Skip to main content

Targeted Therapies in Cancer Treatment

  • Chapter
  • First Online:
Advances in Cancer Treatment

Abstract

In this chapter, we discuss what are the major receptors overexpressed in tumor cells and how these receptors have been widely tested as a targeted therapy in the treatment of cancer. We discuss the main classes of immunotherapy, including monoclonal antibodies, tyrosine kinase inhibitors, cancer vaccines, and checkpoint inhibitors, among others. Despite the benefits with the insertion of these immunotherapeutic agents in the cancer clinic, these drugs are not exempt from side effects, to which we highlight the main adverse events presented by patients during their administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8(9):1509–1528

    Google Scholar 

  2. Hoskins WJ (2005) Principles and practice of gynecologic oncology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Large DE, Soucy JR, Hebert J, Auguste DT (2018) Advances in receptor-mediated, tumor-targeted drug delivery. Adv Ther 2(1):1800091

    Google Scholar 

  4. Templeton NS (2008) Gene and cell therapy: therapeutic mechanisms and strategies. CRC Press, Boca Raton, USA

    Google Scholar 

  5. Narrandes S, Xu W (2018) Gene expression detection assay for cancer clinical use. J Cancer 9(13):2249–2265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Perez-Diez A, Morgun A, Shulzhenko N (2007) Microarrays for cancer diagnosis and classification. In: Microarray technology and cancer gene profiling. Springer, New York, pp 74–85

    Chapter  Google Scholar 

  7. Harvey KJ, Lukovic D, Ucker DS (2000) Caspase-dependent Cdk activity is a requisite effector of apoptotic death events. J Cell Biol 148(1):59–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jung MS, Yun J, Chae HD, Kim JM, Kim SC, Choi TS et al (2001) p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 20(41):5818–5825

    Article  CAS  PubMed  Google Scholar 

  9. Senthivinayagam S, Mishra P, Paramasivam SK, Yallapragada S, Chatterjee M, Wong L et al (2009) Caspase-mediated cleavage of beta-catenin precedes drug-induced apoptosis in resistant cancer cells. J Biol Chem 284(20):13577–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang ZB, Gao HY, Wei L, Zhang AQ, Zhang JY, Wang Y et al (2018) Expression of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and Ki-67 in ductal carcinoma in situ (DCIS) and DCIS with microinvasion. Medicine (Baltimore) 97(44):e13055

    Google Scholar 

  11. Magalhaes LG, Ferreira LLG, Andricopulo AD (2018) Recent advances and perspectives in cancer drug design. An Acad Bras Cienc 90(1 Supp. 2):1233–1250

    Article  CAS  PubMed  Google Scholar 

  12. Seebacher NA, Stacy AE, Porter GM, Merlot AM (2019) Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res 38:156

    Google Scholar 

  13. Koury J, Lucero M, Cato C, Chang L, Geiger J, Henry D et al (2018) Immunotherapies: exploiting the immune system for cancer treatment. J Immunol Res 2018:1–16

    Google Scholar 

  14. Pandya PH, Murray ME, Pollok KE, Renbarger JL (2016) The immune system in cancer pathogenesis: potential therapeutic approaches. J Immunol Res 2016:4273943

    Google Scholar 

  15. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73

    Google Scholar 

  16. Karachi A (2018) Immunotherapy for treatment of cancer. Intechopen

    Google Scholar 

  17. Stanculeanu DL, Daniela Z, Lazescu A, Bunghez R, Anghel R (2016) Development of new immunotherapy treatments in different cancer types. J Med Life 9(3):240–248

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ventola CL (2017) Cancer immunotherapy, Part 3: challenges and future trends. Pharm Ther 42(8):514–521

    Google Scholar 

  19. Egloff H, Kidwell KM, Schott A (2018) Ado-trastuzumab emtansine-induced pulmonary toxicity: a single-institution retrospective review. Case Rep Oncol 11:527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baldo BA (2020) Monoclonal antibodies approved for cancer therapy. In: Safety of Biologics Therapy, Springer, Cham, Switzerland

