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Abstract. In this paper we introduce and study the strip planarity testing prob-
lem, which takes as an input a planar graph G(V,E) and a function γ : V →
{1, 2, . . . , k} and asks whether a planar drawing of G exists such that each edge
is monotone in the y-direction and, for any u, v ∈ V with γ(u) < γ(v), it holds
y(u) < y(v). The problem has strong relationships with some of the most deeply
studied variants of the planarity testing problem, such as clustered planarity, up-
ward planarity, and level planarity. We show that the problem is polynomial-time
solvable if G has a fixed planar embedding.

1 Introduction

Testing the planarity of a given graph is one of the oldest and most deeply investigated
problems in algorithmic graph theory. A celebrated result of Hopcroft and Tarjan [20]
states that the planarity testing problem is solvable in linear time.

A number of interesting variants of the planarity testing problem have been consid-
ered in the literature [25]. Such variants mainly focus on testing, for a given planar
graph G, the existence of a planar drawing of G satisfying certain constraints. For ex-
ample the partial embedding planarity problem [1,22] asks whether a plane drawing
G of a given planar graph G exists in which the drawing of a subgraph H of G in
G coincides with a given drawing H of H . Clustered planarity testing [10,23], upward
planarity testing [5,16,21], level planarity testing [24], embedding constraints planarity
testing [17], radial level planarity testing [4], and clustered level planarity testing [14]
are further examples of problems falling in this category.

In this paper we introduce and study the strip planarity testing problem, which is
defined as follows. The input of the problem consists of a planar graph G(V,E) and of
a function γ : V → {1, 2, . . . , k}. The problem asks whether a strip planar drawing
of (G, γ) exists, i.e. a planar drawing of G such that each edge is monotone in the y-
direction and, for any u, v ∈ V with γ(u) < γ(v), it holds y(u) < y(v). The name
“strip” planarity comes from the fact that, if a strip planar drawing Γ of (G, γ) exists,
then k disjoint horizontal strips γ1, γ2, . . . , γk can be drawn in Γ so that γi lies below
γi+1, for 1 ≤ i ≤ k− 1, and so that γi contains a vertex x of G if and only if γ(x) = i,
for 1 ≤ i ≤ k. It is not difficult to argue that strips γ1, γ2, . . . , γk can be given as part
of the input, and the problem is to decide whether G can be planarly drawn so that each
edge is monotone in the y-direction and each vertex x of G with γ(x) = i lies in the
strip γi. That is, arbitrarily predetermining the placement of the strips does not alter the
possibility of constructing a strip planar drawing of (G, γ).
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Fig. 1. (a) A negative instance (G, γ) of the strip planarity testing problem whose associated
clustered graph C(G,T ) is c-planar. (b) A positive instance (G, γ) of the strip planarity testing
problem that is not level planar.

Before presenting our result, we discuss the strong relationships of the strip planarity
testing problem with three famous graph drawing problems.

Strip Planarity and Clustered Planarity. The c-planarity testing problem takes as an
input a clustered graph C(G, T ), that is a planar graph G together with a rooted tree T ,
whose leaves are the vertices of G. Each internal node μ of T is called cluster and is
associated with the set Vμ of vertices of G in the subtree of T rooted at μ. The problem
asks whether a c-planar drawing exists, that is a planar drawing of G together with a
drawing of each cluster μ ∈ T as a simple closed region Rμ so that: (i) if v ∈ Vμ, then
v ∈ Rμ; (ii) if Vν ⊂ Vμ, then Rν ⊂ Rμ; (iii) if Vν ∩ Vμ = ∅, then Rν ∩ Rμ = ∅;
and (iv) each edge of G intersects the border of Rμ at most once. Determining the time
complexity of testing the c-planarity of a given clustered graph is a long-standing open
problem. See [10,23] for two recent papers on the topic. An instance (G, γ) of the strip
planarity testing problem naturally defines a clustered graphC(G, T ), where T consists
of a root having k children μ1, . . . , μk and, for every 1 ≤ j ≤ k, cluster μj contains
every vertex x of G such that γ(x) = j. The c-planarity of C(G, T ) is a necessary
condition for the strip planarity of (G, γ), since suitably bounding the strips in a strip
planar drawing of (G, γ) provides a c-planar drawing of C(G, T ). However, the c-
planarity of C(G, T ) is not sufficient for the strip planarity of (G, γ) (see Fig. 1(a)). It
turns out that strip planarity testing coincides with a special case of a problem opened
by Cortese et al. [8,9] and related to c-planarity testing. The problem asks whether a
graph G can be planarly embedded “inside” an host graph H , which can be thought
as having “fat” vertices and edges, with each vertex and edge of G drawn inside a
prescribed vertex and a prescribed edge of H , respectively. It is easy to see that the strip
planarity testing problem coincides with this problem in the case in which H is a path.

