Query Answering in Datalog+/- Ontologies
under Group Preferences and Probabilistic Uncertainty

Thomas Lukasiewicz, Maria Vanina Martinez,
Gerardo I. Simari, and Oana Tifrea-Marciuska

Department of Computer Science, University of Oxford, UK
{thomas.lukasiewicz, vanina.martinez,
gerardo.simari, oana.tifrea}@cs.ox.ac.uk

Abstract. In the recent years, the Web has been changing more and more to-
wards the so-called Social Semantic Web. Rather than being based on the link
structure between Web pages, the ranking of search results in the Social Seman-
tic Web needs to be based on something new. We believe that it can be based on
user preferences and underlying ontological knowledge. Modeling uncertainty is
also playing an increasingly important role in these domains, since uncertainty
can arise due to many uncontrollable factors. In this paper, we thus propose an
extension of the Datalog+/— ontology language with a model for representing
preferences of groups of users and a model for representing the (probabilistic)
uncertainty in the domain. Assuming that more probable answers are more prefer-
able, this raises the question how to rank query results, since the preferences of
single users may be in conflict with the probability-based preferences and also
with each other. We thus propose preference merging and aggregation operators,
respectively, and study their semantic and computational properties. Based on
these operators, we provide algorithms for answering k-rank queries for DAQs
(disjunctions of atomic queries), which generalize top-k queries based on the it-
erative computation of classical skyline answers, and show that, under certain
reasonable conditions, they run in polynomial time in the data complexity.

1 Introduction

In the recent years, the Web has been shifting more and more away from data on linked
Web pages towards less interlinked data in social networks relative to underlying on-
tologies, called the Social Semantic Web. This requires new technologies for search and
query answering, where the ranking of search results is not based on the link structure
between Web pages anymore, but on the information in the Social Semantic Web, in
particular, the preferences of the users and the underlying ontological knowledge.

Modeling the preferences of a group of users is also an important research topic in its
own right. With the growth of social media, people post their preferences and expect to
get personalized information. Moreover, people use social networks as a tool to organize
events, where it is required to combine the individual preferences and suggest items
obtained from aggregated user preferences. For example, if there is a movie night of
friends, family trip, or dinner with working colleagues, one has to decide which is the
ideal movie or location for the group, given the preferences of each member. In addition,
collaborative search [18] has recently started to play an important role.

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 192-206, 2013.
(© Springer International Publishing Switzerland 2013

Query Answering in Datalog+/— Ontologies 193

Modeling group preferences comes with two challenges. The first one is to define a
group preference semantics that solves the possible disagreement among users. For ex-
ample, people (even friends) often have different tastes on how they prefer to spend their
holidays. Therefore, a system should return results in such a way that each individual
benefits from the result. The second challenge is to allow for efficient algorithms, e.g.,
to compute efficiently the answers to queries under aggregated group preferences [2].

There are many studies that are addressing the area of group modeling, which is indi-
rectly related to the area of social choice (group decision making, i.e., optimal decisions
for a user given the opinion of a collection of users), studied in mathematics, economics,
politics, and sociology [21,23]. Other areas related to social choice are meta-search
[16], collaborative filtering [14], and multi-agent systems [24]. Group preferences have
especially been studied in the area of recommender systems [2,20], which focus on
quantitative preferences. However, in many real-world scenarios, the ordering of pref-
erences is incomplete. This appears due to privacy issues or an incomplete elicitation
process (for example, because users may not want to be asked too many questions).
Furthermore, it is often difficult to determine the appropriate numerical preferences and
weights that maximize the utility of a decision [5]. For example, it is difficult for a user
to determine a numerical value (e.g., 0.7 or 0.9) to rate a certain activity. Therefore,
there is a growing interest in formalisms for representing and reasoning with qualitative
incomplete preferences [22,13,1]. These approaches, however, do not have underlying
ontologies, which are an important ingredient of the Semantic and the Social Semantic
Web, and which also provide useful information for the ranking of query results.

The presence of uncertainty in the Web in general is undeniable [12,15,19,9]. Dif-
ferent sources of uncertainty that must be dealt with in answering queries in the Social
Semantic Web are, for example, information integration (as in travel sites that query
multiple sources to find touristic tours), automatic processing of Web data (analyz-
ing an HTML document often involves uncertainty), as well as inherently uncertain
data (such as user comments or tight relationships between users).

The current challenge for Web search is therefore inherently linked to:

(1) leveraging the social components of Web content towards the development of some
form of semantic search and query answering on the Web as a whole, and (2) dealing
with the presence of uncertainty in a principled way throughout the process. In this
paper, we develop a novel integration of ontology languages with both preferences of
groups of users and uncertainty management mechanisms. We do this by developing an
extension of the Datalog+/— family of ontology languages [7] with a preference model
over the consequences of the ontology, as well as a probabilistic model that assigns
probabilities to them. The preference and the probabilistic model are assumed to model
the preferences of a group of users and the uncertainty in the domain, respectively.
The main contributions of this paper can be summarized as follows.

— We introduce GPP-Datalog+/—, which combines the Datalog+/— ontology language
with both group preferences (a generalization of preference handling in relational
databases) and probabilistic uncertainty. To our knowledge, this is the first combi-
nation of ontology languages with group preferences and probabilistic uncertainty.