    Google Scholar 

  21. Scheeren FA, Geelen CMMV, Yasuda E, Spits H, Beaumont T (2011) Antigen-specific monoclonal antibodies isolated from B cells expressing constitutively active STAT5. PLoS One 6(4):e17189

    Google Scholar 

  22. Nogales-Gadea G, Saxena A, Hoffmann C, Hounjet J, Coenen D, Molenaar P et al (2015) Generation of recombinant human IgG monoclonal antibodies from immortalized sorted B cells. J Vis Exp 100:e52830

    Google Scholar 

  23. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P (2016) Harnessing the immune system to improve cancer therapy. Ann Transl Med 4(14):261

    Google Scholar 

  24. Schroeder HW, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(202):S41–S52

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vidal TJ, Figueiredo TA, Pepe VLE (2018) O mercado brasileiro de anticorpos monoclonais utilizados para o tratamento de câncer. Cad Saude Publica 34(12):e00010918

    Google Scholar 

  26. Uyar NY (2018) Structure, physiology, and functions of autoantibodies. Intechopen

    Google Scholar 

  27. Chames P, Regenmortel MV, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reichert JM (2012) Marketed therapeutic antibodies compendium. mAbs 4(3):413–415

    Article  PubMed  PubMed Central  Google Scholar 

  29. Santos ML, Quintilio W, Manieri TM, Tsuruta LR, Moro AM (2018) Advances and challenges in therapeutic monoclonal antibodies drug development. Braz J Pharm Sci 54:e01007

    Google Scholar 

  30. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27:1

    Google Scholar 

  31. Harding FA, Stickler MM, Razo J, DuBridge RB (2010) The immunogenicity of humanized and fully human antibodies residual immunogenicity resides in the CDR regions. MAbs 2(3):256–265

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goldenberg DM, Chatal JF, Barbet J, Boerman O, Sharkey RM (2007) Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther 2(1):19–31

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sharkey RM, Rossi EA, McBride WJ, Chang CH, Goldenberg DM (2010) Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med 40(3):190–203

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boyd K, Dearden CE (2008) Alemtuzumab in the treatment of chronic lymphocytic lymphoma. Expert Rev Anticancer Ther 8(4):525–533

    Article  CAS  PubMed  Google Scholar 

  35. Gajria D, Chandarlapaty S (2011) HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther 11(2):263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richard S, Selle F, Lotz JP, Khalil A, Gligorov J, Soares DG (2016) Pertuzumab and trastuzumab: the rationale way to synergy. An Acad Bras Cienc 88(1 Suppl):565–577

    Article  CAS  PubMed  Google Scholar 

  37. Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146(3):264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JÁ, Kremer L (2017) New strategies using antibody combinations to increase cancer treatment effectiveness. Front Immunol 8:1804

    Google Scholar 

  39. Dillman RO (2006) Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies. Clin Exp Med 6(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jacobs SA (2007) 90Yttrium ibritumomab tiuxetan in the treatment of non-Hodgkin’s lymphoma: current status and future prospects. Biol Target Ther 1(3):215–227

    CAS  Google Scholar 

  41. Lambert JM, Chari RVJ (2014) Ado-trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem 57(16):6949–6964

    Google Scholar 

  42. Staudacher AH, Brown MP (2017) Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer 117(12):1736–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thomas A, Teicher BA, Hassan R (2016) Antibody-drug conjugates for cancer therapy. Lancet Oncol 17(6):e254–e262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA (2018) Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther 12:195–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T et al (2019) Design and production of bispecific antibodies. Antibodies (Basel) 8(3):43

    Google Scholar 

  46. Hu Y, Turner MJ, Shields J, Gale MS, Hutto E, Roberts BL et al (2009) Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 128(2):260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Niu G, Chen X (2010) Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Cancer Drug Targets 11(8):1000–1017

    Article  CAS  Google Scholar 

  48. Wang Y, Fei D, Vanderlaan M, Song A (2004) Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7(4):335–345

    Article  CAS  PubMed  Google Scholar 

  49. Iqbal N, Iqbal N (2014) Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int 2014:852748

    Google Scholar 

  50. Mitri Z, Constantine T, O’Regan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:743193

    Google Scholar 

  51. Galizia G, Lieto E, De Vita F, Orditura M, Castellano P, Troiani T et al (2007) Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene 26:3654–3660