Strip Planarity and Level Planarity. The level planarity testing problem takes as an
input a planar graph G(V,E) and a function γ : V → {1, 2, . . . , k} and asks whether
a planar drawing of G exists such that each edge is monotone in the y-direction and
each vertex u ∈ V is drawn on the horizontal line y = γ(u). The level planarity
testing (and embedding) problem is known to be solvable in linear time [24], although a
sequence of incomplete characterizations by forbidden subgraphs [15,18] (see also [13])
has revealed that the problem is not yet fully understood. The similarity of the level
planarity testing problem with the strip planarity testing problem is evident: They have
the same input, they both require planar drawings with y-monotone edges, and they both
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Fig. 2. Two negative instances (G1, γ1) (a) and (G2, γ2) (b) whose associated directed graphs
are upward planar, where G1 is a tree and G2 is a subdivision of a triconnected plane graph

constrain the vertices to lie in specific regions of the plane; they only differ for the fact
that such regions are horizontal lines in one case, and horizontal strips in the other one.
Clearly the level planarity of an instance (G, γ) is a sufficient condition for the strip
planarity of (G, γ), as a level planar drawing is also a strip planar drawing. However, it
is easy to construct instances (G, γ) that are strip planar and yet not level planar, even
if we require that the instances are strict, i.e., no edge (u, v) is such that γ(u) = γ(v).
See Fig. 1(b). Also, the approach of [24] seems to be not applicable to test the strip
planarity of a graph. Namely, Jünger et al. [24] visit the instance (G, γ) one level at a
time, representing with a PQ-tree [7] the possible orderings of the vertices in level i that
are consistent with a level planar embedding of the subgraph of G induced by levels
{1, 2, . . . , i}. However, when visiting an instance (G, γ) of the strip planarity testing
problem one strip at a time, PQ-trees seem to be not powerful enough to represent
the possible orderings of the vertices in strip i that are consistent with a strip planar
embedding of the subgraph of G induced by strips {1, 2, . . . , i}.

Strip Planarity and Upward Planarity. The upward planarity testing problem asks
whether a given directed graph

−→
G admits an upward planar drawing, i.e., a drawing

which is planar and such that each edge is represented by a curve monotonically in-
creasing in the y-direction, according to its orientation. Testing the upward planarity of
a directed graph

−→
G is an NP-hard problem [16], however it is polynomial-time solv-

able, e.g., if
−→
G has a fixed embedding [5], or if it has a single-source [21]. A strict

instance (G, γ) of the strip planarity testing problem naturally defines a directed graph−→
G , by directing an edge (u, v) of G from u to v if γ(u) < γ(v). It is easy to argue
that the upward planarity of

−→
G is a necessary and not sufficient condition for the strip

planarity of (G, γ) (see Fig.s 2(a) and 2(b)). Roughly speaking, in an upward planar
drawing different parts of the graph are free to “nest” one into the other, while in a strip
planar drawing, such a nesting is only allowed if coherent with the strip assignment.

In this paper, we show that the strip planarity testing problem is polynomial-time
solvable for planar graphs with a fixed planar embedding. Our approach consists of per-
forming a sequence of modifications to the input instance (G, γ) (such modifications
consist mainly of insertions of graphs inside the faces of G) that ensure that the in-
stance satisfies progressively stronger constraints while not altering its strip planarity.
Eventually, the strip planarity of (G, γ) becomes equivalent to the upward planarity of
its associated directed graph, which can be tested in polynomial time.
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The paper is organized as follows. In Section 2 we give some preliminaries; in Sec-
tion 3 we prove our result; finally, in Section 4 we conclude and present open problems.
For space limitations, proofs are sketched or omitted; refer to [3] for complete proofs.

