform Specific Model 
(PSM) is bound to a specific technology, such as Android, Windows Phone, or iOS.  

3 Proposed Method 

3.1 System Overview 

The proposed process consists of three main phases: training phase using sketch im-
age dataset, recognizing phase to identify drawn sketch, and code generating phase. 
The overview of our system is illustrated in Figure 2.  

Training Phase: The input of this phase is a sketch dataset with multiple sketch im-
ages of common UI controls, e.g. forms, buttons, textboxes, combo boxes… Each 
sketch image is labeled corresponding to its UI control type. This module transforms 
a sketch image into a feature map. These maps are archived in the feature set to be 
used in next phase. Two feature maps are compared using a distance measure. In this 
work, Euclidean distance is chosen for simple implementation. Besides sketches of 
common UI controls, an arrow is proposed as a special sketch with many different 
characteristics to link a button to a form. Recognizing arrow must be invariant with 
shape and rotation transformation. We will discuss two algorithms to recognize these 
types of sketches in section 3.2. 

Recognizing Phase: In this phase, new sketches drawn by user when designing 
graphic user interface are classified into corresponding UI control types. Each feature 
extracted from a new sketch is compared to trained feature set. Labels of UI new 
sketches are determined based on best matched sample in the training dataset.  

Code Generating Phase: After recognizing a sketched UI, it is necessary to localize its 
position to determine its corresponding form. Based on its position, our system con-
structs the spatial structure of all controls that can be used to understand which object is 
a control, which object is a container, and what event will be generated. Finally, the 
code generator engine generates software prototype corresponding to the input sketched 
design targeting a specific platform, e.g. Windows Phones, Android, or iOS. 
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Fig. 4. Example of various directions, lengths, and shapes or navigation arrows 

The main advantage of UI control sketch recognition problem is that it does not 
need to be invariant with rotation transformation. Inspired by the idea of HoG (Histo-
gram of Gradients)[7], we propose our new simple feature map of sketch. Each sketch 
is represented as four 16x16 feature maps corresponding to four main directions {0, π 
/4, π/2, 3π/4}. This feature is used to compare with those of trained sketch samples in 
the dataset using Euclidean distance for simplicity and ease of implementation. The 
UI control recognition includes 3 steps: 

• Step 1-Compute Gradients: To take advantage of order information of points in 
sketch, angle of gradient vector is computed for each point. Formula of tangent 
vector at the ith point: 
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are combined to create feature maps in next steps. 

• Step 2- Normalize Coordinate: Since UI controls have many different sizes, we 
normalized original coordinate into feature space to make the algorithm robust with 
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h=16 is size of the feature map. 

• Step 3- Compute Feature Maps: Since this problem does not need to satisfy inva-
riance with rotation and direction of sketch movement when drawing, only the val-
ue of orientation in range of [0, π) is used. In this paper, we divide this range into 4 
bin of orientation including {0, π /4, π/2, 3π/4}. Each orientation corresponds to a 
feature maps. Feature map bases voting principle of intension. After normalization, 
we accumulate intension of the angle into corresponding map. 
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For each point in line from (xi_norm, yi_norm) to (xi+1_norm, yi+1_norm), we accumulate in-
tension of αI corresponding to four maps of each orientation. Figure 5 illustrates an 
example of feature maps for a check box sketch. 

 

(a)  Check box sketch (b) Feature map for a check box sketch 

Fig. 5. An example of feature extraction to feature map 

As mentioned before, an arrow that links controls and forms is a special type of 
sketch in our system. It is very difficult to solve both two types of sketches at the same 
time. The system is then required to recognize sketches with unpredictable directions 
and shapes. However, an arrow also has some special characteristics so that we can use 
to recognize them easier. We inherit the idea of T. A. Hammond [14] to describe an 
arrow in a specification language to simplify sketch recognition user interface: 

• An arrow is formed by three distinct segments. A distinct segment contains all 
point which has local angle approximate toπ . In case a segment has a point that its 
local angle differs with straight angle, it is separated into two segments. Figure 6 
shows an example of segment was separated into two parts. 

• Three end points of segments intersect in the same position. 
• The longest segment stays at the middle of other ones. All of arrows in Figure 4 

satisfy these properties. 

 

Fig. 6. A segment was separated into two segments 



 Picture-Driven User Interface Development for Applications on Multi-platforms 357 

Recognizing Phase 
To assist a developer in real-time manner to illustrate how the real user interface 
looks like as soon as the developer sketches out the draft design of a graphical user 
interface, we  

When the developer designs a form or a set of forms with navigations (denoted by 
arrows), he or she usually draws on the drawing pad or a sheet of paper only one UI 
control or a navigation arrow at a time. There is usually a short pause, or idle state, 
between the drawing of two consecutive UI controls or arrows. Therefore, our system 
continuously monitors the on-going drawing to detect idle states between the sketches 
of two UI controls or arrows. By this way, our system can extract a new sketch cor-
responding to a single UI control or an arrow as soon as the developer finishes draw-
ing it.  

When a new sketch is extracted from the current UI design drawing, the system 
first verifies if it is an arrow, a navigation link between UI controls. If not, the system 
then continues to pass that new sketch into its UI control recognition module. The 
sketch is then transformed to its corresponding feature map to be comparedwith the 
feature maps of trained samples. For simplicity of implementation, we use Euclidean 
metric to compute distance between feature maps. 

3.3 Code Generating Phase 

To generate source code of user interfaces for an application targeting different plat-
forms, we propose a framework following Model Driven Architecture (MDA) to easi-
ly transform source code from a platform to another one.  
 

 

Fig. 7. The overview of code generating phase for multiple platforms 
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In a model-driven approach, a high level model is required because it is the  
common model that plays the role of a bridge between different low level models 
targeting various platforms and technologies. Figure 7 illustrates the overview of our 
proposed code generating phase for user interfaces on different platforms from a sin-
gle hand drawing sketch. 

We reuse the platform-independent model of user interfaces for application on 
mobile devices proposed by C. K. Diep et.al[15]. The output of the sketch recognition 
process is not a concrete user interface that is dependent on a specific mobile platform 
but an Abstract User Interface (AUI[15] ). This model is then transformed into differ-
ent Concrete User Interfaces (CUIs [15]) 

4 Experimental Results 

For the sketch recognition phase, we conduct two experiments to testing the accuracy 
of arrow recognition and UI control recognition algorithms. For the proposed arrow 
recognition algorithm, we create a test set of 100 samples (50 positive and 50 negative 
tests). The confusion matrix is illustrated in Table 1. We have false positive rate is 
4/50 = 8% and false positive is 1/50 = 2%. The total accuracy is (46+49)/100=95%. 

Table 1. Confusion matrix for arrow sketch recognition 

Negative Positive 

Negative 46 4
Positive 1 49

 
For UI control recognition, we conduct the experiment on 420 samples divided 

equally into 7 types of controls. 280 samples are used for training and 140 samples 
are used for testing. The accuracy of the proposed method is 137/140 samples 
(97.86%).The confusion matrix for UI control recognition is shown in Table 2. We 
can see that, a text box or a radio button can be misclassified as a button (3/40 cases). 

Table 2. Confusion matrix for UI control sketch recognition 

 
 

Recognized control 

Form 
Tab 

control 
Text 
box 

Button 
Combo 

box 
Check 

box 
Radio 
button 

Actual 
control 

Form 20 0 0 0 0 0 0 
Tab control 0  20 0 0 0 0 0 
Text box 0 0 18 2 0 0 0 
Button 0 0 0 20 0 0 0 
Combo box 0 0 0 0 20 0 0 
Check box 0 0 0 0 0 20 0 
Radio button 0 0 0 1 0 0 19 

 
Figure 8 illustrates a demonstration of converting from sketch to a GUI. A sketch 

is captured by a special device such as stylus pen, tablet (c.f. Figure 8a). The current 
system can only detect and align which region is label with hand written character. 
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