— We present operators for merging single-user and score-based (probability-based)
preferences (in the form of a strict partial and a weak order, respectively), to

194 T. Lukasiewicz et al.

produce a new single-user preference relation satisfying certain basic properties.
We also present several ways to compute group preferences as an aggregation of
sets of single-user preferences, based on social choice theory [17].

— Based on an algorithm for the above preference merging and aggregation, we give
algorithms for answering k-rank queries for DAQs (disjunctions of atomic queries),
which generalize top-k queries based on the iterative computation of classical sky-
line answers. We show that answering DAQs in GPP-Datalog+/—is possible in poly-
nomial time in the data complexity modulo the cost of computing probabilities.

The rest of this paper is organized as follows. In Section 2, we recall some basics on
Datalog+/-. Section 3 introduces the syntax and the semantics of GPP-Datalog+/—, in
particular, the general group preference model and the probabilistic model, along with
preference merging and aggregation operations. In Section 4, we present algorithms for
k-rank query answering, along with correctness and data tractability results. Section 5
summarizes the main results of this paper and gives an outlook on future research.

2 Preliminaries

We first recall some basics on Datalog+/—[7], namely, on relational databases, (Boolean)
conjunctive queries ((B)CQs), tuple- and equality-generating dependencies (TGDs and
EGDs, respectively), negative constraints, the chase, and ontologies in Datalog+/—.

Databases and Queries. We assume (i) an infinite universe of (data) constants A
(which constitute the “normal” domain of a database), (ii) an infinite set of (labeled)
nulls An (used as “fresh” Skolem terms, which are placeholders for unknown values,
and can thus be seen as variables), and (iii) an infinite set of variables V (used in queries,
dependencies, and constraints). Different constants represent different values (unigue
name assumption), while different nulls may represent the same value. We assume a
lexicographic order on AU Ay, with every symbol in Ay following all symbols in A.
We denote by X sequences of variables X1, ..., X with k > 0. We assume a relational
schema R, which is a finite set of predicate symbols (or simply predicates). A term t is
a constant, null, or variable. An atomic formula (or atom) a has the form P(ty, ..., t,),
where P is an n-ary predicate, and ¢4, ..., t,, are terms.

A database (instance) D for arelational schema R is a (possibly infinite) set of atoms
with predicates from R and arguments from A. A conjunctive query (CQ) over R has
the form Q(X) = IY $(X,Y), where ¢(X,Y) is a conjunction of atoms (possibly
equalities, but not inequalities) with the variables X and Y, and possibly constants, but
without nulls. A Boolean CQ (BCQ) over R is a CQ of the form (), often written
as the set of all its atoms, without quantifiers. Answers to CQs and BCQs are defined
via homomorphisms, which are mappings p: AU Ay UV — AU Ax UV such that
(i) ¢ € A implies u(c) = ¢, (ii) ¢ € Ay implies p(c) € AU Ay, and (iii) p is
naturally extended to atoms, sets of atoms, and conjunctions of atoms. The set of all
answers to a CQ Q(X)=3Y ¢(X,Y) over a database D, denoted Q(D), is the set
of all tuples t over A for which there exists a homomorphism p: XUY — AU Ay
such that 4(®(X,Y)) C D and p(X) = t. The answer to a BCQ () over a database D
is Yes, denoted D = Q, iff Q(D) # 0.

Query Answering in Datalog+/— Ontologies 195

Given a relational schema R, a tuple-generating dependency (TGD) ¢ is a first-order
formula of the form VXVY ¢(X, Y) = 3Z ¥ (X, Z), where $(X,Y) and ¥(X, Z)
are conjunctions of atoms over R (without nulls), called the body and the head of o,
denoted body (o) and head (o), respectively. Such o is satisfied in a database D for R
iff, whenever there exists a homomorphism A that maps the atoms of #(X,Y) to atoms
of D, there exists an extension k' of h that maps the atoms of ¥ (X, Z) to atoms of D.
All sets of TGDs are finite here. Since TGDs can be reduced to TGDs with only single
atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom in its head.
A TGD o is guarded iff it contains an atom in its body that contains all universally
quantified variables of o. The leftmost such atom is the guard atom (or guard) of o.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs
X on R, the set of models of D and X, denoted mods(D, X), is the set of all (possibly
infinite) databases B such that (i) D C B and (ii) every o € X is satisfied in B. The set
of answers foraCQ @ to D and X, denoted ans(Q, D, X), is the set of all tuples a such
that a € Q(B) for all B € mods(D, X). The answer for a BCQ Q to D and X is Yes,
denoted D U X = Q, iff ans(Q, D, X)) # (). Note that query answering under general
TGDs is undecidable [3], even when the schema and TGDs are fixed [6]. Decidability
of query answering for the guarded case follows from a bounded tree-width property.
The data complexity of query answering in this case is P-complete.

Negative constraints (or simply constraints) ~y are first-order formulas of the form
VX $(X) — L, where $(X), called the body of ~, denoted body(y), is a conjunction
of atoms (without nulls). Under the standard semantics of query answering of BCQs in
Datalog+/— with TGDs, adding negative constraints is computationally easy, as for each
constraint VX @(X) — L, we only have to check that the BCQ @(X) evaluates to false
in D under Y; if one of these checks fails, then the answer to the original BCQ (@ is
true, otherwise the constraints can simply be ignored when answering the BCQ Q.