    Article  CAS  PubMed  Google Scholar 

  52. Russell JS, Colevas AD (2012) The use of epidermal growth factor receptor monoclonal antibodies in squamous cell carcinoma of the head and neck. Chemother Res Pract 2012:761518

    Google Scholar 

  53. Mohammed R, Milne A, Kayani K, Ojha U (2019) How the discovery of rituximab impacted the treatment of B-cell non-Hodgkin’s lymphomas. J Blood Med 10:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22:7359–7368

    Article  CAS  PubMed  Google Scholar 

  55. Cartenì G, Fiorentino R, Vecchione L, Chiurazzi B, Battista C (2007) Panitumumab a novel drug in cancer treatment. Ann Oncol 18(Suppl 6):vi16–vi21

    Article  PubMed  Google Scholar 

  56. Trivedi S, Srivastava RM, Concha-Benavente F, Ferrone S, Garcia-Bates TM, Li J et al (2016) Anti-EGRF targeted monoclonal antibody isotype influences anti-tumor cellular immunity in head and neck cancer patients. Clin Cancer Res 22(21):5229–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cáceres MC, Guerrero-Martín J, Pérez-Civantos D, Palomo-López P, Delgado-Mingorance JI, Durán-Gómez N (2019) The importance of early identification of infusion-related reactions to monoclonal antibodies. Ther Clin Risk Manag 15:965–977

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guan M, Zhou YP, Sun JL, Chen SC (2015) Adverse events of monoclonal antibodies used for cancer therapy. BioMed Res Int 2015:428169

    Google Scholar 

  59. Coulson A, Levy A, Gossell-Williams M (2014) Monoclonal antibodies in cancer therapy: mechanisms, successes and limitations. West Indian Med J 63(6):650–654

    CAS  PubMed  Google Scholar 

  60. Fakih M, Vincent M (2010) Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr Oncol 17(Suppl 1):S18–S30

    PubMed  PubMed Central  Google Scholar 

  61. Mohan N, Jiang J, Dokmanovic M, Wu WJ (2018) Trastuzumab-mediated cardiotoxicity: current understanding, challenges, and frontiers. Antibiot Ther 1(1):13–17

    CAS  Google Scholar 

  62. Pavlidis ET, Pavlidis TE (2013) Role of bevacizumab in colorectal cancer growth and its adverse effects: a review. World J Gastroenterol 19(31):5051–5060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hu-Lieskovan S, Ribas A (2016) New combination strategies using programmed cell death 1/programmed cell death ligand 1 checkpoint inhibitors as a backbone. Cancer J 23(1):10–22

    Article  CAS  Google Scholar 

  64. Linck RDM, Costa RLP, Garicochea B (2017) Cancer immunology and melanoma immunotherapy. An Bras Dermatol 92(6):830–835

    Google Scholar 

  65. Nowicki TS, Hu-Lieskovan S, Ribas A (2018) Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J 24(1):47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Riley RS, June CH, Langer R, Mitchell MJ (2019) Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 18(3):175–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8:86

    Google Scholar 

  68. Rotte A (2019) Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res 38:255

    Google Scholar 

  69. Marchetti A, Lorito AD, Buttitta F (2017) Why anti-PD1/PDL1 therapy is so effective? Another piece in the puzzle. J Thorac Dis 9(12):4863–4866

    Article  PubMed  PubMed Central  Google Scholar 

  70. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Google Scholar 

  71. Kim JM, Chen DS (2016) Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27(8):1492–1504

    Article  CAS  PubMed  Google Scholar 

  72. Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z et al (2019) The diverse function of Pd-1/PD-L pathway beyond cancer. Front Immunol 10:2298

    Google Scholar 

  73. Cummings AL, Garon EB (2017) The ascent of immune checkpoint inhibitors: is the understudy ready for a leading role? Cancer Biol Med 14(4):341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davis AA, Patel VG (2019) The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer 7(1):278

    Google Scholar 

  75. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L et al (2019) Application of Pd-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J 17:661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brunner-Weinzierl MC, Rudd CE (2018) CTLA-4 and PD-1 control of T-cell motility and migration: implications for tumor immunotherapy. Front Immunol 9:2737