2 Preliminaries

A planar drawing of a graph determines a circular ordering of the edges incident to each
vertex. Two drawings of the same graph are equivalent if they determine the same cir-
cular orderings around each vertex. A planar embedding (or combinatorial embedding)
is an equivalence class of planar drawings. A planar drawing partitions the plane into
topologically connected regions, called faces. The unbounded face is the outer face.
Two planar drawings with the same combinatorial embedding have the same faces.
However, such drawings could still differ for their outer faces. A plane embedding of
a graph G is a planar embedding of G together with a choice for its outer face. In this
paper, we will assume all the considered graphs to have a prescribed plane embedding.

For the sake of simplicity of description, in the following we assume that the con-
sidered plane graphs are 2-connected, unless otherwise specified. We will sketch in the
conclusions how to extend our results to simply-connected and even non-connected
plane graphs. We now define some concepts related to strip planarity.

An instance (G, γ) of the strip planarity testing problem is strict if it contains no
intra-strip edge, where an edge (u, v) is intra-strip f γ(u) = γ(v). An instance (G, γ)
of strip planarity is proper if, for every edge (u, v) of G, it holds γ(v) − 1 ≤ γ(u) ≤
γ(v) + 1. Given any non-proper instance of strip planarity, one can replace every edge
(u, v) such that γ(u) = γ(v)+ j, for some j ≥ 2, with a path (v = u1, u2, . . . , uj+1 =
u) such that γ(ui+1) = γ(ui)+1, for every 1 ≤ i ≤ j, thus obtaining a proper instance
(G′, γ′) of the strip planarity testing problem. It is easy to argue that (G, γ) is strip
planar if and only if (G′, γ′) is strip planar. In the following, we will assume all the
considered instances of the strip planarity testing problem to be proper.

Let (G, γ) be an instance of the strip planarity testing problem. A path (u1, . . . , uj)
in G is monotone if γ(ui) = γ(ui−1) + 1, for every 2 ≤ i ≤ j. For any face f in G, we
denote by Cf the simple cycle delimiting the border of f . Let f be a face of G, let u be
a vertex incident to f , and let v and z be the two neighbors of u on Cf . We say that u
is a local minimum for f if γ(v) = γ(z) = γ(u) + 1, and it is a local maximum for f
if γ(v) = γ(z) = γ(u) − 1. Also, we say that u is a global minimum for f (a global
maximum for f ) if γ(w) ≥ γ(u) (resp. γ(w) ≤ γ(u)), for every vertex w incident to f .
A global minimum um and a global maximum uM for a face f are consecutive in f if
no global minimum and no global maximum exists in one of the two paths connecting
um and uM in Cf . A local minimum um and a local maximum uM for a face f are
visible if one of the paths P connecting um and uM in Cf is such that, for every vertex
u of P , it holds γ(um) < γ(u) < γ(uM ).

Definition 1. An instance (G, γ) of the strip planarity problem is quasi-jagged if it is
strict and if, for every face f of G and for any two visible local minimum um and local
maximum uM for f , one of the two paths connecting um and uM in Cf is monotone.
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Definition 2. An instance (G, γ) of the strip planarity problem is jagged if it is strict
and if, for every face f of G, any local minimum for f is a global minimum for f , and
every local maximum for f is a global maximum for f .

3 How to Test Strip Planarity

In this section we show an algorithm to test strip planarity.

3.1 From a General Instance to a Strict Instance

In this section we show how to reduce a general instance of the strip planarity testing
problem to an equivalent strict instance.

Lemma 1. Let (G, γ) be an instance of the strip planarity testing problem. Then, there
exists a polynomial-time algorithm that either constructs an equivalent strict instance
(G∗, γ∗) or decides that (G, γ) is not strip planar.

Consider any intra-strip edge (u, v) in G, if it exists. We distinguish two cases.
In Case 1, (u, v) is an edge of a 3-cycle (u, v, z) that contains vertices in its interior

in G. Observe that, γ(u) − 1 ≤ γ(z) ≤ γ(u) + 1. Denote by G′ the plane subgraph
of G induced by the vertices lying outside cycle (u, v, z) together with u, v, and z (this
graph might coincide with cycle (u, v, z) if such a cycle delimits the outer face of G);
also, denote by G′′ the plane subgraph of G induced by the vertices lying inside cycle
(u, v, z) together with u, v, and z. Also, let γ′(x) = γ(x), for every vertex x in G′, and
let γ′′(x) = γ(x), for every vertex x in G′′. We have the following:

Claim 1. (G, γ) is strip planar if and only if (G′, γ′) and (G′′, γ′′) are both strip planar.