Equality-generating dependencies (or EGDs) o, are first-order formulas of the form
VX &(X) — X; =X, where #(X), called the body of o, denoted body(o), is a con-
junction of atoms (without nulls), and X; and X are variables from X. Such o is
satisfied in a database D for R iff, whenever there exists a homomorphism /h such
that A($(X,Y)) C D, it holds that h(X;) = h(X;). Adding EGDs over databases with
TGDs along with negative constraints does not increase the complexity of BCQ query
answering as long as they are non-conflicting [7]. Intuitively, this ensures that, if the
chase (see below) fails (due to strong violations of EGDs), then it already fails on
the database D, and if it does not fail, then the EGDs do not have any impact on the
chase with respect to query answering.

We usually omit the universal quantifiers in TGDs, negative constraints, and EGDs,
and we implicitly assume that all sets of dependencies and/or constraints are finite.

The Chase. The chase was first introduced to enable checking implication of depen-
dencies, and later also for checking query containment. By “chase”, we refer both to
the chase procedure and to its output. The TGD chase works on a database via so-called
TGD chase rules (see [7] for an extended chase with also EGD chase rules).

TGD Chase Rule. Let D be a database, and ¢ be a TGD of the form ¢(X,Y) —
3Z ¥ (X, Z). Then, o is applicable to D if there exists a homomorphism h that maps

196 T. Lukasiewicz et al.

the atoms of $(X,Y) to atoms of D. Let o be applicable to D, and hy be a homomor-
phism that extends h as follows: for each X; € X, hq(X;) =h(X,); for each Z, € Z,
hi(Z;) =z, where z; is a “fresh” null, i.e., z; € Ay, z; does not occur in D, and
z; lexicographically follows all other nulls already introduced. The application of o
on D adds to D the atom h; (¥(X, Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs X' consists of an ex-
haustive application of the TGD chase rule in a breadth-first (level-saturating) fashion,
which outputs a (possibly infinite) chase for D and X'. Formally, the chase of level
up to 0 of D relative to X, denoted chaseO(D, X7), is defined as D, assigning to ev-
ery atom in D the (derivation) level 0. For every k > 1, the chase of level up to k
of D relative to X/, denoted chasek(D, X)), is constructed as follows: let I, ..., I, be
all possible images of bodies of TGDs in X relative to some homomorphism such that
@) I,...,I, Cchase" (D, X7) and (ii) the highest level of an atom in every I; is k—1;
then, perform every corresponding TGD application on chase™ ™ (D, X)), choosing the
applied TGDs and homomorphisms in a (fixed) linear and lexicographic order, respec-
tively, and assigning to every new atom the (derivation) level k. The chase of D relative
to X, denoted chase(D, %), is defined as the limit of chase®(D, X) for k — co.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists a
homomorphism from chase (D, X') onto every B € mods(D, X) [7]. This implies that
BCQs @ over D and X can be evaluated on the chase for D and X, i.e., DUX | Q is
equivalent to chase(D, X)) = Q. For guarded TGDs X, such BCQs () can be evaluated
on an initial fragment of chase(D, X') of constant depth k - |@|, which is possible in
polynomial time in the data complexity.

Datalog+/— Ontologies. A Datalog+/—ontology O = (D, X)), where X' = X1 U X'g U
Xne, consists of a database D, a set of TGDs X7, a set of non-conflicting EGDs X',
and a set of negative constraints Xyc. We say O is guarded iff X is guarded. The
following example shows a simple Datalog+/— ontology.

Example 1. Let O = (D, X) be an ontology describing travel activities:

Y = {museum(X) — SS(X), park(A) — SS(A), SS(A) — act(A),
relax(X) — act(X), adv(X) — act(X), sport(X) — act(X)};

D = {sport(s1), sport(sa), relax(r1), relax(rz), adv(ay),
adv(az), museum(m,), museum(ms), park(p1)}.

This ontology models a very simple travel itinerary domain, which may be used as the
underlying model in an online travel agency. Activities can be either sightseeing (e.g.,
visiting museums or parks), relaxing (e.g., sauna), adventure (e.g., bungee jumping),
or sport. The database D provides some instances for each kind of activities. L]

3 GPP-Datalog+/-

In this section, we introduce the GPP-Datalog+/— language, an extension of Datalog+/—
with both a group preference model and a probabilistic model. To this end, we assume
the following sets giving rise to the logical languages for ontologies, preferences, and

Query Answering in Datalog+/— Ontologies 197

probability models: Apn;, Aprer, and Ay are finite sets of constants, Rour, Rpres, and
‘R are finite sets of predicate names such that Ry N Ro,; = @, and Vo,, Vprer, and Vi
are infinite sets of variables. In the following, we assume w.l.o.g. that Rp,er S Rowss
Aprep © Aouts Verer C Von. We denote the corresponding Herbrand bases (the sets
of all possible ground atoms) with Hous, Hpres, and Hyy, respectively. Clearly, we have
Hprer © Hon, meaning that preference relations are defined over a subset of Ho,.

