
M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2014, LNCS 8510, pp. 350–360, 2014.
© Springer International Publishing Switzerland 2014

Picture-Driven User Interface Development
for Applications on Multi-platforms

Vinh-Tiep Nguyen1, Minh-Triet Tran1, and Anh-Duc Duong2

1 Faculty of Information Technology, University of Science, VNU-HCM, Vietnam
2 Faculty of Software Engineering, University of Information Technology,

VNU-HCM, Vietnam
{nvtiep,tmtriet}@fit.hcmus.edu.vn, ducda@uit.edu.vn

Abstract. Graphical user interfaces are usually first sketched out manually as
hand drawing pictures and then must be realized by software developers to be-
come prototypes or usable user interfaces. This motivates our proposal of a
smart CASE tool that can understand hand drawing sketches of graphical user
interfaces, including forms and their navigations, then automatically transform
such draft designs into real user interfaces of a prototype or an application. By
using the ideas of modeling and model-transformation in model driven engi-
neering, the authors also propose a mechanism to generate graphical user inter-
faces as forms targeting different platforms. Experimental results show that our
sketch recognition to understand hand drawing graphical user interfaces can
achieve the accuracy of 97.86% and 95% in recognizing 7 common UI controls
and arrows for navigation respectively. Our model transformation engine can
generate user interfaces as forms for applications on 3 different platforms of
mobile devices, including Windows Phone, Android, and iOS. This approach
follows the trend to develop a new generation of smart CASE tools that can un-
derstand and interpret conceptual software design models into concrete software
elements and components to assist the software development process in a natu-
ral way.

Keywords: picture-driven, graphical user interface, code generation, mobile
device, multi-platform.

1 Introduction

Graphical User Interface changed the way people interact with computers and compu-
ting systems more intuitively and attractively. By using GUI, a user can easily under-
stand and follow the workflow of a business process in an application. In software
development process, early phases are very important, especially in the phase of ga-
thering software requirements. To understand and collect correct and enough informa-
tion of requirements, developers usually sketch out key ideas, including main user
interfaces and their navigations (c.f. Figure 1a), to discuss with customers.

Although there are different tools to assist developers design user interfaces, such
utilities still do not have the capability to understand hand drawing user interfaces and

 Picture-Driven User Inte

the semantic for the naviga
tween user interface design
tical need to transform insta
software to avoid misunder
of the system. This opens
ting[1]. Figure 1 demonstra
prototypes.

(a) Sketch user

Fig. 1. Idea

Moreover, software is
platforms with the same us
redesign the user interface
application to another platf
automatically transform an
platform to a concrete reali
dows Phone, Android, or iO

In this paper, we propose
user interfaces targeting mu
interfaces. By understandin
interface design, our system
required source code for an
not only in software protot
cation to another platform j
to solve two problems in ou

• Sketch recognition: this
controls used in the quic
also determines the spati
and relationship between
a container, and what ev
UI object.

erface Development for Applications on Multi-platforms

ations between forms and controls. To bridge the gap
ns as sketches and concrete user interfaces, there is a pr
antly sketch ideas of user interfaces into concrete GUIs
rstanding and to help developers capture exactly workflo
s a new generation of computing, picture-driven com
ates the idea of turning sketch user interfaces to softw

r interface (b) Software prototype

a of sketch user interface to software prototype

often developed with various distributions for mu
er interfaces and functions. It would be time consuming
of the same software when a developer wants to port t

form. Thus it would be more convenient for developer
n abstract UI design that is independent from any spec
zation of the design for a particular platform, such as W

OS.
e our idea that to develop a model-driven method to rea
ulti platforms from hand drawing sketches of graphical u
ng the semantic of an image, in this case, a sketch of a u
m can automatically generate a concrete user interface w
n application on a specific platform. Our idea can be u
yping but also in assisting developers to migrate an ap
just by model transformations. The two main compone

ur proposed system are as follows:

component is responsible for recognizing symbols of
ck sketch design of software user interface. The compon
ial structure of these symbols to capture the topology or
n UI controls, i.e. which object is a control, which objec
vent will be generated when a user interacts with a cert

351

be-
rac-
 for
ows

mpu-
ware

ulti-
g to
that
s to

cific
Win-

alize
user
user
with
used
ppli-
ents

f UI
nent
rder
ct is
tain

352 V.-T. Nguyen, M.-T. Tran, and A.-D. Duong

• Model-driven code generator: from the spatial structure of symbols, an Abstract
User Interface (AUI), a platform-independent UI model of an application, is gener-
ated. This AUI model plays the role of the common model to generate different
Concrete User Interfaces (CUIs), platform-dependent user interfaces of the same
application.