The strip planarity of (G′′, γ′′) can be tested in linear time as follows.
If γ′′(z) = γ′′(u), then (G′′, γ′′) is strip planar if and only if γ′′(x) = γ′′(u) for

every vertex x of G′′ (such a condition can clearly be tested in linear time). For the
necessity, 3-cycle (u, v, z) is entirely drawn in γ′′(u), hence all the internal vertices of
G′′ have to be drawn inside γ′′(u) as well. For the sufficiency, G′′ has a plane embed-
ding by assumption, hence any planar y-monotone drawing (e.g. a straight-line drawing
where no two vertices have the same y-coordinate) respecting such an embedding and
contained in γ′′(u) is a strip planar drawing of (G′′, γ′′).

If γ′′(z) = γ′′(u) − 1 (the case in which γ′′(z) = γ′′(u) + 1 is analogous), then
we argue as follows: First, a clustered graph C(G′′, T ) can be defined such that T con-
sists of two clusters μ and ν, respectively containing every vertex x of G′′ such that
γ′′(x) = γ′′(u) − 1, and every vertex x of G′′ such that γ′′(x) = γ′′(u). We show
that (G′′, γ′′) is strip planar if and only if C(G′′, T ) is c-planar. For the necessity, it
suffices to observe that a strip planar drawing of (G′′, γ′′) is also a c-planar drawing
of C(G′′, T ). For the sufficiency, if C(G′′, T ) admits a c-planar drawing, then it also
admits a c-planar straight-line drawing Γ (C) in which the regions R(μ) and R(ν) rep-
resenting μ and ν, respectively, are convex [2,12]. Assuming w.l.o.g. up to a rotation of
Γ (C) that R(μ) and R(ν) can be separated by a horizontal line, we have that disjoint
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horizontal strips can be drawn containing R(μ) and R(ν). Slightly perturbing the posi-
tions of the vertices so that no two of them have the same y-coordinate ensures that the
the edges are y-monotone, thus resulting in a strip planar drawing of (G′′, γ′′). Finally,
the c-planarity of a clustered graph containing two clusters can be decided in linear
time, as independently proved by Biedl et al. [6] and by Hong and Nagamochi [19].

In Case 2, a 3-cycle (u, v, z) exists that contains no vertices in its interior in G.
Then, contract (u, v), that is, identify u and v to be the same vertex w, whose incident
edges are all the edges incident to u and v, except for (u, v); the clockwise order of the
edges incident to w is: All the edges that used to be incident to u in the same clockwise
order starting at (u, v), and then all the edges that used to be incident to v in the same
clockwise order starting at (v, u). Denote by G′ the resulting graph. Since G is plane,
G′ is plane; since G contains no 3-cycle (u, v, z) that contains vertices in its interior,
G′ is simple. Let γ′(x) = γ(x), for every vertex x 	= u, v in G, and let γ′(w) = γ(u).
We have the following.

Claim 2. (G′, γ′) is strip planar if and only if (G, γ) is strip planar.

Claims 1 and 2 imply Lemma 1. Namely, if (G, γ) has no intra-strip edge, there is
nothing to prove. Otherwise, (G, γ) has an intra-strip edge (u, v), hence either Case 1 or
Case 2 applies. If Case 2 applies to (G, γ), then an instance (G′, γ′) is obtained in linear
time containing one less vertex than (G, γ). By Claim 2, (G′, γ′) is equivalent to (G, γ).
Otherwise, Case 1 applies to (G, γ). Then, either the non-strip planarity of (G, γ) is
deduced (if (G′′, γ′′) is not strip planar), or an instance (G′, γ′) is obtained containing
at least one less vertex than (G, γ) (if (G′′, γ′′) is strip planar). By Claim 1, (G′, γ′)
is equivalent to (G, γ). The repetition of such an argument either leads to conclude in
polynomial time that (G, γ) is not strip planar, or leads to construct in polynomial time
a strict instance (G∗, γ∗) of strip planarity equivalent to (G, γ).