Group Preference Model. A preference relation is any binary relation = C Hper X
‘Hprer. In this paper, we are interested in strict partial orders (SPOs), which are irreflex-
ive and transitive relations — we consider these to be the minimal requirements for a
preference relation to be useful in the applications that we envision. One way of spec-
ifying such relations that is especially compatible with our approach is the preference
formula framework of [8]. A user preference model U induces a preference relation
over a subset of Ho,;, denoted >; in general, we treat > as a set of ordered pairs.
A preference relation > is score-based iff it is induced by an assignment of a numeric
score to each element in such a way that ay > aq iff score(a1) > score(as).

In this work, we assume the existence of a group preference model, where we intu-
itively have a group of n users, and each user has an associated preference model.

Definition 1. A group preference model U = (Uy, ..., U,,) for n > 1 users is a collec-
tion of n user preference models.

Example 2. In the running example, a user may specify a preference relation over the
act atoms, such as, e.g., shown in Fig. 1 (where we assume the transitive closure of the
graphs). For instance, the preferences reflect that the user u; is a more sporty person
and prefers sport and adventure activities above all other activities. His most preferred
activity is act(s1), i.e., he prefers to practice sport s; over all other activities. The group
preference model consists of the preferences models of the users u;, ug, and us.]

Probabilistic Model. For modeling uncertainty, we assume the existence of a prob-
abilistic model M that represents a probability distribution Pry; over some set X =
{X1,...,X,} of Boolean variables such that there is a 1-to-1 mapping from X to the
set of all ground atoms over Ry, and Ay,. Examples of the type of probabilistic models
that we assume in this work are Markov logic and Bayesian networks. The probabilistic
extension adopted here was first introduced in [11,10].

We use the standard notions of substitutions and most general unifiers. More specif-
ically, a substitution is a mapping from variables to variables or constants. Two sets S
and T unify via a substitution 6 iff .S = 0T, where # A denotes the application of § to
all variables in all elements of A (here, 6 is a unifier). A most general unifier (mgu) is a
unifier 6 such that for all other unifiers w, there is a substitution o such that w = o o 6.

Definition 2. Let M be a probabilistic model. Then, a (probabilistic) annotation X rel-
ative to M is a (finite) set of expressions of the form A = x, where (i) A is an atom
over Ry, Vi, and Ay, and (ii) € {0, 1}. A probabilistic annotation is valid iff for any
two different A = x, B = y €), there exists no substitution that unifies A and B.

198 T. Lukasiewicz et al.

ll1
A

act(s,) | a(‘t(a) |

act(p,) | act(m,) |

| aci(r,) | aci(r,) |

act(a,)

act(m,) ‘

ac(p,) ‘

act(az)

’ act(r,) ‘ ’ act(r,) ‘

Pr
H(r)) 0.44\
1
act(m,) aci t(m) act(m,) :
Ha,

0.4

‘ act(p,) ‘ act(r,) a<f<'> ‘ 034

act(sz) act(az) act(a l) act(s 1)
;

act(m,) . 1(s)) 0.1

Fig. 1. Group preferences for Example 1

Intuitively, a probabilistic annotation is used to describe the class of events in which
the random variables in a probabilistic model M are compatible with the settings of
the random variables described by A, i.e., each X; has the value x;. A (probabilistic)
scenario is a valid probabilistic annotation A for which |A|=|X|and all A = z; € A
are such that A is ground. We use scn(M) to denote the set of scenarios in M.

Example 3. Continuing with the running example, suppose that an online trip booking
system consults a probabilistic model that assigns probabilities specifying how likely
it is that certain events happen. This uncertainty could arise for instance from the fact
that the system is aggregating information from multiple sources, which may contain
conflicting information, as well as uncertainty due to other factors. Such a system could
inform the user of the probability of an activity being recommended at the time of the
query by taking into account reviews, crowds, season, etc. The following is an exam-
ple of how the ontology from Example 1 may be extended by replacing the atoms in
the database with formulas of the form: act(X): {recommended(X,d) = 1}, where
recommended(X , d) denotes the probabilistic event that activity X is suitable for the
specified date d. Fig. 1 gives an example of such a probability assignment, along with
the preference relation as a graph that is induced by these values, assuming that higher
probabilities are more preferable. The probabilistic model Pry; assigns to act(mq) the
highest probability, while it assigns to act(s1) the lowest. n

Query Answering in Datalog+/— Ontologies 199

Preference Merging and Aggregation. There are two challenges encountered in GPP-
Datalog+/— ontologies, as seen in Fig. 1. The first challenge is that each user preference
model yields a certain precedence relation that might be in disagreement with the one
induced by the probabilistic model. The second challenge is that the user preference
models may be in disagreement with each other. To address the first challenge, we in-
troduce the notion of preference merging operators, which take two preference relations
and produce a third one satisfying two basic properties as stated below.

Definition 3. Let > be an SPO and >, be a score-based preference relation. A pref-
erence merging operator (>, > pr) yields a relation >* such that (i) =* is an SPO,
and (ii) if a1 =y a9 and a1 =7 ao, then ay =™ as.

The two properties required by Definition 3 are the minimal required to produce a
“reasonable” merging of the two relations. To address the second challenge, we define
preference aggregation operators, which take a set of preference models and produce a
new preference model. We next define aggregations of single-user preference models.

Definition 4. Letl/ = (U, ..., U,) be a group preference model, where every U is an
SPO. A preference aggregation operator |3 on U yields an SPO >*,

We are now ready to define GPP-Datalog+/— ontologies.