    Google Scholar 

  77. Gu D, Ao X, Yang Y, Chen Z, Xu X (2018) Soluble immune checkpoints in cancer: production, function and biological significance. J Immunother Cancer 6:132

    Google Scholar 

  78. Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R (2019) Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers (Basel) 11(11):1756

    Google Scholar 

  79. Singh P, Souza P, Scott KF, Hall BM, Verma ND, Becker TM et al (2019) Biomarkers in immune checkpoint inhibition therapy for cancer patients: what is the role of lymphocyte subsets and PD1/PD-L1? Transl Med Commun 4(2)

    Google Scholar 

  80. Choi J, Lee SY (2020) Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors. Immune Netw 20(1):e9

    Google Scholar 

  81. Spiers L, Coupe N, Payne M (2019) Toxicities associated with checkpoint inhibitors – an overview. Rheumatology (Oxford) 58(Suppl 7):vii7–vii16

    Google Scholar 

  82. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Postow M (2015) Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book:76–83

    Google Scholar 

  84. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  85. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  86. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H et al (2018) Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121

    Article  CAS  PubMed  Google Scholar 

  87. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD et al (2018) PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med 379:341–335

    Article  CAS  PubMed  Google Scholar 

  88. Burg SHVD (2018) Correlates of immune and clinical activity of novel cancer vaccines. Semin Immunol 39:119–136

    Article  PubMed  CAS  Google Scholar 

  89. Emens LA (2008) Cancer vaccines: on the threshold of success. Expert Opin Emerg Drugs 13(2):295–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hollingsworth RE, Jansen K (2019) Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 4:7

    Google Scholar 

  91. Finn OJ (2014) Vaccines for cancer prevention: a practical and feasible approach to the cancer epidemic. Cancer Immunol Res 2(8):708–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tashiro H, Brenner MK (2017) Immunotherapy against cancer-related viruses. Cell Res 27(1):59–73

    Article  CAS  PubMed  Google Scholar 

  93. D’Souza G, Dempsey A (2011) The role of HPV in head and neck cancer and review of the HPV vaccine. Prev Med 53(Suppl 1):S5–S11

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gillison ML (2008) Human papillomavirus-related diseases: oropharynx cancers and potential implications for adolescent HPV vaccination. J Adolesc Health 43(4 Suppl):S52–S60

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mitchell AE, Colvin HM (2010) Hepatitis and liver cancer: a national strategy for prevention and control of hepatitis B and C. National Academies Press, Washington

    Google Scholar 

  96. Bhat M, Ghali P, Deschenes M, Wong P (2014) Prevention and management of chronic hepatitis B. Int J Prev Med 5(Suppl 3):S200–S207

    PubMed  PubMed Central  Google Scholar 

  97. Niu B, Hann HW (2017) Hepatitis B virus-related hepatocellular carcinoma: carcinogenesis, prevention, and treatment. Intechopen

    Google Scholar 

  98. Lowndes CM (2006) Vaccines for cervical cancer. Epidemiol Infect 134(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Flora SD, Bonanni P (2011) The prevention of infection-associated cancers. Carcinogenesis 32(6):787–795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY (2013) Therapeutic cancer vaccines: past, present and future. Adv Cancer Res 119:421–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jiang S, Good D, Wei MQ (2019) Vaccinations for colorectal cancer: progress, strategies, and novel adjuvants. Int J Mol Sci 20(14):3403

    Google Scholar 

  102. Vermaelen K (2019) Vaccine strategies to improve anti-cancer cellular immune responses. Front Immunol 10:8

    Google Scholar 

  103. Anassi E, Ndefo UA (2011) Sipuleucel-T (Provenge) injection. Pharm Therap 36(4):197–202

    Google Scholar 

  104. American Cancer Society. Immunotherapy for prostate cancer. 2019. Available on: https://www.cancer.org/cancer/prostate-cancer/treating/vaccine-treatment.html. Accessed 1 Aug 2020