3.2 From a Strict Instance to a Quasi-Jagged Instance

In this section we show how to reduce a strict instance of the strip planarity testing
problem to an equivalent quasi-jagged instance. Again, for the sake of simplicity of
description, we assume that every considered instance (G, γ) is 2-connected.

Lemma 2. Let (G, γ) be a strict instance of the strip planarity testing problem. Then,
there exists a polynomial-time algorithm that constructs an equivalent quasi-jagged
instance (G∗, γ∗) of the strip planarity testing problem.

Consider any face f of G containing two visible local minimum and maximum um

and uM , respectively, such that no path connecting um and uM in Cf is monotone.
Insert a monotone path connecting um and uM inside f . Denote by (G+, γ+) the re-
sulting instance of the strip planarity testing problem. We have the following claim:

Claim 3. (G+, γ+) is strip planar if and only if (G, γ) is strip planar.

Proof Sketch: The necessity is trivial. For the sufficiency, consider any strip planar
drawing Γ of (G, γ). Denote by P the path connecting um and uM along Cf and such
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that γ(um) < γ(v) < γ(uM ) holds for every internal vertex v of P . Because of the
existence of some parts of the graph that “intermingle” with P , it might not be possible
to draw a y-monotone curve inside f connecting um and uM in Γ . Thus, a part of Γ
has to be horizontally shrunk, so that it moves “far away” from P , thus allowing for the
monotone path connecting um and uM to be drawn as a y-monotone curve inside f .
This results in a strip planar drawing of (G+, γ+). �

Claim 3 implies Lemma 2, as proved in the following.
First, the repetition of the above described augmentation leads to a quasi-jagged in-

stance (G∗, γ∗). In fact, whenever the augmentation is performed, the number of triples
(vm, vM , g) such that vertices vm and vM are visible local minimum and maximum for
face g, respectively, and such that both paths connecting vm and vM along Cf are not
monotone decreases by 1, thus eventually the number of such triples is zero, and the
instance is quasi-jagged.

Second, (G∗, γ∗) can be constructed from (G, γ) in polynomial time. Namely, the
number of pairs of visible local minima and maxima for a face g of G is polynomial in
the number of vertices of g. Hence, the number of triples (vm, vM , g) such that vertices
vm and vM are visible local minimum and maximum for face g, over all faces of G,
is polynomial in n. Since a linear number of vertices are introduced in G whenever
the augmentation described above is performed, it follows that the the construction of
(G∗, γ∗) from (G, γ) can be accomplished in polynomial time.

Third, (G∗, γ∗) is an instance of the strip planarity testing problem that is equivalent
to (G, γ). This directly comes from repeated applications of Claim 3.

3.3 From a Quasi-Jagged Instance to a Jagged Instance

In this section we show how to reduce a quasi-jagged instance of the strip planarity
testing problem to an equivalent jagged instance. Again, for the sake of simplicity of
description, we assume that every considered instance (G, γ) is 2-connected.

Lemma 3. Let (G, γ) be a quasi-jagged instance of the strip planarity testing problem.
Then, there exists a polynomial-time algorithm that constructs an equivalent jagged
instance (G∗, γ∗) of the strip planarity testing problem.

Consider any face f of G that contains some local minimum or maximum which is
not a global minimum or maximum for f , respectively. Assume that f contains a local
minimum v which is not a global minimum for f . The case in which f contains a local
maximum which is not a global maximum for f can be discussed analogously. Denote
by u (denote by z) the first global minimum or maximum for f that is encountered
when walking along Cf starting at v while keeping f to the left (resp. to the right).

We distinguish two cases, namely the case in which u is a global minimum for f and
z is a global maximum for f (Case 1), and the case in which u and z are both global
maxima for f (Case 2). The case in which u is a global maximum for f and z is a
global minimum for f , and the case in which u and z are both global minima for f can
be discussed symmetrically.