Definition 5. A GPP-Datalog+/-ontology has the form KB = (O,U, M, ®, |+)), where
O is a Datalog+/- ontology, U = (Uy, . .., U,,) is a group preference model with n > 1,
M is a probabilistic model (with Herbrand bases Hou, Hprer, and Hy, respectively,
such that Hprer € How), ® is a preference merging operator, and 4 is the preference
aggregation operator. We say that KB is a guarded iff O is guarded.

Semantics. The semantics of GPP-Datalog+/—ontologies KB = (O, U, M, ®, +)), with
U= (U,...,Uy,), arises as a direct combination of the semantics of Datalog+/—, the
group preference model, and the probabilistic model. As for the probabilistic model,
we have that Prip(a) = 35 cin(ar), 0y =a PTas(A), and we refer to the score-based
preference relation induced by Prxp as the probabilistic preference relation associ-
ated with KB, denoted > ;. Then, KB |= a1 =" a2 iff O = a1,a2 and a1 =* ag,
where ~*= J(®(>~v,, >Mm), ..., (v, , =)). Intuitively, the consequences of KB
are computed in terms of the classical consequences of O, and for each user i, a prefer-
ence merging operator establishes a new preference over atoms in H,, that takes into
account both >, and > js; the final preference relation over pairs of atoms in H o, is
then defined via the preference aggregation operator (4. In the next section, we study
different methods for answering k-rank queries under this aggregation operation.

4 Query Answering in GPP-Datalog+/-

In this section, we concentrate on skyline queries [4], a well-known class of queries that
can be issued over preference-based formalisms, and the iterated computation of skyline
answers that allows us to assign a rank to every atom; we refer to these as k-rank an-
swers. We focus on a special kind of classical queries, called disjunctive atomic queries

200 T. Lukasiewicz et al.

(DAQs), which are disjunctions of atoms. We analyze two approaches to computing an
answer to a k-rank query that are suitable for partially ordered sets of preferences. In the
first one, called collapse to single user (CSU), we reduce the group modeling problem
to a single-user problem by creating a single virtual user that is constructed by aggre-
gating the preferences of the individuals from the group — the k-rank is computed over
the collapsed preference relation. In the second approach, called voting-based aggrega-
tion, we first compute the k-rankings according to each individual user and then apply
aggregation techniques based on voting strategies (originally developed for quantitative
preferences [17]) to aggregate the answers and obtain a single k-ranking.

We now define skyline and k-rank answers to a DAQ in GPP-Datalog+/— ontologies.

Definition 6. Let KB = (O,U, M, ®, |+)) be a GPP-Datalog+/- ontology, where U =
(Ui,...,Un),and Q(X) = q1(X1) V - - - V ¢n(X,,) be a DAQ. Then, a skyline answer
to @ relative to >* = H(R(>v,, =), ..., (v, , =nm)) is any f¢; entailed by O
such that no ¢’ exists with O = 6'q; and ¢'q; >* 0q;, where 6 and ¢’ are ground
substitutions for the variables in Q(X). For transitive relations, a k-rank answer to)
(where k > 0) is a sequence S = (61, . . . 0x/) of maximal length of ground substitutions
for the variables in X, built by subsequently appending the skyline answers to @, re-
moving these atoms from consideration, and repeating the process until either S =k or
no more skyline answers to () remain.

In the sequel, we adopt the following preference merging operator ®; (or simply ®)
to combine individual preferences with those based on scores. Given a relation >,
score-based relation > 5, and value ¢ € [0, 1] (that allows the user to choose how much
influence the probabilistic model has on the output preference relation), the operator
works by iterating through all pairs (a, b) of elements in > and, if (i) > s disagrees
with >, (ii) the difference in score is greater than ¢, and (iii) changing (a, b) to (b, a)
does not introduce a cycle in the associated graph then the pair is inserted in reverse
order into the output; otherwise, the output contains the same pair as > . Finally, the
operator outputs the transitive closure of this relation. The following result shows that
the ®; is indeed a preference merging operator.

Proposition 1. Let i be an SPO, >=; be a score-based preference relation, and
t €10, 1]. Then, ®; as defined above is a preference merging operator.

We now explore two different approaches to a preference aggregation operator (4.

4.1 Collapse to Single User

Under the CSU strategy, the preference relation for all users, along with the probabilis-
tic preference relation, are taken into account in the generation of a new preference
relation that encodes the dominant preferences. This single-user preference relation is
then used to compute the answers to queries. In the following, for a, b € H¢,, and SPOs
Ui,...,Up, let #(a,b) = [{(a,b) | a =y, bwith 1 < i < n}l.

Definition 7. Let Uy, ..., U, be n > 1 SPOs. Then, {(Us,...,U,) is a set of pairs of
ground atoms a, b € Hop, such that: (i) #(a, b) > #(b, a), and (ii) there does not exist

Query Answering in Datalog+/— Ontologies 201

Algorithm 1: AggPrefsCSU (>, =vy, .., =0, ,)
Input: SPOs (>v,,...,>u,), score-based > s over How, and t = (t1,...,tn) € [0, 1]™.
Output: Preference relation =*C How X Hon.