The main contributions of our proposal are to propose a histogram-of-gradient
based feature for sketch recognition; to decompose the whole sketch image into se-
parable forms and controls with navigation; and to develop a framework for multi-
platform code generation based on model-driven architecture.

The content of the paper is as follows. In Section 2, the authors briefly review
some approaches of sketch recognition problem and UI control code generation. Our
proposed system and experimental results are presented in Section 3 and 4 respective-
ly. Conclusions and future work are discussed in Section 5.

2 Background and Related Work

2.1 Sketch Recognition

Sketch recognition is a special case of visual object recognition. There are some
common approaches for sketch recognition, such as template matching or local fea-
ture based matching. Template matching approaches [2] [3] use color information of a
template as the main factor to determine the similarity between the template and an
extracted pattern from a source image. Edge-based template matching[4] can work
well with a low-texture object such as a sketch but it is not robust with some small
changes of the sketch.

Local feature based approaches such as SIFT[5], SURF[6] are robust with scale
and rotation transformations but these methods are only effective when working with
high-texture objects. For the special case of objection recognition problem, a sketch
object often has extra useful information such as its shape and directions of movement
in the drawing of the sketch. This information can be extracted based on edge fea-
tures. HoG[7] is a typical feature descriptor that counts the occurrences of gradient
orientations in localized portions of an image. This feature is well known in pede-
strian detection problem in static image. To work with various types and shapes of
sketches, machine learning is a very common approach to think about. There are
many learning algorithms and learning models such as: SVM[8], Neural Network[9],
Bag of Features[10]. These algorithms often require a large dataset with high compu-
tational cost. So in this project, we try to make the implementation process as simple
as possible.

2.2 Model Driven Code Generation for Multi Platform Applications

With the rapid development of different mobile platforms, an application can be de-
veloped with multiple distributions targeting multiple platforms. It would be waste of
time and effort to redesign user interfaces of an application when it is migrated to a

 Picture-Driven User Interface Development for Applications on Multi-platforms 353

new mobile platform. Model-driven approach is one of the promising solutions to
help developers in porting applications for multi platforms[11].

In Model-Driven Development (MDD[12]), a software is first designed with high
level models that do not depend on any specific technical background. These models
are then transformed into low level models that are dependent on a specific platform
and linked to a particular technology[13]. By this way, it would be convenient to de-
velop the same application on different platforms simply by transforming the abstract,
high level models of the software into different concrete, low level models, even to
the source code in a specific development environment.

To solve the problem of generating the same UI design (from sketch drawing) to
various mobile platforms, we inherit the concept of Platform Independent Model and
Platform Specific Model[13]. A Platform Independent Model (PIM) user interface is
independent from any specific mobile platforms while a Platform Specific Model
(PSM) is bound to a specific technology, such as Android, Windows Phone, or iOS.

3 Proposed Method

3.1 System Overview

The proposed process consists of three main phases: training phase using sketch im-
age dataset, recognizing phase to identify drawn sketch, and code generating phase.
The overview of our system is illustrated in Figure 2.

Training Phase: The input of this phase is a sketch dataset with multiple sketch im-
ages of common UI controls, e.g. forms, buttons, textboxes, combo boxes… Each
sketch image is labeled corresponding to its UI control type. This module transforms
a sketch image into a feature map. These maps are archived in the feature set to be
used in next phase. Two feature maps are compared using a distance measure. In this
work, Euclidean distance is chosen for simple implementation. Besides sketches of
common UI controls, an arrow is proposed as a special sketch with many different
characteristics to link a button to a form. Recognizing arrow must be invariant with
shape and rotation transformation. We will discuss two algorithms to recognize these
types of sketches in section 3.2.

Recognizing Phase: In this phase, new sketches drawn by user when designing
graphic user interface are classified into corresponding UI control types. Each feature
extracted from a new sketch is compared to trained feature set. Labels of UI new
sketches are determined based on best matched sample in the training dataset.

Code Generating Phase: After recognizing a sketched UI, it is necessary to localize its
position to determine its corresponding form. Based on its position, our system con-
structs the spatial structure of all controls that can be used to understand which object is
a control, which object is a container, and what event will be generated. Finally, the
code generator engine generates software prototype corresponding to the input sketched
design targeting a specific platform, e.g. Windows Phones, Android, or iOS.

354 V.-T. Nguyen, M.-T

Fig

3.2 Sketch Recognition

Training Phase
In this paper, we focus on r
face design. There are seve
ton, combo box, check box
and button are very easy to
tant differences. Button is
straight lines and sharp co
arrow as a special type sk
shapes as illustrated in Figu
nize both graphic controls a
rithms to recognize these ty
of each problem.

(a) Form

(d) Button (e)

T. Tran, and A.-D. Duong

g. 2. Overview of the proposed system

n Method

recognizing some common UI control in graphic user in
en types of controls: main form, tab control, text box, b
x and radio button (Figure 3). Among these types, text b
o be mistaken if user does not pay attention to some imp
s drawn by smooth curves whereas text box is drawn

orners. To connect forms or tab controls together, we
ketch. An arrow can have many directions, lengths
ure 4. It is very difficult to use the same method to rec
and arrow sketch. Therefore we propose two distinct al
ypes of sketches to take advantages of specific constra

(b) Tab control (c) Text box

) Combo box (f) Check box (g) Radio button

Fig. 3. Seven types of UI controls

nter-
but-
box
por-
n by

use
and

cog-
lgo-

aints

n

 Picture-Driven User Interface Development for Applications on Multi-platforms 355

Fig. 4. Example of various directions, lengths, and shapes or navigation arrows

The main advantage of UI control sketch recognition problem is that it does not
need to be invariant with rotation transformation. Inspired by the idea of HoG (Histo-
gram of Gradients)[7], we propose our new simple feature map of sketch. Each sketch
is represented as four 16x16 feature maps corresponding to four main directions {0, π
/4, π/2, 3π/4}. This feature is used to compare with those of trained sketch samples in
the dataset using Euclidean distance for simplicity and ease of implementation. The
UI control recognition includes 3 steps:

• Step 1-Compute Gradients: To take advantage of order information of points in
sketch, angle of gradient vector is computed for each point. Formula of tangent
vector at the ith point:

1tan ()i w i w
i

i w i w

y y

x x
α − + −

+ −

−=
−

where wis the width of tangle window. After this step, we have a set of (, ,)i i ix y α
corresponding to each point of sketch and its angle. Spatial information and direction
are combined to create feature maps in next steps.

• Step 2- Normalize Coordinate: Since UI controls have many different sizes, we
normalized original coordinate into feature space to make the algorithm robust with
various sizes of control. We use the following formula to transform coordinate:

_ 5 2
i x

i norm
x

x h h
x

μ
σ

 −= + 
 

,
_ 5 2

i y
i norm

y

y h h
y

μ
σ

 −
= +  
 

where

1 1

1 1
,

n n

x i y i
i i

x y
n n

μ μ
= =

= =  , 2 2

1 1

1 1
() , ()

n n

x i x y i y
i i

x y
n n

σ μ σ μ
= =

= − = − 

h=16 is size of the feature map.

• Step 3- Compute Feature Maps: Since this problem does not need to satisfy inva-
riance with rotation and direction of sketch movement when drawing, only the val-
ue of orientation in range of [0, π) is used. In this paper, we divide this range into 4
bin of orientation including {0, π /4, π/2, 3π/4}. Each orientation corresponds to a
feature maps. Feature map bases voting principle of intension. After normalization,
we accumulate intension of the angle into corresponding map.

356 V.-T. Nguyen, M.-T. Tran, and A.-D. Duong

For each point in line from (xi_norm, yi_norm) to (xi+1_norm, yi+1_norm), we accumulate in-
tension of αI corresponding to four maps of each orientation. Figure 5 illustrates an
example of feature maps for a check box sketch.

(a) Check box sketch (b) Feature map for a check box sketch

Fig. 5. An example of feature extraction to feature map

As mentioned before, an arrow that links controls and forms is a special type of
sketch in our system. It is very difficult to solve both two types of sketches at the same
time. The system is then required to recognize sketches with unpredictable directions
and shapes. However, an arrow also has some special characteristics so that we can use
to recognize them easier. We inherit the idea of T. A. Hammond [14] to describe an
arrow in a specification language to simplify sketch recognition user interface:

• An arrow is formed by three distinct segments. A distinct segment contains all
point which has local angle approximate toπ . In case a segment has a point that its
local angle differs with straight angle, it is separated into two segments. Figure 6
shows an example of segment was separated into two parts.

• Three end points of segments intersect in the same position.
• The longest segment stays at the middle of other ones. All of arrows in Figure 4

satisfy these properties.

Fig. 6. A segment was separated into two segments

 Picture-Driven User Interface Development for Applications on Multi-platforms 357

Recognizing Phase
To assist a developer in real-time manner to illustrate how the real user interface
looks like as soon as the developer sketches out the draft design of a graphical user
interface, we

When the developer designs a form or a set of forms with navigations (denoted by
arrows), he or she usually draws on the drawing pad or a sheet of paper only one UI
control or a navigation arrow at a time. There is usually a short pause, or idle state,
between the drawing of two consecutive UI controls or arrows. Therefore, our system
continuously monitors the on-going drawing to detect idle states between the sketches
of two UI controls or arrows. By this way, our system can extract a new sketch cor-
responding to a single UI control or an arrow as soon as the developer finishes draw-
ing it.

When a new sketch is extracted from the current UI design drawing, the system
first verifies if it is an arrow, a navigation link between UI controls. If not, the system
then continues to pass that new sketch into its UI control recognition module. The
sketch is then transformed to its corresponding feature map to be comparedwith the
feature maps of trained samples. For simplicity of implementation, we use Euclidean
metric to compute distance between feature maps.

3.3 Code Generating Phase

To generate source code of user interfaces for an application targeting different plat-
forms, we propose a framework following Model Driven Architecture (MDA) to easi-
ly transform source code from a platform to another one.

Fig. 7. The overview of code generating phase for multiple platforms

358 V.-T. Nguyen, M.-T. Tran, and A.-D. Duong

In a model-driven approach, a high level model is required because it is the
common model that plays the role of a bridge between different low level models
targeting various platforms and technologies. Figure 7 illustrates the overview of our
proposed code generating phase for user interfaces on different platforms from a sin-
gle hand drawing sketch.

We reuse the platform-independent model of user interfaces for application on
mobile devices proposed by C. K. Diep et.al[15]. The output of the sketch recognition
process is not a concrete user interface that is dependent on a specific mobile platform
but an Abstract User Interface (AUI[15]). This model is then transformed into differ-
ent Concrete User Interfaces (CUIs [15])

4 Experimental Results

For the sketch recognition phase, we conduct two experiments to testing the accuracy
of arrow recognition and UI control recognition algorithms. For the proposed arrow
recognition algorithm, we create a test set of 100 samples (50 positive and 50 negative
tests). The confusion matrix is illustrated in Table 1. We have false positive rate is
4/50 = 8% and false positive is 1/50 = 2%. The total accuracy is (46+49)/100=95%.

Table 1. Confusion matrix for arrow sketch recognition

Negative Positive

Negative 46 4
Positive 1 49

For UI control recognition, we conduct the experiment on 420 samples divided

equally into 7 types of controls. 280 samples are used for training and 140 samples
are used for testing. The accuracy of the proposed method is 137/140 samples
(97.86%).The confusion matrix for UI control recognition is shown in Table 2. We
can see that, a text box or a radio button can be misclassified as a button (3/40 cases).

Table 2. Confusion matrix for UI control sketch recognition

Recognized control

Form
Tab

control
Text
box

Button
Combo

box
Check

box
Radio
button

Actual
control

Form 20 0 0 0 0 0 0
Tab control 0 20 0 0 0 0 0
Text box 0 0 18 2 0 0 0
Button 0 0 0 20 0 0 0
Combo box 0 0 0 0 20 0 0
Check box 0 0 0 0 0 20 0
Radio button 0 0 0 1 0 0 19

Figure 8 illustrates a demonstration of converting from sketch to a GUI. A sketch

is captured by a special device such as stylus pen, tablet (c.f. Figure 8a). The current
system can only detect and align which region is label with hand written character.

 Picture-Driven User Inte

However, at the meantime,
added to the interface but it
be noticed that developer is
user interface only. Then, t
any modification of the dev

The source code of grap
cation targeting iOS, Wind
an algorithm to align contr
layout. Our system current
platforms: iOS, Windows P

Fig. 8. An example of conver
application

5 Conclusion and

In this paper, we propose
sketch of a GUI draft desig
plication on different mobil
In our system, we propose
rating a sketch image into i
generate code of user interf

Currently our solution s
trols, textboxes, buttons, co
recognition module can als
priate UI navigations. More
ognition module to enrich t
of model-driven approach,
Interface to enable our syst
sets of transformation rules
platforms. For more conven
to recognize label automatic

erface Development for Applications on Multi-platforms

the system does not recognize of a label. A label contro
ts content must by edited manually by developer. It sho
s required to assign text content of the label in an abstr
this model will be transformed into different CUIs with
veloper.
phic user interface is generated automatically for an ap

dows Phone, Android (c.f. Figure 8b,c,d). We also prop
rols of the same type in a specific group to have a be
tly supports UI source code generation for 3 main mob
Phone and Android.

rting a hand drawing UI sketch into three concrete GUIs for

Future Work

a smart tool that can understand a typical hand draw
gn and realize it into concrete user interfaces for a real
le platforms, including Windows Phone, Android, and iO
an algorithm for sketch recognition, an algorithm for se
independent components, and a model-based framework
faces for applications on multiple mobile platforms.
upports 7 common UI controls, including forms, tab c
ombo boxes, check boxes, and radio buttons. Our ske

so identify arrows liking between forms to generate app
e UI controls can be trained and added into the sketch r
the usability of our proposed method. With the applicat
we utilize the Abstract User Interface and Concrete U

tem targeting various mobile platforms. Furthermore, m
s can be added so that our system can support more mob
nience, we also integrate hand written recognition mod
cally instead of manually editing by user.

359

ol is
ould
ract

hout

ppli-
pose
etter
bile

r an

wing
ap-

OS.
epa-
k to

con-
etch
pro-
rec-
tion

User
more

bile
dule

360 V.-T. Nguyen, M.-T. Tran, and A.-D. Duong

References

1. Hardesty, L.: Picture-driven computing (January 2010), http://web.mit.edu/
newsoffice/2010/screen-shots-0120.html

2. Lewis, J.P.: Fast Template Matching. In: Vision Interface 1995, pp. 120–123. Candian Im-
age Processing and Pattern Recognition Society, Quebec City (1995)

3. Ouyang, W., Cham, W.K.: Fast algorithm for Walsh Hadamard transform on sliding win-
dows. IEEE Transaction on Pattern Analysis and Machine Intelligence, 165–171 (2010)

4. Hofhauser, A., Steger, C., Navab, N.: Edge-Based Template Matching and Tracking for
Perspectively Distorted Planar Objects. In: Bebis, G., et al. (eds.) ISVC 2008, Part I.
LNCS, vol. 5358, pp. 35–44. Springer, Heidelberg (2008)

5. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision (IJCV), 91–110 (2004)

6. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Com-
puter Vision and Image Understanding (CVIU), 346–359 (2008)

7. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Confe-
rence on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

8. Sun, Z., Liang, S.: Sketch retrieval and relevance feedback with biased SVM classifica-
tion. Pattern Recognition Letters, 1733–1741 (2008)

9. Su, M.C., Hsio, T.H., Hsieh, Y.Z., Lin, S.C.: A neural-network-based sketch recognition
system. In: International Symposium on Intelligent Signal Processing and Communica-
tions Systems (ISPACS), pp. 420–423 (2012)

10. Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: Sketch-Based Image Retrieval:
Benchmark and Bag-of-Features Descriptors. Transactions on Visualization and Computer
Graphics, 1624–1636 (2011)

11. Mourouzis, A., Leonidis, A., Foukarakis, M., Antona, M., Maglaveras, N.: A Novel De-
sign Approach for Multi-device Adaptable User Interfaces: Concepts, Methods and Exam-
ples. In: Stephanidis, C. (ed.) Universal Access in HCI, Part I, HCII 2011. LNCS,
vol. 6765, pp. 400–409. Springer, Heidelberg (2011)

12. Balagtas-Fernandez, F.T., Hussmann, H.: Model-Driven Development of Mobile Applica-
tions. In: International Conference on Automated Software Engineering (ASE 2008), pp.
509–512 (2008)

13. Kherraf, S., Lefebvre, E., Suryn, W.: Transformation From CIM to PIM Using Patterns
and Archetypes. In: 19th Australian Conference on Software Engineering (ASWEC 2008),
pp. 338–346 (2008)

14. Hammond, T.A.: LADDER: A Perceptually-based Language to Simplify Sketch Recogni-
tion User Interface Development, Massachusetts Institute of Technology, Doctor of Phi-
losophy thesis (2007)

15. Diep, C.-K., Tran, Q.-N., Tran, M.-T.: Online model-driven IDE to design GUIs for cross-
platform mobile applications. In: The 4th Symposium on Information and Communication
Technology, pp. 294–300 (2013)

	Picture-Driven User Interface Development for Applications on Multi-platforms
	1 Introduction
	2 Background and Related Work
	2.1 Sketch Recognition
	2.2 Model Driven Code Generation for Multi Platform Applications

	3 Proposed Method
	3.1 System Overview
	3.2 Sketch Recognition Method

	3.3 Code Generating Phase

	4 Experimental Results
	5 Conclusion and Future Work
	References