In Case 1, denote by Q the path connecting u and z in Cf and containing v. Con-
sider the internal vertex v′ of Q that is a local minimum for f and that is such that
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Fig. 3. Augmentation of (G, γ) inside a face f in: (a) Case 1 and (b) Case 2

γ(v′) = minu′ γ(u′) among all the internal vertices u′ of Q that are local minima for f .
Traverse Q starting from u, until a vertex v′′ is found with γ(v′′) = γ(v′). Notice that,
the subpath of Q between u and v′′ is monotone. Insert a monotone path connecting
v′′ and z inside f . See Fig. 3(a). Denote by (G+, γ+) the resulting instance of the strip
planarity testing problem. We have the following claim:

Claim 4. Suppose that Case 1 is applied to a quasi-jagged instance (G, γ) to construct
an instance (G+, γ+). Then, (G+, γ+) is strip planar if and only if (G, γ) is strip
planar. Also, (G+, γ+) is quasi-jagged.

Proof Sketch: The necessity is trivial. For the sufficiency, consider any strip planar
drawing Γ of (G, γ). First, Γ is modified so that v′′ has y-coordinate smaller than
every local minimum of Q different from u. Then, a y-monotone curve can be drawn
inside f connecting v′′ and z, thus resulting in a strip planar drawing of (G+, γ+). �

In Case 2, denote by M a maximal path that is part of Cf , whose end-vertices are two
global maxima uM and vM for f , that contains v in its interior, and that does not contain
any global minimum in its interior. By the assumptions of Case 2, such a path exists.
Assume, w.l.o.g., that face f is to the right of M when walking along M starting at uM

towards vM . Possibly uM = u and/or vM = z. Let um (vm) be the global minimum
for f such that um and uM (resp. vm and vM ) are consecutive global minimum and
maximum for f . Possibly, um = vm. Denote by P the path connecting um and uM

along Cf and not containing v. Also, denote by Q the path connecting vm and vM
along Cf and not containing v. Since M contains a local minimum among its internal
vertices, and since (G, γ) is quasi-jagged, it follows that P and Q are monotone.

Insert the plane graph A(uM , vM , f) depicted by white circles and dashed lines in
Fig. 3(b) inside f . Consider a local minimum u′

m ∈ M for f such that γ(u′
m) =

minv′
m
γ(v′m) among the local minima v′m for f in M . Set γ(zM ) = γ(uM ), set

γ(am) = γ(bm) = γ(um), and set γ(a′m) = γ(b′m) = γ(u′
m). The dashed lines

connecting am and uM , connecting a′m and uM , connecting am and zM , connecting
a′m and zM , connecting bm and zM , connecting b′m and zM , connecting bm and vM ,
connecting b′m and vM , connecting am and a′m, and connecting bm and b′m represent
monotone paths. Denote by (G+, γ+) the resulting instance of the strip planarity testing
problem. We have the following claim:



Strip Planarity Testing 45

Claim 5. Suppose that Case 2 is applied to a quasi-jagged instance (G, γ) to construct
an instance (G+, γ+). Then, (G+, γ+) is strip planar if and only if (G, γ) is strip
planar. Also, (G+, γ+) is quasi-jagged.

Proof Sketch: The necessity is trivial. For the sufficiency, consider any strip planar
drawing Γ of (G, γ). If P is to the left of Q, then a region R is defined as the region
delimited by P , by M , by Q, and by the horizontal line delimiting γ(um) from above.
Then, the part of Γ that lies inside R is redrawn so that it lies inside a region RQ ⊂ R
arbitrarily close to Q. Such a redrawing “frees” space for the drawing of A(uM , vM , f)
inside f , which results in a strip planar drawing of (G+, γ+). If P is to the right of Q,
then M might “wiggle” to the right of P and to the left of Q. Thus, we first horizontally
shrink a part of Γ that “intermingles” with P and Q, and we then draw A(uM , vM , f)
using its four monotone paths connecting global minima with global maxima in order
to “circumvent” M . This results in a strip planar drawing of (G+, γ+). �

Claims 4–5 imply Lemma 3, as proved in the following.
First, we prove that the repetition of the above described augmentation leads to a

jagged instance (G∗, γ∗) of the strip planarity testing problem. For an instance (G, γ)
and for a face g of G, denote by n(g) the number of vertices that are local minima for g
but not global minima for g, plus the number of vertices that are local maxima for g but
not global maxima for g. Also, let n(G) =

∑
g n(g), where the sum is over all faces g

of G. We claim that, when one of the augmentations of Cases 1 and 2 is performed and
instance (G, γ) is transformed into an instance (G+, γ+), we have n(G+) ≤ n(G)−1.
The claim implies that eventually n(G∗) = 0, hence (G∗, γ∗) is jagged.