1. Initialize G as an empty graph;
2. Add as nodes in G all elements appearing in the preference relations >, ;
3.Forevery useri € {1,...,n} do
4. Initialize currUserG as the graph corresponding to >, ;
5. For every pair (a,b) € =y, do
6 if (score(b) — score(a) > t;) and changing (a,b) to (b, a)
in currUserG does not introduce a cycle then
7. remove edge (a, b) from currUserG and add edge (b, a);
8. currUserG:= transitiveClosure(currUserG);
9. For every edge (s, t) in currUserG do

10. if there is no edge (s,t) in G then

11. add edge (s, t) to G and label it with 1;

12. if there is an edge (s, t) in G and it is labeled with n > 1 then
13. increase the label of edge (s,) in G by 1;

14. if there is an edge (¢, s) in G and it is labeled with 1 then

15. remove edge (s, t) from G;

16. if there is an edge (¢, s) in G and it is labeled with n > 1 then
17. decrease the label of edge (¢, s) in G by 1;

18. return inducedPreferenceRelation(removeCycles(transitiveClosure(Q))).

Fig. 2. An algorithm for combining the relations in a group preference model with a probabilistic
preference relation

¢, d € Hou such that #(c, d) > #(d, c¢) and the graph associated with |§(Uq, . .., Uy,)U
{(c,d)} is cycle-free.

Intuitively, [+ compares the numbers of users in U that prefer a over b with those that
prefer b over a. The following algorithm computes the [+ operator; below, we provide
an algorithm that uses this operator for answering k-rank queries to GPP-Datalog+/—
ontologies in polynomial time in the data complexity (modulo the cost of computing
probabilities with respect to the probabilistic model M).

Algorithm AggPrefsCSU. The algorithm in Fig. 2 implements a preference aggrega-
tion operator using a vector of values t = (t1,...,t,) € [0,1]", where ¢; defines how
much influence user ¢ wishes to assign to the probabilistic model. The output is a new
preference relation consisting of the collapsed preferences of all the users. A graph is
used as an intermediate data structure representing the collapsed preferences; the nodes
of this graph are all the atoms that appear in the preference relations, while the edges
are labeled with an integer representing the number of users that have this edge in their
individual preference relation. The algorithm iterates through all the users ¢ and, by
inspecting all pairs of elements (a, b) in their preference relations, builds the graph out-
put by the ®; operator (lines 6-8), called currUserG. Then, before continuing with the
next user, the algorithm looks at all the edges in currUserG and updates the general
graph G by incrementing or decrementing the edge labels and introducing or removing

202 T. Lukasiewicz et al.

aci(a,) ‘ aci(r,) ‘

‘ aci(s,)

act(a,) H aci(a,) ‘ aci(s,) ‘ ‘ aci(s)

act(m,) act(r,) ‘

Fig. 3. The merged preference relation obtained for each user. The three graphs show the merging
of each individual preference with the probabilistic preference.

edges. After the final iteration of the for loop in line 3 the edge labels of G correspond
to the number of users that have that edge in their preference relation after combining
it with the probabilistic one according to ¢. The final step of the algorithm computes
the transitive closure of the graph and eliminates any cycles by applying the procedure
removeCycles (note that cycles can arise even though all individual relations are cycle-
free). We say that this subroutine does not unnecessarily remove edges if there does not
exist an edge e in G such that removeCycles(G) U {e} does not contain cycles.

Example 4. Consider again the running example. Fig. 3 shows the result of the indi-
vidual mergings of the preference relation for each user with the score-based relation
using t =0 for u;, t =0.1 for ug, and ¢t =0.3 for us. Fig. 4 shows the final collapsed
graph. Consider the atoms act(a1) and act(az) in this graph. Observe that the user us
prefers act(aq) to act(az) after merging with > 5/, but the user us maintains that act(az)
is preferable (although act(a1) > s act(az), the threshold for ug is higher than the dif-
ference in probability). Therefore, there is no edge between act(a;) and act(as) in the
final graph, since these two results cancel each other out.]

The following theorem states several properties satisfied by the output of AggPref-
sCSU under certain conditions: (i) the output is an SPO, (ii) if all preference relations
(including the probabilistic one) agree on the ordering of a pair of atoms, then the same
ordering appears in the output, and (iii) for £ = 0", the output only depends on the or-
dering given by >, (and not on the actual probabilities).

Theorem 1. Ler KB = (0,U, M, ®,|t)) be a GPP-Datalog+/- ontology, where U =
(Ur,...,Uy), let Q be a DAQ, k>1, and t=(t1,...,t,) €[0,1]™. Let ~*=Agg-
PrefsCSU(>ar, =0,y - - - =0,). Then, (i) if removeCycles preserves transitivity, then

Query Answering in Datalog+/— Ontologies 203

Fig. 4. Collapse to single user graph

=* is an SPO; (ii) if removeCycles only removes edges (v1, v2) whenever there does not
exist another edge in the cycle labeled with a lower number then, given a1, a2 € Hon
such that for all U; €U, it holds that (a1, a2) € ®¢,(>v,, = M), then we have that
a1 =* ao; and (iii) if M’ is a probabilistic model such that >y = >y and t =07,
then =* = AggPrefsCSU(>- 17, >uy,s -+, =1, T)-

Algorithm k-Rank-CSU. We now present an algorithm to compute k-rank answers ac-
cording to Definitions 6 and 7; we also analyze its correctness as well as running time
when used in conjunction with the AggPrefsCSU algorithm. Fig. 5 shows the pseu-
docode for the algorithm, which begins by computing for every user the combination of
the two preference relations in the GPP-Datalog+/— ontology and the necessary finite
part of the chase relative to (). The main while-loop iterates through the process of com-
puting the skyline answers to () relative to this new relation by using a computeSkyline
subroutine (which can be implemented by means of a linear-time scan of C'), updating
the result by appending these answers in arbitrary order, and removing the atoms in the
result from C'. Once the loop is finished, the algorithm returns the first k results, since
the last iteration may add superfluous elements.