  105. Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17(11):3520–3526

    Article  PubMed  Google Scholar 

  106. Drake CG (2011) Update on prostate cancer vaccines. Cancer J 17(5):294–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hammerstrom AE, Cauley DH, Atkinson BJ, Sharma P (2011) Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy 31(8):813–828

    Article  PubMed  PubMed Central  Google Scholar 

  108. Willigen WWV, Bloemendal M, Gerritsen WR, Schreibelt G, Vries IJM, Bol KF (2018) Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol 9:2265

    Google Scholar 

  109. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–668

    Google Scholar 

  110. Zhang JM, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee S, Margolin K (2011) Cytokines in cancer immunotherapy. Cancers (Basel) 3(4):3856–3893

    Article  CAS  Google Scholar 

  112. Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W et al (2018) Prospects of IL-2 in cancer immunotherapy. Biomed Res Int 2018:9056173

    Google Scholar 

  113. Jiang T, Zhou C, Ren S (2016) Role of IL-2 in cancer immunotherapy. OncoImmunology 5(6):e1163462

    Google Scholar 

  114. Nicholas C, Lesinski GB (2011) Immunomodulatory cytokines as therapeutic agents for melanoma. Immunotherapy 3(5):673–690

    Article  CAS  PubMed  Google Scholar 

  115. Dorr RT (1993) Interferon-𝛂 in malignant and viral diseases. Drugs 45:177–211

    Article  CAS  PubMed  Google Scholar 

  116. Kirkwood JM (2002) Cancer immunotherapy: the interferon-𝛂 experience. Semin Oncol 29(3):18–26

    Article  CAS  PubMed  Google Scholar 

  117. Roth MS, Foon KA (1986) Alpha interferon in the treatment of hematologic malignancies. Am J Med 81:871–882

    Article  CAS  PubMed  Google Scholar 

  118. Franssen LE, Mutis T, Lokhorst HM, Donk NWCJV (2019) Immunotherapy in myeloma: how far have we come? Therap Adv Hematol 10:2040620718822660

    Google Scholar 

  119. Matsushita M, Kawaguchi M (2018) Immunomodulatory effects of drugs for effective cancer immunotherapy. J Oncol 2018:8653489

    Google Scholar 

  120. Butterfield LH, Kaufman HL, Marincola FM (2017) Cancer immunotherapy principles and practice. Springer Publishing Company, New York, USA

    Google Scholar 

  121. Fuge O, Vasdev N, Allchorne P, Green JS (2015) Immunotherapy for bladder cancer. Res Rep Urol 7:65–79

    PubMed  PubMed Central  Google Scholar 

  122. Sharma P, Old LJ, Allison JP (2007) Immunotherapeutic strategies for high-risk bladder cancer. Semin Oncol 34(2):165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anaya JM, Shoenfeld Y, Rojas-Villarraga A, Levy RA, Cervera R (2013) Autoimmunity: from bench to bedside. El Rosario University Press, Bogota

    Google Scholar 

  124. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stone WL, Leavitt L, Varacallo M (2020) Physiology, growth factor. StatPearls Publishing, USA

    Google Scholar 

  126. Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 9(5):52

    Google Scholar 

  127. Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int J Mol Med 40(2):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee S, Kim SM, Lee RT (2013) Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 18(10):1165–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J et al (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5:1–35

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Force T, Kuida K, Namchuk M, Parang K, Kyriakis JM (2004) Inhibitors of protein kinase signaling pathways. Circulation 109:1196–1205

    Article  CAS  PubMed  Google Scholar 

  131. Siveen KS, Prabhu KS, Achkar IW, Kuttikrishnan S, Shyam S, Khan AQ et al (2018) Role of non receptor tyrosine kinases in hematological malignances and its targeting by natural products. Mol Cancer 17(1):31

    Google Scholar 

  132. Matos K, Manso PG, Marback E, Furlanetto R, Alberti GN, Nosé V (2008) Protein expression of VEGF, IGF-1 and FGF in retroocular connective tissues and clinical correlation in Graves’ ophthalmopathy. Arq Bras Oftalmol 71(4):486–492

    Google Scholar 

  133. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fauvel B, Yasri A (2014) Antibodies directed against receptor tyrosine kinases. MAbs 6(4):838–851