We prove the claim. When a face f of G is augmented as in Case 1 or in Case 2, for
each face g 	= f and for each vertex u incident to g, vertex u is a local minimum, a local
maximum, a global minimum, or a global maximum for g in (G+, γ+) if and only if it
is a local minimum, a local maximum, a global minimum, or a global maximum for g
in (G, γ), respectively. Hence, it suffices to prove that

∑
n(fi) ≤ n(f)− 1, where the

sum is over all the faces fi that are created from the augmentation inside f .
Suppose that Case 1 is applied to insert a monotone path between vertices v′′ and z

inside f . Such an insertion splits f into two faces, which we denote by f1 and f2, as in
Fig. 3(a). Face f2 is delimited by two monotone paths, hence n(f2) = 0. Every vertex
inserted into f is neither a local maximum nor a local minimum for f1. As a conse-
quence, no vertex x exists such that x contributes to n(f1) and x does not contribute to
n(f). Further, vertex v′ is a global minimum for f1, by construction, and it is a local
minimum but not a global minimum for f . Hence, v′ contributes to n(f) and does not
contribute to n(f1). It follows that n(f1) + n(f2) ≤ n(f)− 1.

Suppose that Case 2 is applied to insert plane graph A(uM , vM , f) inside face f .
Such an insertion splits f into six faces, which are denoted by f1, . . . , f6, as in Fig. 3(b).
Every vertex of A(uM , vM , f) incident to a face fi, for some 1 ≤ i ≤ 6, is either a
global maximum for fi, or a global minimum for fi, or it is neither a local maximum nor
a local minimum for fi. As a consequence, no vertex x exists such that x contributes to
some n(fi) and x does not contribute to n(f). Further, for each vertex x that contributes
to n(f), there exists at most one face fi such that x contributes to n(fi). Finally, vertex
u′
m of M is a global minimum for f1, by construction, and it is a local minimum but
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not a global minimum for f . Hence, u′
m contributes to n(f) and does not contribute to

n(fi), for any 1 ≤ i ≤ 6. It follows that
∑6

i=1 n(fi) ≤ n(f)− 1.
Second, (G∗, γ∗) can be constructed from (G, γ) in polynomial time. Namely, the

number of local minima (maxima) for a face f that are not global minima (maxima)
for f is at most the number of vertices of f . Hence, the number of such minima and
maxima over all the faces of G, which is equal to n(G), is linear in n. Since a linear
number of vertices are introduced in G whenever the augmentation described above is
performed, and since the augmentation is performed at most n(G) times, it follows that
the construction of (G∗, γ∗) can be accomplished in polynomial time.

Third, (G∗, γ∗) is an instance of the strip planarity testing problem that is equivalent
to (G, γ). This directly comes from repeated applications of Claims 4 and 5.

3.4 Testing Strip Planarity for Jagged Instances

In this section we show how to test in polynomial time whether a jagged instance (G, γ)
of the strip planarity testing problem is strip planar. Recall that the associated directed
graph of (G, γ) is the directed plane graph

−→
G obtained from (G, γ) by orienting each

edge (u, v) in G from u to v if and only if γ(v) = γ(u) + 1. We have the following:

Lemma 4. A jagged instance (G, γ) of the strip planarity testing problem is strip pla-
nar if and only if the associated directed graph

−→
G of (G, γ) is upward planar.