Example 5. Consider the running example, with Q =act(X), k=5, and (¢1,t2,t3) =
(0,0.1,0.3). One possible k-rank answer to @ (in atom form) as computed by the algo-
rithm is: (act(my), act(p1), act(s2), act(mz), act(ra)).]

The following theorem proves the correctness of the k-Rank-CSU algorithm, and it
shows that it runs in polynomial time under certain conditions.

Theorem 2. Let KB = (O,U, M, ®,H)) be a GPP-Datalog+/- ontology, Q be a DAQ,
and k > 0. If O is a guarded Datalog+/— ontology and the removeCycles subroutine
does not unnecessarily remove any edges, then Algorithm k-Rank-CSU correctly com-
putes k-rank answers to Q) in O(poly(|D|) - S + C) time in the data complexity, where
S is the cost of computing score(a) = Prgp(a) for any atom a such that O }= a, and
C is the cost of removeCycles.

204 T. Lukasiewicz et al.

Algorithm 2: k-Rank-CSU(KB = (O, U, M, ®,#), Q, k, t)
Input: Guarded GPP-Datalog+/— ontology KB, DAQ Q(X), t € [0, 1]", and k > 0.
Output: k-rank answer (a1, ..., a.) to Q, with k' < k.

1. Initialize Res as an empty vector of ground atoms;

2. Set >":= AggPrefsCSU (>, >uy, -+, =0, £)5

3. C:= computeChase (O, Q);

4. 1:=k;

5. While : > 0 and C' # 0 do

6. S:=computeSkyline(C, Q, =");

7. Append S to Res in arbitrary order;

8. Remove S from C;

9. @=i—19;
10. Return truncate(Res, k).

Fig. 5. An algorithm for computing a k-rank answer to DAQ @ using the CSU strategy

Note that the running time depends on the cost of the removeCycles subroutine.
Though cycles can be removed in polynomial time, depending on the properties that
we wish the output of this subroutine to satisfy, the actual cost may vary considerably.

4.2 Voting-Based Preference Aggregation

As an alternative to the approach described in the previous section, we now briefly
discuss specific strategies that can be used to combine the answers to k-rank queries
computed individually for each user based on a small set of well-known voting mecha-
nisms from the social choice literature. Recall that this is essentially different from the
CSU approach above, where a single k-ranking is computed from a preference relation
distilled from all the users’ individual preferences. We consider the following voting
mechanisms: plurality voting, where each user votes for their top-preferred items, the
items’ frequency for all the users are summed up, and the items with highest number of
votes win; the least misery strategy first removes from consideration the elements that
are the least preferred by each user, and then applies plurality voting — the idea behind
it is that a group is as happy as its least happy member; in the average without misery
strategy, the least misery approach is generalized by removing the ¢ least liked elements
for each member (instead of just one); and the fairness strategy, which is often applied
when people try to fairly divide a set of items — one person chooses first, then another,
until everyone has made one choice, and next, everybody chooses a second item, often
starting with the person who had to choose last on the previous round; an advantage of
this strategy is that the top items from all individuals are always selected.

Integrating the voting-based aggregation strategies presented above into an algorithm
for computing k-rank answers can be done by leveraging the k-Rank-CSU algorithm
from the previous section: an answer can then be computed by calling k-Rank-CSU for
each individual user (this will only merge the individual preferences of each user with
the score-based relation — i.e., this step implements the application of the ®; merging
operator). Since rankings are total orders, we can think of them as preference relations;
therefore, the aggregation strategy chosen will lead to a specific implementation of the

Query Answering in Datalog+/— Ontologies 205

|#) preference aggregation operator: plurality voting will simply tally the number of
votes received for each atom from the individual rankings. If a misery strategy is used,
then it is necessary to identify all the nodes that are undesired for each user and mark
them as unavailable before obtaining the individual rankings. On the other hand, if
fairness is adopted, it is necessary to iterate through the 1-rank answers to the query for
each user, and directly build the output k-tuple. The following corollary to Theorem 2
states that k-rank answers to DAQs using voting-based aggregation, as discussed above,
can be computed in polynomial time in the data complexity.

Corollary 1. Let KB = (O,U, M, ®,d)) be a GPP-Datalog+/- ontology, Q be a DAQ,
and k > 0. If O is guarded, and the voting-based aggregation |t) can be computed in
polynomial time in the data complexity, then a k-rank answer to () using voting-based
aggregation can be computed in O(poly(|D]) - S) time in the data complexity, where S
is the cost of computing score(a) = Prygp(a) for any atom a such that O |= a.