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ferreira PMP, Pessoa C (2017) Molecular biology of human epidermal receptors, signaling pathways and targeted therapy against cancers: new evidences and old challenges. Braz J Pharm Sci 53(2) e16076

    Google Scholar 

  136. Raval SH, Singh RD, Joshi DV, Patel HB, Mody SK (2016) Recent developments in receptor tyrosine kinases targeted anticancer therapy. Vet World 9(1):80–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jackson KD, Durandis R, Vergne MJ (2018) Role of cytochrome P450 enzymes in the metabolic activation of tyrosine kinase inhibitors. Int J Mol Sci 19(8)

    Google Scholar 

  138. Jeong W, Doroshow JH, Kummar S (2013) US FDA approved oral kinase inhibitors for the treatment of malignancies. Curr Probl Cancer 37(3):110–144

    Article  PubMed  PubMed Central  Google Scholar 

  139. Such E, Liquori A, Mora E, Marco-Ayala J, Avetisyan G, Regadera A et al (2019) RNA sequencing analysis for the identification of a PCM1/PDGFRB fusion gene responsive to imatinib. Acta Haematol 142:92–97

    Article  CAS  PubMed  Google Scholar 

  140. Dutta PR, Maity A (2007) Cellular responses to EGFR inhibitors and their relevance to cancer therapy. Cancer Lett 254(2):165–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Leite CAVG, Costa JVG, Callado RB, Torres JNL, Lima Júnior RCP, Ribeiro RA (2012) Receptores tirosina-quinase: implicações terapêuticas no câncer. Revista Brasileira de Oncologia Clínica 8(29):130–142

    Google Scholar 

  142. Penne K, Bohlin C, Schneider S, Allen D (2005) Gefitinib (Iressa™, ZD1839) and tyrosine kinase inhibitors: the wave of the future in cancer therapy. Cancer Nurs 28(6):481–486

    Article  PubMed  Google Scholar 

  143. Frampton JE, Easthope SE (2005) Spotlight on gefitinib in non-small-cell lung cancer. Am J Pharmacogenomics 5(2):133–136

    Article  PubMed  Google Scholar 

  144. Frampton JE, Easthope SE (2004) Gefitinib: a review of its use in the management of advanced non-small-cell lung cancer. Drugs 64(21):2475–2492

    Article  CAS  PubMed  Google Scholar 

  145. Haringhuizen A, van Tinteren H, Vaessen HFR, Baas P, van Zandwijk N (2004) Gefitinib as a last treatment option for non-small-cell lung cancer: durable disease control in a subset of patients. Ann Oncol 15:786–792

    Article  CAS  PubMed  Google Scholar 

  146. Bethune G, Bethune D, Ridgway N, Xu Z (2010) Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. J Thorac Dis 2(1):48–51

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lopes GL, Vattimo EFQ, Junior GC (2015) Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer. Journal Brasileiro de Pneumologia 41(4):365–375

    Google Scholar 

  148. Vyse S, Huang PH (2019) Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther 4:5

    Google Scholar 

  149. Cicènas S, Geater SL, Petrov P, Hotko Y, Hooper G, Xia F et al (2016) Maintenance erlotinib versus erlotinib at disease progression in patients with advanced non-small-cell lung cancer who have not progressed following platinum-based chemotherapy (IUNO study). Lung Cancer 102:30–37

    Article  PubMed  Google Scholar 

  150. Rajappa S, Doval DC, Biswas J, Patil S, Somani N, Srinivasan S et al (2017) Efficacy of erlotinib as first-line maintenance therapy in patients with locally advanced or metastatic nonsmall cell lung cancer who have not experienced disease progression or unacceptable toxicity during chemotherapy. South Asian J Cancer 6(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  151. Wang Y, Schmid-Bindert G, Zhou C (2012) Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol 4(1):19–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Broecker-Preuss M, Muller S, Britten M, Worm K, Schmid KW, Mann K et al (2015) Sorafenib inhibits intracellular signaling pathways and induces cell cycle arrest and cell death in thyroid carcinoma cells irrespective of histological origin or BRAF mutational status. BMC Cancer 15:184