Proof Sketch: The necessity is trivial. For the sufficiency, we first insert dummy edges
in
−→
G to augment it to a plane st-digraph

−→
Gst, which is an upward planar directed graph

with exactly one source s and one sink t incident to its outer face [11]. Each face f of−→
Gst consists of two monotone paths, called left path and right path, where the left path
has f to the right when traversing it from its source to its sink. The inserted dummy
edges only connect two sources or two sinks of each face of

−→
G . Since (G, γ) is jagged,

the end-vertices of each dummy edge are in the same strip.
We divide the plane into k horizontal strips. We compute an upward planar drawing

of
−→
G st starting from a y-monotone drawing of the leftmost path of

−→
Gst and adding to

the drawing one face at a time, in an order corresponding to any linear extension of the
partial order of the faces induced by the directed dual graph of

−→
Gst [11]. When a face

is added to the drawing, its left path is already drawn as a y-monotone curve. We draw
the right path of f as a y-monotone curve in which each vertex u lies inside strip γ(u),
hence the rightmost path of the graph in the current drawing is always represented by a
y-monotone curve. A strip planar drawing of (G, γ) can be obtained from the drawing
of

−→
Gst by removing the dummy edges. �
We thus obtain the following:

Theorem 1. The strip planarity testing problem can be solved in polynomial time for
instances (G, γ) such that G is a plane graph.

Proof: By Lemmata 1–3, it is possible to reduce in polynomial time any instance of
the strip planarity testing problem to an equivalent jagged instance (G, γ). By Lemma 4,
(G, γ) is strip planar if and only if the associated directed plane graph

−→
G of (G, γ) is

upward planar. Finally, by the results of Bertolazzi et al. [5], the upward planarity of
−→
G

can be tested in polynomial time. �
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4 Conclusions

In this paper, we introduced the strip planarity testing problem and showed how to
solve it in polynomial time if the input graph is 2-connected and has a prescribed plane
embedding. We now sketch how to remove the 2-connectivity requirement.

Suppose that the input graph (G, γ) is simply-connected (possibly not 2-connected).
The algorithmic steps are the same. The transformation of a general instance into a strict
instance is exactly the same. The transformation of a strict instance into a quasi-jagged
instance has some differences with respect to the 2-connected case. In fact, the visibility
between local minima and maxima for a face f of G is redefined with respect to occur-
rences of such minima and maxima along f . Thus, the goal of such a transformation
is to create an instance in which, for every face f and for every pair of visible occur-
rences σi(um) and σj(uM ) of a local minimum um and a local maximum uM for f ,
respectively, there is a monotone path between σi(um) and σj(uM ) in Cf . This is done
with the same techniques as in Claim 3. The transformation of a quasi-jagged instance
into a jagged instance is almost the same as in the 2-connected case, except that the
2-connected components of G inside a face f have to be suitably squeezed along the
monotone paths of f to allow for a drawing of a monotone path between v′′ and z or
for a drawing of plane graph A(uM , vM , f) This is done with the same techniques as
in Claims 4 and 5. Finally, the proof of the equivalence between the strip planarity of a
jagged instance and the upward planarity of its associated directed graph holds as it is.

Suppose now that the input graph (G, γ) is not connected. Test individually the strip
planarity of each connected component of (G, γ). If one of the tests fails, then (G, γ)
is not strip planar. Otherwise, construct a strip planar drawing of each connected com-
ponent of (G, γ). Place the drawings of the connected components containing edges
incident to the outer face of G side by side. Repeatedly insert connected components
in the internal faces of the currently drawn graph (G′, γ) as follows. If a connected
component (Gi, γ) of (G, γ) has to be placed inside an internal face f of (G′, γ), check
whether γ(uM ) ≤ γ(uf

M ) and whether γ(um) ≥ γ(uf
m), where uM (um) is a vertex of

(Gi, γ) such that γ(uM ) is maximum (resp. γ(um) is minimum) among the vertices of
Gi, and where uf

M (uf
m) is a vertex of Cf such that γ(uf

M ) is maximum (resp. γ(uf
m)

is minimum) among the vertices of Cf . If the test fails, then (G, γ) is not strip planar.
Otherwise, using a technique analogous to the one of Claim 3, a strip planar drawing of
(G′, γ) can be modified so that two consecutive global minimum and maximum for f
can be connected by a y-monotone curve C inside f . Suitably squeezing a strip planar
drawing of (Gi, γ) and placing it arbitrarily close to C provides a strip planar drawing
of (G′ ∪Gi, γ). Repeating such an argument leads either to conclude that (G, γ) is not
strip planar, or to construct a strip planar drawing of (G, γ).

The main question raised by this paper is whether the strip planarity testing problem
can be solved in polynomial time or is rather NP-hard for graphs without a prescribed
plane embedding. The problem is intriguing even if the input graph is a tree.
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