Here, the computational cost depends on the implementation of the voting strategies,
which can clearly be computed in polynomial time in the data complexity for the strate-
gies discussed above, and the computational cost of calling k-Rank-CSU for each user.
Since k-Rank-CSU is only ever called with a single user, cycles can never arise; this is
why the C' factor from Theorem 2 does not appear.

5 Summary and Outlook

In this paper, we have proposed an extension of the Datalog+/— ontology language that
allows for dealing with both partially ordered preferences of groups of users and prob-
abilistic uncertainty. We have focused on answering k-rank queries in this context. In
detail, we have presented different operators to compute group preferences as a merg-
ing and an aggregation of the preferences of single users with probability-based pref-
erences and with each other, respectively. We have then provided algorithms to answer
k-rank queries for DAQs (disjunctions of atomic queries) under these group prefer-
ences. We have shown that, under certain reasonable conditions, such DAQ answering
in Datalog+/— can be done in polynomial time in the data complexity.

Current and future work involves implementing and testing the GPP-Datalog+/—
framework. Furthermore, we want to explore which of the merging/aggregation
operators is similar to human judgment and thus well-suited as a general default merg-
ing/aggregation operator for search and query answering in the Social Semantic Web.

Acknowledgments. This work was supported by the Engineering and Physical Sci-
ences Research Council (EPSRC) grant EP/J008346/1 “PrOQAW: Probabilistic On-
tological Query Answering on the Web”, the European Research Council (FP7/2007-
2013)/ERC grant 246858 (“DIADEM”), by a Yahoo! Research Fellowship, and by a
Google European Doctoral Fellowship.

References

1. Ackerman, M., Choi, S.Y., Coughlin, P., Gottlieb, E., Wood, J.: Elections with partially or-
dered preferences. Public Choice (2012)

206

21.

22.

23.

24.

T. Lukasiewicz et al.

. Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation: Semantics

and efficiency. Proc. VLDB Endow. 2(1), 754-765 (2009)

. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv,

0. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73-85. Springer, Heidelberg (1981)

. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. ICDE 2001, pp.

421-430. IEEE Computer Society (2001)

. Brafman, R.I., Domshlak, C.: Preference handling — An introductory tutorial. Al.

Mag. 30(1), 58-86 (2009)

. Cali, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive

relational constraints. In: Proc. KR 2008, pp. 70-80. AAAI Press (2008)

. Cali, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable

query answering over ontologies. J. Web Sem. 14, 57-83 (2012)

. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4),

427-466 (2003)

. Finger, M., Wassermann, R., Cozman, F.G.: Satisfiability in ££ with sets of probabilistic

ABoxes. In: Proc. DL 2011. CEUR-WS.org (2011)

. Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under proba-

bilistic uncertainty in Datalog+/— ontologies. Ann. Math. Artif. Intell. (in press, 2013)

. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Answering threshold queries in probabilistic

Datalog+/— ontologies. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp.
401-414. Springer, Heidelberg (2011)

. Jung, J.C., Lutz, C.: Ontology-based access to probabilistic data with OWL QL. In: Cudré-

Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 182-197. Springer, Hei-
delberg (2012)

. Lang, J., Pini, M.S., Rossi, F., Salvagnin, D., Venable, K.B., Walsh, T.: Winner determina-

tion in voting trees with incomplete preferences and weighted votes. Auton. Agent. Multi-
Ag. 25(1), 130-157 (2012)

. Linden, G., Smith, B., York, J.: Industry report: Amazon.com recommendations: Item-to-

item collaborative filtering. IEEE Distributed Systems Online 4(1) (2003)

. Lukasiewicz, T., Martinez, M.V., Orsi, G., Simari, G.I.: Heuristic ranking in tightly coupled

probabilistic description logics. In: Proc. UAI 2012, pp. 554-563. AUAI Press (2012)

. Manoj, M., Jacob, E.: Information retrieval on internet using meta-search engines: A review.

Journal of Scientific and Industrial Research 67(10), 739-746 (2008)

. Masthoff, J.: Group modeling: Selecting a sequence of television items to suit a group of

viewers. User Modeling and User-Adapted Interaction 14(1), 37-85 (2004)

. Morris, M.R.: Collaborative search revisited. In: Proc. CSCW 2013, pp. 1181-1192. ACM

Press (2013)

. Noessner, J., Niepert, M.: ELOG: A probabilistic reasoner for OWL EL. In: Rudolph, S.,

Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 281-286. Springer, Heidelberg (2011)

. Ntoutsi, ., Stefanidis, K., Norvag, K., Kriegel, H.-P.: gRecs: A group recommendation sys-

tem based on user clustering. In: Lee, S.-G., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R.,
Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 299-303. Springer, Heidelberg
(2012)

Pattanaik, P.K.: Voting and Collective Choice: Some Aspects of the Theory of Group
Decision-making. Cambridge University Press (1971)

Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Aggregating partially ordered preferences. J.
Log. Comput. 19(3), 475-502 (2009)

Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cambridge University
Press (2005)

Wooldridge, M.: An Introduction to Multiagent Systems. Wiley (2009)

	Query Answering in Datalog+/– Ontologies
under Group Preferences and Probabilistic Uncertainty
	1 Introduction
	2 Preliminaries
	3 GPP-Datalog+/–
	4 Query Answering in GPP-Datalog+/–
	4.1 Collapse to Single User
	4.2 Voting-Based Preference Aggregation

	5 Summary and Outlook
	References