    Google Scholar 

  153. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140

    Article  CAS  PubMed  Google Scholar 

  154. Keskin D, Sadri S, Eskazan AE (2016) Dasatinib for the treatment of chronic myeloid leukemia: patient selection and special considerations. Drug Des Devel Ther 10:3355–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shah NP, Rousselot P, Schiffer C, Rea D, Cortes JE, Milone J et al (2016) Dasatinib in imatinib-resistant or-intolerant chronic-phase, chronic myeloid leukemia patients: 7-year follow-up of study CA180-034. Am J Hematol 91(9):869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jabbour E, Cortes J, Kantarjian H (2009) Nilotinib for the treatment of chronic myeloid leukemia: an evidence-based review. Core Evid 4:207–213

    Article  CAS  Google Scholar 

  157. Fink MY, Chipuk JE (2013) Survival of HER2-positive brast cancer cells. Genes Cancer 4(5–6):187–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Raina D, Uchida Y, Kharbanda A, Rajabi H, Panchamoorthy G, Jin C et al (2014) Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene 33:3422–3431

    Article  CAS  PubMed  Google Scholar 

  159. Kaufman B, Stein S, Casey MA, Newstat BO (2007) Lapatinib in combination with capecitabine in the management of ErbB2-positive (HER2-positive) advanced breast cancer. Biol Target Ther 2(1):61–65

    Google Scholar 

  160. Opdam FL, Guchelaar HJ, Bejinen JH, Schellens JHM (2012) Lapatinib for advanced or metastatic breast cancer. Oncologist 17(4):536–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang J, Xu B (2019) Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 4:34

    Google Scholar 

  162. Aggarwal BB, Danda D, Gupta S, Gehlot P (2009) Models for prevention and treatment of cancer: problems vs promises. Biochem Pharmacol 78(9):1083–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Krajewska J, Handkiewicz-Junak D, Jarzab B (2015) Sorafenib for the treatment of thyroid cancer: an updated review. Expert Opin Pharmacother 16(4):573–583

    Article  CAS  PubMed  Google Scholar 

  164. Burotto M, Manasanch EE, Wilkerson J, Fojo T (2015) Gefitinib and erlotinib in metastatic non-small cell lung cancer: a meta-analysis of toxicity and efficacy of randomized clinical trials. Oncologist 20(4):400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chatsiproios D (2010) Safety profile and clinical recommendations for the use of Lapatinib. Breast Care (Basel) 5(Suppl 1):16–21

    Article  Google Scholar 

  166. Cetin B, Benekli M, Turker I, Koral L, Ulas A, Dane F et al (2014) Lapatinib plus capecitabine for HER2-positive advanced breast cancer: a multicentre study of Anatolian Society of Medical Oncology (ASMO). J Chemother 26(5):300–305

    Article  CAS  PubMed  Google Scholar 

  167. Inayat F, Saif MW (2016) New drug and possible new toxicity - squamous cell carcinoma following imatinib in patients with gastrointestinal stromal tumors. Anticancer Res 36(11):6201–6204

    Article  PubMed  Google Scholar 

  168. Chamoun K, Rabinovich E, Baer L, Fastenau P, Lima M (2020) A case of neurocognitive deficit strongly related to dasatinib therapy. Hematol Transfus Cell Ther 42(1):80–82

    Google Scholar 

  169. Conchon M, Freitas CMBM, Rego MAC, Junior JWRB (2011) Dasatinib – clinical trials and management of adverse events in imatinib resistant/intolerant chronic myeloid leukemia. Rev Bras Hematol Hemoter 33(2):131–139

    Google Scholar 

  170. Boons CCLM, Timmers L, Janssen JJWM, Westerweel PE, Blijlevens NMA, Smit WM et al (2020) Response and adherence to nilotinib in daily practice (RAND study): an in-depth observational study of chronic myeloid leukemia patients treated with nilotinib. Eur J Clin Pharmacol 76:1213–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavalcanti, I.D.L., Soares, J.C.S. (2021). Targeted Therapies in Cancer Treatment. In: Advances in Cancer Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-68334-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68334-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68333-7

  • Online ISBN: 978-3-030-68334-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics