Gaze Location Prediction with Depth Features
as Auxiliary Information

Redwan Abdo A. Mohammed, Lars Schwabe, and Oliver Staadt

University of Rostock, Institute of Computer Science, Rostock, Germany
{redwan.mohammed,lars.schwabe,oliver.staadt}@uni-rostock.de

Abstract. We present the results of a first experimental study to im-
prove the computation of saliency maps, by using luminance and depth
images features. More specifically, we have recorded the center of gaze of
users when they were viewing natural scenes. We used machine learning
techniques to train a bottom-up, top-down model of saliency based on 2D
and depth features/cues. We found that models trained on Itti & Koch
and depth features combined outperform models trained on other indi-
vidual features (i.e. only Gabor filter responses or only depth features),
or trained on combination of these features. As a consequence, depth
features combined with Itti & Koch features improve the prediction of
gaze locations. This first characterization of using joint luminance and
depth features is an important step towards developing models of eye
movements, which operate well under natural conditions such as those
encountered in HCI settings.

1 Introduction

Being able to predict gaze locations, as compared to only measuring them, is
desirable in many application scenarios such as video compression, the design
of web pages and commercials adaptive user interfaces, interactive visualization,
or attention management systems[14,5]. However, eye movements are known to
depend on task demands, in other words, information not present in the visual
stimulus. As a consequence, algorithms based on the computation of salient
locations from only the bottom-up visual signals have principled limitations in
gaze prediction.

Eye movements have been predicted mainly using purely stimulus-driven mod-
els. Most models of saliency [6,8] are biologically inspired and based on a bottom-
up computational model which does not take into account contextual factors or
the goal of a user in a visual task. Multiple low-level visual features such as
intensity, color, orientation, texture and motion are extracted from the image at
multiple scales. Then, a saliency map is computed for each of the features and
combined in a linear or non-linear fashion into a master saliency map that rep-
resents the saliency of each pixel. This idea of saliency maps was used in other
studies, where it was extended and further developed. For example, Mahade-
van and Vasconcelos [3] proposed a discriminant formulation of center-surround
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saliency for static images. One can view their work as a normative approach, be-
cause they first formulate the saliency map computation as a problem, and then
derive their algorithm as the solution to this problem. More specifically, they
consider saliency as a decision making task informed by natural image statistics.
The outcome of their work is an automatic selection of the important features.
This improves the original Itti & Koch model [6], where the features selection
and combination was done in a heuristic way. This was later also extended to
dynamic scenes and movies using dynamic textures [8]. However, the original Itti
& Koch model was also improved recently using graphs to compute saliency [4].
This shows that the concept of saliency maps is still very fruitful and can guide
research in predicting eye movements. These saliency-based models are all based
on low-level image features. Despite this limitation, they often predict gaze well,
but mid- and high-level features also affect gaze. Therefore, Judd et al. [17] pur-
sued a machine learning approach: They learned gaze points based on measured
eye movements using a linear SVM and low-, mid- and high-level features. They
reported better predictions than Itti & Koch on 1003 images observed by 15
subjects [17].

Another line of research has investigated the depth structure of natural scenes
using range sensors [12,18,10]. This depth structure is not directly accessible to
the human vision system and needs to be inferred using stereo vision or other
depth cues. Some statistical aspects of depth images as well as the relation
between depth and luminance images have been investigated before [18,10,13],
but the statistical properties of depth images at the center of gaze are not clear
[11]. For example, simple questions such as “Do humans look more often to high
contrast edges due to depth gaps than to edges due to texture borders?” have
not been addressed yet [11]. It was shown, however, that eye movements are far
from a random sampling. It was even suggested that the statistics of natural
images differ at the center of gaze when compared to random sampling [13].
Thus, taking into account eye movements is essential for shaping artificial vision
systems via natural images. In [9] we have analyzed the saliency in 2D pixel and
depth images using a very simple feature: the local standard deviation of pixels.
We found that saliency in depth images is bimodally distributed with highly
salient locations corresponding to low salient 2D image locations. Given that
most saliency algorithms work on the 2D images, this finding points towards
including depth cues into the computation of saliency maps.

In this paper, we present the results of a first experimental study to further
improve the computation of saliency maps. More specifically, We have recorded
the center of gaze of users when they were viewing natural scenes. We first ex-
amined the statistical characterization of depth features in natural scenes at the
center of gaze. The rational for investigating depth images is that they may re-
veal the “saliency that matters”, because when interacting with the environment
we evolved by interacting with objects in a three dimensional (3D) world. Thus,
we hypothesize that saliency maps respecting this will ultimately outperform
saliency maps computed only on the basis of 2D pixel images in terms of pre-
dicting eye movements. We then examined the presence of depth features around
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gaze locations. We used machine learning to train a bottom-up, top-down model
of saliency based on 2D and depth features/cues. We used different performances
distance measures. We found that models trained on Itti & Koch and depth fea-
tures combined outperforms models trained on other individual features or other
pairs of features combined.

This paper is organized as follows: First, we describe the material and methods
including the image material (Sec. 2.1) and the features we extracted from the
luminance and depth images (Sec. 2.3 and 2.4). Then, we present the results of
our analysis, where we first compared the distribution of depth values of patches
in the center of gaze to that expected from random sampling (Sec. 3) and then
gaze location prediction when viewing photos of natural scenes (Sec. 4).

2 Material and Methods

2.1 Stimulus Material

Forty images obtained originally from Make3D project Range and Image Dataset
[15,16] were presented to five subjects. The 2D color pixel images were recorded
with a resolution of 1704 x 2272 pixels, but the depth images with a resolution
of 305 x 55 pixels. They where 40 images from “forest scene”, “city scene”, and
“landscape scene”. The users were males and females between the ages of 18 and
35. Three of the viewers were researchers in institute of computer science and
the others were naive viewers. All viewers sit at a distance of approximately 1.5
m from the computer screen of resolution 1280x1024 in a dark room and used a
chin rest combined with a bite bar to stabilize their head. An mobile eye tracker
recorded their gaze path on a separate computer as they viewed each image at
full resolution for ten seconds separated by two seconds of viewing a gray screen.

2.2 Measuring Gaze Locations

An iView X HED 4 Eye Tracking System (SMI) was used to record eye position.
The eye tracker uses two cameras. The first is used to track the pupil and the
second camera records the scene view. The gaze position is reported with a
sampling rate of 50 Hz and a reported accuracy of 0.5°-1°. We used the default
lens ( 3.6 mm ) for the scene camera which provides a viewing angle of +31°
horizontally and +22° vertically. The scene camera resolution is 752 x 480. Then,
to avoid parallax error, we calibrated in a distance within 1-1.5 m. We used a
calibration with five points so that the SMI recording software can compute the
gaze location in scene camera coordinates from the recorded pupil images. The
scene camera of the eye tracker delivers RGB frames as well as gaze locations,
both with time stamps (Figure 1 a), Also we recorded information about which
and when each image have been presented to the viewer. Our analysis were all
done offline. First we aligned the frames temporally to the high resolution images
using the information we recorded about when each image have been presented
to the viewer. Then we used normalized Cross-Correlation [7] to register each
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a)

Fig. 1. Example of a gaze registration. a) Frame from the scene camera of the eye
tracker and the corresponding gaze point (Red cross). b) Registered gaze point (Blue
cross) on the corresponding high resolution image.

part of interest in each frame to the corresponding high resolution image. Using
the transformation obtained to register each gaze point to the high resolution
image (Figure 1 b), we generated a saliency map of the locations fixated by each
viewer. Also, we convolve a Gaussian filter across the user’s fixation locations
in order to obtain a continuous saliency map of an image from the eye tracking
data of a user.

2.3 Features of Luminance Images

Different low-level features were collected. For example: the intensity, orientation
and color contrast channels as calculated by Itti and Koch’s saliency method [6].
Also, each gray-scale image is linearly decomposed into a set of edge feature
responses to Gabor filters with different orientations. We used orientations 6§ =
{0°,15°,...,165°}, but only one frequency and two spatial phases. Within each
image we subtracted the mean from the filter responses to each orientation, and
normalized the responses to the interval between —1 and 1. We used Gabor
filters responses to compare the performance with the 3D edges.

2.4 Features of Depth Images

Gap Discontinuity. A gap discontinuity in the underlying 3D structure is a
significant depth difference in a small neighborhood. We measure gap disconti-
nuity pgp by computing the maximum difference in depth between the depth of
a pixel in the depth image and at its eight neighboring pixel. Here, we considered
the methods presented in [19]; puep for a point (z,y) is defined as:

pep (z,y) =max{ | z(z,y) —z(@+iy+j) [: -1 <ij<1}, (1)

where z (x, y) represents a depth value. This quantity is then thresholded to gen-
erate a binary gap discontinuity map. In our analysis, we have empirically chosen
a threshold pep (z,y) > Tq where Tg = 0.5. Fig. 2 (b) shows an illustration of
a gap discontinuity map.
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Fig. 2. Examples for features in luminance and depth images. a) A gray-scale image
convolved with two Gabor filters selective for the same spatial frequency, but differ-
ent orientation. b) A depth map (left) decomposed into its discontinuity maps: gap
discontinuity map (middle) and orientation discontinuity map (right).

Surface Orientation Discontinuity. An orientation discontinuity is present
when two surfaces meet with significantly different 3D orientations. Orientation
discontinuity was measured using surface normal analysis. Here, we considered
the methods presented in [1,19]. The orientation discontinuity measure pop is
computed as the maximum angular difference between adjacent unit surfaces
normal. First, a three dimensional point cloud was constructed from the X,Y, Z
coordinates for each pixel in a depth image. Then, each pixel is represented by
a pixel patch P , .) compiled from the eight neighboring points in the point
cloud. Finally, the unit surfaces normal are computed for each patch P, .
using Singular Value Decomposition (SVD).

More specifically, for an image patch P, , .y the orientation discontinuity is
defined as

pop (P.y.»)) = max {a <normal (Pa,y,2)), normal <P(a: iy, Z+k)>)}

(2)
where —1 < 4,4,k <1 and normal (P(x7y7z)): is a function, which computes the
unit surface normal of a patch P, , .y in 3D coordinates using Singular Value
Decomposition (SVD), « is a function computing the angle between adjacent
unit surfaces normal. It is given by

a (Py, Py) = arccos (normal (Py) - normal (Py)) . (3)

max is function to compute the maximum angular difference between adjacent
unit surfaces normal. This measure is also thresholded, but based on two cri-
teria, namely i) an angular criterion: the maximum angular difference between
adjacent unit surfaces normals should be more than a threshold Ty; and less
than Tyo, and ii) a distance-based criterion: the maximum difference in depth
between a point and its eight neighbor’s ugp should be less than a threshold Ty.
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In our analysis, we have empirically chosen Ty; = 20° , Ths = 160° and Ty =
0.5, respectively. Fig. 2b shows an illustration of an orientation discontinuity
map.

2.5 Classifiers for Predicting Gaze Locations

Opposed to previous computational models that combine a set of biologically
plausible filters together to estimate saliency maps, we use a learning approach
to train a classifier directly from human eye tracking data. We use a linear
Support Vector Machine (SVM) to find out which features are informative. We
used models with linear kernels because it performed well for our specific task.
Linear models are also faster to compute and the resulting weights of features
are easier to understand. We divided our set of images into training images and
testing images in order to train and test our model. From each image we chose
200 positively labeled pixels randomly from the top 40% salient locations of the
human ground truth saliency map and 200 negatively labeled pixels from the
bottom 60% salient locations. In order to have zero mean and unit variance we
normalized the features of our training set and used the same normalization
parameters to normalize our test data.

For each image in our dataset, we predict the saliency per pixel using a par-
ticular trained model. We used the value of w”z +b ( where w and b are learned
parameters and x refers to the feature vector) as a continuous saliency map
which indicates how salient each pixel is. Then we threshold this saliency map
at 40% percent of the image for binary saliency maps.

2.6 Error Measure

The Kullback—Leibler (KL) divergence was used to measure the distance between
distributions of saliency values at human vs. random eye positions. We used KL
because KL is sensitive to any difference between the histograms, where other
measures essentially calculate the rightward shift of histograml relative to the
histogram2. Also KL is invariant to reparameterizations, such that applying
any continuous monotonic nonlinearity to estimated saliency map values[2]. Let
ti =1---N be N human eye positions in the experimental session. For a saliency
model, Estimated Saliency Map is sampled at the human saccade X; guman
and at a random point X; ,qndom. First the saliency magnitude at the sampled
locations is normalized to the range [0,1]. Then histogram of these values in q=10
bins across all eye positions is calculated. Pr (X gyman (1)) and Pr (X, andom (7))
are the fraction of points in bin i for salient and random points. Finally the
difference between these histograms was measured using KL divergence is:

Pr (XHuman (Z))) ) (4)

q
KL X uma'n; Xran om - P X uman ; 1 .
(Xn som) = 3P Xituman () ]

Models that can better predict human fixations show higher KL divergence.
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Fig. 3. Examples for features in luminance and depth images. a) Natural scene. b)
Fixation map recorded with our stationary setup . ¢) Itti & Koch features. d) Depth
discontinuity features.

3 Results 1: Depth Features at the Center of Gaze

We recorded eye movements data from subjects as they viewed static images pre-
sented on a computer monitor (see section 2). For each depth image we extracted
square image patches around the subject’s center of gaze. We also extracted im-
age patches selected at random positions.

3.1 Depth Values around Gaze

We first compared the distribution of depth values of patches in the center of
gaze to that expected from random sampling. It is clear that, the distribution of
depth values of patches at the center of gaze statistically differ than from ran-
dom sampling. Figure 4 (a) shows that the normalized histogram of the random
sampling from 40 scenes, averaged over all subjects, differ than the distribution
of patches in the center of gaze (see Figure 4 (b)) (with P-value = 1.091e-016 of
the two-side Kolmogorov—Smirnov (K-S) test with significance level of 0.05).

Figure 4(c) shows that the normalized histogram of patches in the center of
gaze over 40 scenes averaged over all subjects in the first three seconds of viewing
the scenes differ than the last seven seconds (see Figure 4(d)) (with P-value =
8.6504¢-065 of the two-side Kolmogorov—Smirnov (K-S) test with significance
level of 0.05). We repeated the statistical test with a maximum of 50m depth
and the results was validated.
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Fig. 4. a) Normalized histogram of depth values of random sampling over 40 scenes,
averaged over all subjects. b) Normalized histogram of depth at gaze locations, aver-
aged over all subjects. ¢) Normalized histogram of patches in the center of gaze over
40 scene for each subject in the first three seconds of viewing the scenes, averaged over
all subjects. d) Normalized histogram of patches in the center of gaze over 40 scenes
in the last seven seconds of viewing the scenes, averaged over all subjects.

3.2 Depth Features around Gaze

Before we used depth features as new information for predicting eye movements.
We examined the presence of depth features around gaze locations. The result of
the distribution of depth features in a different neighborhoods around the gaze
location averaged over all subjects are shown in Figure 5(a) and the distribution
of depth features around gaze for individual subjects are shown in Figure 5(b).
It is clear that the presence of depth features around gaze locations are high.
This suggest that saliency maps models respecting this will ultimately outper-
form saliency maps computed only on the basis of 2D pixel images in terms of
predicting eye movements.
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Fig. 5. The presence of depth features in a different neighborhoods around the gaze
points. a) Bar plot for the presence of depth features in a different neighborhoods
around the gaze points, averaged over all subjects. b) Bar plot for for the presence
of depth features in a different neighborhoods around the gaze points for individual
subjects.

4 Results 2: Gaze Location Prediction When Viewing
Photos of Natural Scenes

We measured the performance of saliency models using KL divergence (see Sec-
tion 2.6). Figure 6 describing the performance of different features models for each
subject averaged over all testing images. For each image we predict the saliency
per pixel using a specific trained model. We can see that the prediction differ ac-
cording to the type of features we selected. While the model trained on competing
saliency features from Itti and Koch perform better than the models trained on
other individual features (i.e. only Gabor or only depth features). The averaged
result over all subjects shows this finding (see the diagonal of Figure 7).
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Fig.6. The KL divergence describing the performance of different SVMs trained on
each feature individually, for individual subject

Interestingly the models trained on Itti & Koch combined with depth features
outperform models trained on other individual features (i.e. only Gabor or only
depth features), or trained on combination of these features. (see Figure 7). It
is interesting to note that, depth features combined with luminance features
improve the prediction of gaze locations.

Itti

Gabor

GapDepth

Gabor GapDepth

Fig. 7. The KL divergence matrix describing the performance of different SVMs models
trained on set of features individually and pairs of features combined, averaged over all
subjects. The main diagonal shows the performance of the models trained on individual
features. The lower/ upper triangular parts of the matrix show the performance of the
models trained on pairs of features combined.

Finally, the overall summary of our analysis is shown in Figure 7 where we
computed the KL performance for SVMs trained with different individual fea-
tures and combined together, averaged over all subjects. We perform the statis-
tical test (t-test2) for all pairs of features ( i.e. KL _Itti vs KL Gabor, KL Itti
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vs KL GapDepth and KL Gabor vs KL._ GapDepth) with significance level of
0.05 the corresponding P-values were ( 0.3740, 0.9240 and 0.4488) respectively.

In Figure 7, we see the KL divergence matrix describing the performance of
different SVMs models averaged over all subjects. The KL divergence matrix
are symmetric with respect to the main diagonal. The main diagonal shows the
performance for SVMs models trained on individual features. The lower/ upper
triangular parts of the matrix show the performance for SVMs models trained
on pairs of features combined.

5 Conclusion

We have analyzed the statistical of depth features in natural natural scenes at
the center of gaze. We found that the distribution of depth values of patches
at the center of gaze differ than from random sampling. Most interestingly, we
found that the presence of depth features around gaze locations were high. This
finding points us towards including depth cues into the computation of saliency
maps as a promising approach to improve their plausibility.

We also used machine learning to train a bottom-up, top-down model of
saliency based on 2D and depth features. We found that models trained on Itti &
Koch and depth features combined outperform models trained on other individ-
ual features (i.e. only Gabor filter responses or only depth features), or trained
on combination of these features. As a consequence, depth features combined
with Itti & Koch features improve the prediction of gaze locations.

Our approach, of using joint luminance and depth features is an important
step towards developing models of eye movements, which operate well under
natural conditions such as those encountered in HCI settings.
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