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Abstract. Bug-free concurrent programs are hard to write due to non-
determinism arising out of concurrency and program inputs. Since con-
currency bugs typically manifest under specific inputs and thread sched-
ules, conventional testing methodologies for concurrent programs like
stress testing and random testing, which explore random schedules, have
a strong chance of missing buggy schedules.

In this paper, we introduce a novel technique that combines property-
based testing with mutation-based, grey box fuzzer, applied to event-
driven OCaml programs. We have implemented this technique in Con-
Fuzz, a directed concurrency bug-finding tool for event-driven OCaml
programs. Using ConFuzz, programmers specify high-level program prop-
erties as assertions in the concurrent program. ConFuzz uses the popular
greybox fuzzer AFL to generate inputs as well as concurrent schedules
to maximise the likelihood of finding new schedules and paths in the
program so as to make the assertion fail. ConFuzz does not require any
modification to the concurrent program, which is free to perform arbi-
trary I/O operations. Our experimental results show that ConFuzz is
easy-to-use, effective, detects concurrency bugs faster than Node.Fz -
a random fuzzer for event-driven JavaScript programs, and is able to
reproduce known concurrency bugs in widely used OCaml libraries.
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1 Introduction

Event-driven concurrent programming is used in I/O heavy applications such
as web browsers, network servers, web applications and file synchronizers. On
the client-side, JavaScript natively supports event-driven programming through
promises and async/await [3] in order to be able to retrieve multiple resources
concurrently from the Web, without blocking the user-interface rendering. On
the server-side, several popular and widely used frameworks such as Node.js
(JavsScript) [27], Lwt (OCaml) [23,37], Async (OCaml) [2], Twisted (Python)
[35], use event-driven concurrent programming model for building scalable net-
work services.
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Event-driven programs are typically single-threaded, with the idea that
rather than performing I/O actions synchronously, which may block the exe-
cution of the program, all the I/O is performed asynchronously, by attaching
a callback function that gets invoked when the I/O operation is completed. An
event loop sits at the heart of the programming model that concurrently performs
the I/O operations, and schedules the callback functions to be resumed when
the corresponding I/O is completed. The concurrent I/O is typically offloaded
to a library such as libuv [21] and libev [20], which in turn discharge concurrent
I/O through efficient operating system dependent mechanisms such as epoll [11]
on Linux, kqueue [18] on FreeBSD, OpenBSD and macOS, and IOCP [16] on
Windows.

Single-threaded event-driven programs avoid concurrency bugs arising from
multi-threaded execution such as data races and race conditions. Despite this,
event-driven programs suffer from concurrency bugs due to the non-deterministic
order in which the events may be resolved. For example, callbacks attached
to a timer event and DNS resolution request may execute in different orders
based on the order in which the events arrive. As event-driven programs are
single-threaded, they do not contain data races related bugs which makes it
unsuitable to apply data race detectors developed for detecting multi-threading
bugs [12,39].

Moreover, the erroneous condition in a concurrent program may not be the
mere presence of a race, but a complex assertion expressed over the current
program state. For example, in the case of a timer event and DNS resolution
request, the timer may be intended for timing out the DNS resolution request.
On successful resolution, the timer event is cancelled. Then, the safety property
is that if the timer callback is running, then the DNS resolution request is still
pending. It is unclear how to express this complex property as races.

To help uncover such complex concurrency bugs that may arise in event-
driven concurrent programs, we present a novel technique that combines
property-based testing on the lines of QuickCheck [6] with AFL fuzzer [1], the
state-of-the-art mutation-based, grey box fuzzer, and apply it to generate not
only inputs that may cause the property to fail, but also to drive the various
scheduling decisions in the event-driven program. AFL works by instrumenting
the program under test to observe the control-flow edges, mutates the input such
that new paths are uncovered. In addition to different paths, a concurrent pro-
gram also has to contend with the exponential number of schedules available,
many of which may lead to the same behaviour. Our key observation is that
we can use AFL’s grey box fuzzing capability to direct the search towards new
schedules, and thus lead to property failure.

We have implemented this technique in ConFuzz, a concurrent property
fuzz testing tool for concurrent OCaml programs using the popular Lwt [23,37]
library(asynchronous I/O library). Properties are expressed as assertions in the
source code, and ConFuzz aims to identify the input and the schedule that will
cause the assertion to fail. ConFuzz supports record and replay to reproduce the
failure. Once a bug is identified, ConFuzz can deterministically reproduce the con-
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currency bug. ConFuzz is developed as a drop-in replacement for the Lwt library
and does not require any change to the code other than writing the assertion
and the wrapper code to drive the tool.

The main contributions of this paper are as follows:

– We present a novel technique that combines property-based testing with
mutation-based, grey box fuzzer applied to test the schedules of event-driven
OCaml programs.

– We implement the technique in ConFuzz, a drop-in replacement for testing
event-driven OCaml programs written using the Lwt library.

– We show by experimental evaluation that ConFuzz is more effective and effi-
cient than the state-of-the-art random fuzzing tool Node.Fz and stress testing
in finding concurrency bugs. We reproduce known concurrency bugs by test-
ing ConFuzz on 8 real-world concurrent OCaml programs and 3 benchmark
programs.

2 Motivating Example

let linear_eq i =

let x = ref i in

let p1 = pause () >>= fun () ->

x := !x - 2; return_unit in

let p2 = pause () >>= fun () ->

x := !x * 4; return_unit in

let p3 = pause () >>= fun () ->

x := !x + 70; return_unit in

Lwt_main.run (join[p1;p2;p3]);

assert (!x <> 0)

Fig. 1. A program with a concurrency bug

We describe a simple, adver-
sarial example to illustrate
the effectiveness of ConFuzz
over Node.Fz and stress
testing. Figure 1 shows an
OCaml concurrent program
written using the Lwt library
[37]. The program contains
a single function linear_eq

that takes an integer argu-
ment i. linear_eq creates
three concurrent tasks p1,
p2, and p3, each modifying the shared mutable reference x. The pause opera-
tion pauses the concurrent task, registering the function fun ()-> ... following
the >>= operator as a callback to be executed in the future. Importantly, the
tasks p1, p2, and p3 may be executed in any order.

This program has a concurrency bug; there exists a particular combination
of input value i and interleaving between the tasks that will cause the value of
x to become 0, causing the assertion to fail. There are 2631 possibilities for the
value of i and 6 (3!) possible schedules for the 3 tasks. Out of these, there are
only 3 possible combinations of input and schedule for which the assertion fails.

– i = −17 and schedule = [p2; p1; p3] : ((−17 ∗ 4) − 2) + 70 = 0.
– i = −68 and schedule = [p1; p3; p2] : ((−68 − 2) + 70) ∗ 4 = 0.
– i = −68 and schedule = [p3; p1; p2] : ((−68 + 70) − 2) ∗ 4 = 0.

1 OCaml uses tagged integer representation [19].
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As the bug in example program depends on input and interleaving, concur-
rency testing techniques focusing only on generating different interleavings will
fail to find this bug. This is evident when the program is executed under differ-
ent testing techniques. Table 2 shows a comparison of ConFuzz with the random
concurrency fuzzing tool Node.Fz [7] and stress testing for the example program.

Testing
Technique

Executions
(millions)

Time
(minutes) Bug Found

ConFuzz 3.26 18 Yes
Node.Fz[7] 110 60 No

Stress 131 60 No

Fig. 2. Comparing different testing techniques

Node.Fz is a concur-
rency fuzzing tool similar
to ConFuzz, which gener-
ates random interleavings
rather than being guided by
AFL. Node.Fz focuses only
on finding buggy interleav-
ings. As Node.Fz is imple-
mented in JavaScript, we
port the underlying tech-
nique in OCaml. We refer to
the OCaml port of Node.Fz technique when referring to Node.Fz. Stress test-
ing runs a program repeatedly with random input values. We test the example
program with each technique until a bug is found or a timeout of 1 h is reached.
We report the number of executions and time taken if the bug was found. Only
ConFuzz was able to find the bug. Although this example is synthetic, we observe
similar patterns in real world programs where the bug depends on the combina-
tion of the input value and the schedule, and cannot be discovered with a tool
that only focuses on one of the sources of non-determinism.

let pipe_chars a b c =

let res = ref [] in

let ic, oc = pipe () in

let sender =

write_char oc a >>= fun () ->

write_char oc b >>= fun () ->

write_char oc c >>= fun () ->

return_unit

in

let recvr () =

read_char ic >>= fun c ->

res := Char.uppercase_ascii c::!res;

return_unit

in

Lwt_main.run (join [recvr (); recvr();

recvr(); sender ]);

assert (!res <> ['B';'U';'G'])

Fig. 3. A program with a concurrency bug

Real world event-driven
programs also involve file
and network I/O, timer
completions, etc. ConFuzz
can test unmodified pro-
grams that involve com-
plex I/O behaviour. Figure 3
shows a function pipe_chars

that takes three charac-
ter arguments. The func-
tion creates a shared pipe

as a pair of input (ic
) and output (oc) file
descriptors. The sender

task sends the characters
over oc. The three recvr

tasks each receive a single
character, convert that to
the corresponding upper
case character, and append it to a global list reference res. The assertion checks
that the final result in res is not ['B';'U';'G']. Due to input and scheduling
non-determinism, there are plenty of schedules. However, the assertion failure is
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triggered with only 6 distinct inputs, each of which is a permutation of 'b', 'u',
'g' for the input arguments to the function, and a corresponding permutation of
the recvr tasks. ConFuzz was able to find a buggy input and schedule in under
a minute. This illustrates that ConFuzz is applicable to real world event-driven
concurrent programs.

3 Lwt: Event-Driven Model

In this section, we discuss the event-driven model in Lwt. Lwt [37] is the most
widely used asynchronous I/O library in the OCaml ecosystem. Lwt lies at the
heart of the stack in the MirageOS [24], a library operating system for construct-
ing Unikernels. MirageOS is embedded in Docker for Mac and Windows apps
[8] and hence, runs on millions of developer machines across the world. Hence,
our choice of Lwt is timely and practical. That said, the ideas presented in this
paper can be applied to other event-driven libraries such as Node.js [27]. Lwt
event model is shown in Fig. 4.

Pause queue

I/O queue

Yield queue

Worker pool
(n threads)Asynchronous op

Looper thread

Done event

Fig. 4. Lwt event model

Under cooperative thread-
ing, each task voluntarily
yields control to other tasks
when it is no longer able
to make progress. Lwt event
model consists of an event
loop engine and a worker
pool. The event loop engine
manages timers, read and
write I/O events on regis-
tered file descriptors and executes the callbacks registered with the events. Lwt
event loop engine can be configured to use various engines such as libev [20],
Unix’s select [33] and poll [30].

Lwt event loop consists of three event queues, each holding a different class of
events with their attached callbacks. The three queues are yield, pause and I/O

queue. All yielded and paused callbacks are inserted in yield and pause queue
respectively. The I/O queue comprises of the timer and I/O events and is handled
by libev engine. The looper thread examines each of the queues and executes
the pending callbacks without interruption until they give up control. Lwt does
not guarantee the relative execution order between two events in the same or
different queues. The computationally intensive tasks and blocking system calls
are offloaded to the worker pool of threads which execute the tasks so that they
do not block the event loop. The non-determinism in the execution order of the
events gives rise to concurrency bugs.

4 ConFuzz

In this section, we present the architecture of the ConFuzz tool, starting with a
background of the technique ConFuzz builds upon.
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4.1 Background

Fuzzing is an effective technique for testing software by feeding random input to
induce the program to crash. American Fuzzy Lop (AFL) [1] is a coverage-guided
fuzzer [28], which inserts lightweight instrumentation in the program under test
to collect code coverage information such as program execution paths. AFL
starts with a seed test case, which it mutates with a combination of random and
deterministic techniques that aims to find new execution paths in the program.
On detecting a new execution path, the corresponding input test case is saved
for further mutation. During fuzzing, the input test cases that results in a crash
are saved, thus finding the exact test case that results in a crash.

Property-based testing, introduced by QuickCheck [6], works by testing an
executable (predicate) on a stream of randomly generated inputs. Property-
based testing is typically equipped with a generator that randomly generates
inputs for the executable predicate. While property based testing works well in
many cases, random generation of inputs may not cover large parts of the pro-
grams where the bugs may lie. Crowbar [9] is a testing tool for OCaml that com-
bines property-based testing with AFL. Rather than generating random inputs,
the inputs are generated by AFL to maximise the discovery of execution paths
in the function under test.

4.2 Architecture

AFL Instrumented 
program

Scheduler

Input

Shuffle
order

Fuzzed 
callbacks

Instrumented 

Execution path

Fig. 5. ConFuzz architecture

ConFuzz extends Crowbar in order
to generate inputs that maximize
the coverage of the state space intro-
duced by non-deterministic execu-
tion of concurrent event-driven pro-
grams. ConFuzz is built on top
of Crowbar by forking it. Figure 5
shows ConFuzz’s architecture. Con-
Fuzz controls Lwt’s scheduler by cap-
turing the non-determinism present
in the Lwt programs. To explore properties on a wide range of different schedules,
ConFuzz generates various legal event schedules by alternating the order of event
callback execution with the help of AFL. AFL generates execution order (shuffle
order) for the captured concurrent events, which is then enforced by controlled
scheduler (fuzzed callbacks). The properties are tested repeatedly with differ-
ent test inputs and event schedules. The test input and the event schedules that
result in property failures are detected as a crash by AFL, resulting in the detec-
tion of concurrency bug. Although example programs in the paper use simple
inputs, ConFuzz does support generators for complex inputs like QuickCheck [6].

Unlike other concurrency testing tools [7,26], which fuzz the schedules for a
specific input, ConFuzz can fuzz both input and the schedule, which improves
both the ease-of-use and effectiveness of the tool. Similar to other concurrency
testing tools, ConFuzz also supports record and replay feature, which records
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the event schedule that leads to a concurrency bug. The input and the buggy
schedule are saved in a separate file, which when executed with test binary,
deterministically reproduces the bug. Thus, ConFuzz helps to debug concurrency
bug by reliably reproducing the bug.

5 Fuzzing Under Non-determinism

In this section, we discuss the non-determinism present in Lwt concurrent pro-
grams. We then show how ConFuzz captures and fuzzes this non-determinism.

5.1 Non-determinism in Lwt

I/O and Timer Non-determinism. Lwt permits asynchronous network and
file I/O by registering callbacks against I/O operations. Since the completion of
I/O operations is non-deterministic, the callbacks may be triggered in a non-
deterministic order. Moreover, there is also the possibility of races between call-
backs in order to access shared resources such as sockets and file descriptors.
Lwt also supports registering callbacks to timer events which are triggered at
some time after the expiration of the timer. Any assumption about the precise
time at which the callbacks will run may lead to concurrency bugs. As described
in Sect. 3, both the timer and the I/O events are processed in the I/O event
queue. For example, a user code expecting a network request to complete within
a certain time period may go wrong if the network callback is executed after
the timer callback. This bug can be caught by fuzzing the I/O event queue that
reorders the timer and the network callbacks.

Worker Pool Non-determinism. Lwt offloads blocking system calls and long
running tasks to the worker pool. Lwt uses a worker pool comprising of a fixed
number of kernel threads. The kernel threads are scheduled by the operating
system and makes the execution of offloaded tasks non-deterministic.

Callback Non-determinism. Lwtyield and pause primitives enable long run-
ning computation to give up execution to another callback voluntarily. In Lwt,
the yielded and paused callbacks may be evaluated in any order. Any assump-
tion on the order in which the yielded and paused callbacks are executed may
lead to concurrency bugs. These bugs can be identified by fuzzing the yield and
pause queues.

5.2 Capturing Non-determinism

In this section, we discuss how ConFuzz controls the non-determinism described
in Sect. 5.1.
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Event Loop Queues. Lwt event loop queues – yield, pause and I/O – are the
primary sources of non-determinism in an Lwt program. To capture and control
the non-determinism arising out of these queues, we insert calls to ConFuzz
scheduler in the event loop before executing the callbacks of yield and pause
queues. ConFuzz scheduler then fuzzes the order of callbacks in the queues to
generate alternative schedules.

Worker Pools. Non-determinism in the worker pool is influenced by multiple
factors such as the number of threads, the thread scheduling by the operating
system and the order in which the tasks are offloaded. For deterministic pro-
cessing and completion order of tasks, we reduce the worker pool size to one.
This change serializes the tasks handled by the worker pool. The worker pool
tasks are executed one after another. By reducing the worker pool to one thread,
ConFuzz can deterministically replay the order of worker pool task execution.

In Lwt to signal task completion, the worker pool thread writes to a common
file descriptor which is intercepted by the event loop and processed as an I/O
event. The single file descriptor is shared by all the tasks for indicating task
completion. Thus, Lwt multiplexes a single file descriptor for many worker pool
tasks. Multiplexing prevents changing the order of task completion relative to
I/O and as a result, miss some of the bugs.

To overcome this, ConFuzz eliminates multiplexing by assigning a file descrip-
tor per task. During the event loop I/O phase, task completion I/O events are
fuzzed along with other I/O events and timers. De-multiplexing enables ConFuzz
to shuffle the order of task completion relative to other tasks as well as timer
and I/O events.

To change the processing order of worker pool tasks, we delay the execution
of offloaded tasks. During each iteration of the event loop, the offloaded tasks are
collected in a list. At the start of the next iteration of the event loop, ConFuzz
scheduler shuffles the processing order of the tasks. The tasks are then executed
synchronously. By delaying the task execution by one iteration, ConFuzz collects
enough tasks to shuffle. We believe that delaying tasks by one iteration would
suffice to generate the task processing orders that would occur in production
environments. It is highly unlikely that a task from the second iteration is started
and completed before tasks from the first iteration, given that Lwt tasks are
started off in a FIFO manner.

Synchronous task execution also helps in deterministically generating a buggy
schedule. As the number of completed tasks remains the same in every sched-
ule, ConFuzz has to just reorder tasks to reproduce a bug. This design choice
lets ConFuzz generate task processing and completion order independently. How-
ever, delaying and synchronous task execution can prevent ConFuzz from missing
schedules containing bugs arising from the worker pool related races. In ConFuzz,
we trade-off schedule space generation to reliably reproducing concurrency bug
by deterministic schedule generation. ConFuzz does not guarantee the absence
of bugs but reliably reproduces discovered concurrency bugs.
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Promise Callbacks. As promise callbacks are executed non-deterministically,
promise callback ordering is also fuzzed by ConFuzz. Before execution, the order
of callbacks attached to a promise is changed by ConFuzz scheduler. By fuzzing
promise callbacks, ConFuzz generates alternative ordering of callback execution.

5.3 ConFuzz Scheduler

Pause queue

I/O queue

Yield queue

Worker pool
(1 thread)

Asynchronous op

Looper thread

ConFuzz scheduler

Task queueAsynchronous op

Done event

Fig. 6. ConFuzz scheduler

To generate a varied event
schedules, ConFuzz sched-
uler controls the Lwt event
loop and the worker pool as
shown in Fig. 6. To change
the order of events, ConFuzz
scheduler exposes fuzz_list

: 'a list -> 'a list func-
tion, which takes a list and
returns a shuffled list. The
changes to the Lwt scheduler that require changing the order of events (Sect. 5.2)
call this function to shuffle the callback list. On executing the shuffled list, the
program is executed under a particular schedule.

To reorder callbacks, ConFuzz scheduler asks AFL to generate random num-
bers. The random numbers then determine the ordering of the callbacks. On
detecting a concurrency bug, the generated random numbers are saved in a sep-
arate file as a schedule trace. With the schedule trace, the scheduler can repro-
duce a schedule. Using this capability of the scheduler, ConFuzz can replay a
schedule to reliably expose the detected concurrency bugs. Deterministic replay
helps programmers find the exact cause of concurrency bugs.

The order of callback execution affects the program’s execution path. Due
to the program instrumentation, AFL recognises the program execution path in
every program run. AFL being a coverage guided fuzzer, tries to increase coverage
(execution paths). AFL thus generates random numbers that produce alternative
callback orderings. Alternative callback orderings result in new schedules that
exercise new program execution paths. ConFuzz scheduler keeps on generating
new schedules until AFL is able to find new execution paths. ConFuzz thus uses
AFL fuzzing to execute program under different execution schedules.

6 Evaluation

In this section, we evaluate the effectiveness of ConFuzz in finding concurrency
bugs in real-world OCaml applications and benchmark programs. Additionally,
we check the efficiency of ConFuzz in terms of time required to detect concur-
rency bugs in comparison to Node.Fz and stress testing. Node.Fz[7] is a concur-
rency bug finding fuzzing tool for event-driven JavaScript programs. As Node.Fz
randomly perturbs the execution of a JavaScript program, we use ConFuzz’s ran-
dom testing mode (Sect. 4.2) to simulate Node.Fz technique. Stress testing runs
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Table 1. Experimental subjects

Type Name (abbreviation) Description GitHub

Stars

Size

(LoC)

Issue #

Real world

applications

irmin(IR) Distributed database 1,284 18.6K 270

lwt (LWT) Concurrent programming library 448 12.2k 583

mirage-tcpip (TCP) Networking stack for Mirage OS 253 4.9K 86

ghost (GHO) Blogging engine 35,000 50K 1834

porybox (PB) Pokémon platform 29 7.9K 157

node-mkdirp (NKD) Recursive mkdir 2,200 0.5K 2

node-logger-file (CLF) Logging module 2 0.9K 1

fiware-pep-steelskin (FPS) Policy enforcement point proxy 11 8.2K 269

Benchmark

programs

Motivating example (MX) Linear equation with concurrency – – –

Benchmark 1 (B1) Bank transactions – – –

Benchmark 2 (B2) Schedule coverage – – –

a program repeatedly with random input values. Stress testing does not gener-
ate program interleavings as done by ConFuzz and executes programs directly
under OS scheduler. We design and conduct experiments to answer the following
questions:

1. RQ1: Effectiveness – How frequently is ConFuzz able to find bugs?
2. RQ2: Efficiency – How many executions are required to detect bugs by

ConFuzz as compared to Node.Fz and stress testing?
3. RQ3: Practicality – Can ConFuzz detect and reproduce known concurrency

bugs in real-world OCaml applications?

6.1 Experimental Subjects and Setup

We evaluated ConFuzz on both real-world OCaml applications and benchmark
programs. Table 1 summarises the applications and benchmark programs used for
the evaluation. We have used eight real-world applications and three benchmark
programs as experimental subjects for evaluating ConFuzz. All of the programs
contain at least one known concurrency bug.

To identify known concurrency bugs, we searched across GitHub bug reports
for closed bugs in Lwt based OCaml projects. We select a bug only if the bug
report contains a clear description or has an automated test case to reproduce
the bug. We found three Lwt based OCaml bugs - IR, LWT and TCP as shown
in Table 1. Apart from OCaml bugs, we have build a dataset of 15 known con-
currency real-world JavaScript bugs mentioned in the related work [5,7,38]. We
abstracted the buggy concurrent code of JavaScript bugs and ported it to stan-
dalone OCaml programs. We excluded those bugs from the JavaScript dataset
which could not be ported to OCaml or have an incomplete bug report. We were
able to port 5 JavaScript bugs from the dataset. The five JavaScript bugs used
in the evaluation are GHO, PB, NKD, CLF and FPS. MX is the motivating
example from Sect. 2. Benchmark B1 simulates concurrent bank transactions,
adapted from the VeriFIT repository of concurrency bugs [36]. Concurrent bank

https://github.com/mirage/irmin/issues/270
https://github.com/ocsigen/lwt/issues/583
https://github.com/mirage/mirage-tcpip/pull/86
https://github.com/TryGhost/Ghost/issues/1834
https://github.com/porybox/porybox/issues/157
https://github.com/substack/node-mkdirp/issues/2
https://github.com/michaelwittig/node-logger-file/issues/1
https://github.com/telefonicaid/fiware-pep-steelskin/issues/269
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transactions in B1 causes the bank account log to get corrupted. Benchmark
B2 simulates a bug depending on a particular concurrent interleaving and gets
exposed only when B2 is executed under that buggy interleaving. B2 is explained
in detail in section RQ2.

Table 2. Bug detection capability of
the techniques. Each entry is the frac-
tion of the testing runs that manifested
the concurrency bug.

Stress Node.Fz ConFuzz

IR 1.00 0.00 1.00
LWT 0.00 1.00 1.00
TCP 0.00 1.00 1.00
GHO 0.00 0.00 1.00
PB 0.00 0.00 1.00
NKD 0.4 0.53 1.00
CLF 0.43 0.56 1.00
FPS 0.00 0.96 1.00
MX 0.00 0.00 1.00
B1 0.87 0.6 1.00
B2 0.00 0.00 1.00
Avg 0.24 0.42 1.00

We design our experiments to com-
pare ConFuzz’s bug detection capability
with Node.Fz and stress testing (hereby
referred to as the testing techniques). We
perform 30 testing runs for each experi-
mental subject (Table 1) and testing tech-
nique. A testing run is a single invoca-
tion of the testing technique. The per-
formance metric we focus on is mean
time to failure (MTTF), which measures
how quickly a concurrency bug is found
in terms of time. A single test execution
indicates one execution of the respective
application’s test case. For each subject
and testing technique, we execute respec-
tive subject application until the first con-
currency bug is found or a timeout of 1 h
occurs. For each such run, we note the
time taken to find the first concurrency
bug and whether a bug was found or not. We ran all of our experiments on a
machine with 6-Core Intel i5-8500 processor, 16 GB RAM, running Linux 4.15.0-
1034.

6.2 Experimental Results

Table 3. Mean time to find the con-
currency bug (seconds)

Stress Node.Fz ConFuzz

IR 37.7 – 1.03
LWT – 295.73 243.3
TCP – 315.03 94.16
GHO – – 0.33
PB – – 0.3
NKD 1738.83 1104.62 42.23
CLF 685.1 1086.2 231.96
FPS – 696.55 103.13
MX – – 981.17
B1 918.8 1333.89 384.6
B2 – – 59.26

RQ1: Effectiveness. Table 2 shows the
bug detection capabilities of the three test-
ing techniques. The first column shows the
abbreviation of the experimental subjects.
The second to fourth column shows the bug
detection results of Stress, Node.Fz and Con-
Fuzz testing, respectively. Each cell in the
table shows the fraction of the testing runs
that detected a concurrency bug out of the
total 30 testing runs per experimental sub-
ject and testing technique.

As shown in Table 2, ConFuzz detected
concurrency bugs in every testing run for all
experimental subjects (all cells are 1.00). In
the case of GHO, PB, MX and B2, only Con-
Fuzz was able to detect a bug. Despite cap-
turing the non-determinism, Node.Fz could not detect a bug in IR, GHO, PB,
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MX and B2. This confirms that ConFuzz was able to generate concurrent sched-
ules along with inputs more effectively. Stress testing was more effective in the
case of IR and B1 than Node.Fz with a ratio of 1.00 and 0.87 respectively. Both
IR and B1 comprises a lot of files I/O. We suspect that due to OS-level non-
determinism, stress testing is more effective than Node.Fz, as Node.Fz finds it
difficult to generate the exact buggy schedule for file I/O. This provides a helpful
insight that ConFuzz is good at generating a prefix or exact schedule that can
cause concurrency errors. In addition, ConFuzz does not produce false positives,
as schedules explored by ConFuzz are all legal schedules in Lwt. Thus, the results
confirm that ConFuzz is effective at detecting concurrency bugs.

RQ2: Efficiency. Table 3 shows the efficiency results of the three testing tech-
niques. The second to fourth column shows the efficiency results of stress,
Node.Fz and ConFuzz testing respectively. Each cell represents the average time
(in seconds) taken to detect the first concurrency bug per experimental subject
and testing technique over 30 testing runs. ‘-’ in the cell indicates that none of
the 30 testing runs detected a concurrency bug within the timeout of 1 h.

As shown in Table 3, for every experimental subject, ConFuzz took signifi-
cantly less time (column 4) to find bug than other techniques. ConFuzz is 26×,
6× and 4.7× faster than Node.Fz for NKD, FPS and CLF bugs respectively. For
NKD and IR bugs, ConFuzz is 41× and 36× faster than stress testing respectively.
Except for LWT, ConFuzz is at least 2× faster than second fastest technique.

Fig. 7. Efficiency of ConFuzz as schedule space
increases. The total number of schedules is given
by f(n) = (3!)(10∗n+20)/2). The labels on the x-
axis show (n, f(n)).

Note that for NKD, CLF,
FPS and B1 bugs, the average
time of Node.Fz and stress test-
ing does not include testing runs
which failed to detect concurrency
bug. Due to its efficiency, ConFuzz
enables a developer to explore a
broader schedule space of the con-
current program than Node.Fz
and other techniques with the
same test time budget. Thereby
increasing the chances of finding
bug in the same limited test time
budget. Thus, these results illus-
trate that ConFuzz is efficient in
detecting concurrency bugs.

To evaluate the efficiency of
ConFuzz on a program containing a large schedule space, we modify the motivat-
ing example in Fig. 1 to have a large number of concurrent schedules. We define
a concurrent schedule as the order in which the callbacks attached to the events
are executed. The total number of concurrent schedules of the modified program
is given by the following formula parameterised over n:

Total number of schedules = (3!)(10∗n+20)/2 (1)
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where n controls the degree of concurrency in the program. Only one concur-
rent schedule out of the many schedules results in a concurrency bug. Figure 7
shows the efficiency of ConFuzz over large schedule spaces. We increase n from
1 to 5 to generate a large schedule space. Note that benchmark B2 used as
an experimental subject in evaluation is modified program with n equals to 1.
Figure 7 graph shows mean time to failure (MMTF) as the schedule space is
increased. As evident from the graph, even for the program with a large sched-
ule space, ConFuzz was able to detect the bug within minutes. Note that Node.Fz
and stress testing fails to detect the bug for the modified program. Despite the
number of schedules increasing exponentially, MTTF increased linearly. This
shows the efficiency of ConFuzz to find bugs even in programs with large sched-
ule spaces.

RQ3: Practicality. As shown in Table 2, ConFuzz is able to reliably reproduce
concurrency bugs in real-world applications and widely used software. Table 1
includes links to the original bug reports. We have made available an replication
package comprising of the ConFuzz tool and the experimental subjects online2.
In the sequel, we discuss the details of the irmin(IR) bug from Table 1.

let start_watchdog ~delay dir =

match watchdog dir with

| Some _ ->

assert (nb_listeners dir <> 0);

Lwt.return_unit

| None ->

- Log.debug "Start watchdog for %s" dir;

+ (* Note: multiple threads can wait here

*)

listen dir ~delay ~callback >|=

fun u ->

- Hashtbl.add watchdogs dir u

+ match watchdog dir with

+ | Some -> u ()

+ | None ->

+ Log.debug "Start watchdog for %s" dir;

+ Hashtbl.add watchdogs dir u

Fig. 8. Irmin bug #270

Irmin #270 3. Irmin is a
distributed database built
on the principles of Git.
Similar to Git, the objects
in Irmin are organised into
directories. Irmin allows users
to install watchers on direc-
tories which are callback
functions that get triggered
once when for every change
in the directory. The bug
had to do with the call-
backs begin invoked multi-
ple times if multiple watch-
ers were registered to the
same directory in quick suc-
cession. The patch is shown
in Fig. 8. When there are
concurrent calls to start_watchdog in succession, it might turn out that all of
them are blocked at listen. When the callback is triggered, each of these call-
backs now adds an entry to the watchdogs hash table. The fix is to only add
one entry to the hash table and for the rest, directly call the callback function.
The property that we tested was that the callback function is invoked only once.

2 See https://github.com/SumitPadhiyar/ConFuzz PADL 2021.
3 https://github.com/mirage/irmin/issues/270.

https://github.com/SumitPadhiyar/ConFuzz_PADL_2021
https://github.com/mirage/irmin/issues/270
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Observe that the bug is input dependent; the bug is triggered only if concurrent
calls to start_watchdog work on the same directory dir and the delay is such
that they are all released in the same round.

7 Limitations

While our experimental evaluation shows that ConFuzz is highly effective in
finding bugs, we discuss some of the limitations in our approach. While Con-
Fuzz captures most of the non-determinism present in event-driven concurrent
programs, it cannot capture and control external non-determinism such as file
read/write or network response. External non-determinism arises when interact-
ing with external resources like file system, database, etc. which are outside the
scope of ConFuzz.

To be completely certain about the order in which the asynchronous tasks
are executed, ConFuzz serializes the worker pool tasks which might result in
missing some of the concurrency bugs arising out of the worker pool-related
races (although the concurrency bug study by Davis et al. [7] did not identify
any such races). Serializing worker pool tasks help ConFuzz to deterministically
reproduce detected bugs. We trade-off missing some of the worker pool related
concurrency bugs with the deterministic reproducibility of the detected bugs.
Being a property-based testing framework, ConFuzz aims to generate failing tests
cases that falsify the property. Hence, ConFuzz does not aim to detect traditional
concurrency bugs such as data races and race conditions.

8 Related Work

To the best of our knowledge, ConFuzz is the first tool to apply coverage-guided
fuzzing, not just to maximize the coverage of the source code of program, but
also to maximize the schedule space coverage introduced by a non-deterministic
event-driven program. In this section, we compare ConFuzz to related work.

Concurrency Fuzzing: AFL has been used previously to detect concurrency
vulnerabilities in a Heuristic Framework [22] for multi-threaded programs. Unlike
ConFuzz, Heuristic Framework generates interleavings by changing thread prior-
ities instead of controlling the scheduler directly, thereby losing the bug replay
capability. Due to its approach, Heuristic Framework can only find specific type
of concurrency bugs and has false positives. Heuristic Framework is applied to
multi-threaded programs whereas ConFuzz is applied to event-driven programs.
The most similar work to ConFuzz is the concurrency fuzzing tool Node.Fz [7].
Node.Fz fuzzes the order of events and callbacks randomly to explore different
schedules. Node.Fz can only find bugs that manifest purely as a result of par-
ticular scheduling, not as a property of program inputs. As Sect. 6 illustrates,
the coverage-guided fuzzing of ConFuzz is much more effective than Node.Fz at
finding the same concurrency bugs.
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Multithreaded Programs: Many approaches and tools have been developed
to identify concurrency bugs in multi-threaded programs. FastTrack [13], Eraser
[32], CalFuzzer [17] aims to detect multi-threaded concurrency bugs like data
races, deadlock. ConTest [10], RaceFuzzer [34] uses random fuzzing to generate
varied thread schedules. These approaches apply to multi-threaded programs
for detecting concurrency bugs such as atomicity violations and race conditions
on shared memory and are not directly applicable to event-driven programs
interacting with the external world by performing I/O. Systematic exploration
techniques such as model checking attempt to explore the schedule space of a
given program exhaustively to find concurrency bugs. CHESS [26] is a state-
less model checker exploring the schedule space in a systematic manner. While
exhaustive state space exploration is expensive and given a limited test time
budget, ConFuzz explores broader input and schedule space, which is more likely
to detect bugs.

Application Domains: There are bug detection techniques to identify concur-
rency errors in client-side JavaScript web applications. WAVE [14], WebRacer
[29] and EventRacer [31] propose to find concurrency bugs in client-side ele-
ments like browser’s DOM and webpage loading through static analysis or
dynamic analysis. Though client-side web apps are event-driven, these tech-
niques are tuned for client-side key elements like DOM and web page load-
ing which are not present in server-side like OCaml concurrent programs. Thus,
the above approaches cannot be directly applied to event-driven OCaml applica-
tions. Android is another event-driven programming environment in combination
with multi-threaded programming model. Several dynamic data race detectors
[4,15,25] have been proposed for Android apps. These tools are tightly coupled
with the Android system and target mainly shared memory races rather than
violations due to I/O events.

9 Conclusions and Future Work

In this paper, we have presented a novel technique that combines QuickCheck-
style property-based testing with coverage-guided fuzzing for finding concurrency
bugs in event-driven programs. We implemented the technique in a tool called
ConFuzz using AFL for coverage-guided fuzzing for event-driven OCaml pro-
grams written using the Lwt library. Our performance evaluation shows that
coverage-guided fuzzing of ConFuzz is more effective and efficient than the ran-
dom fuzzing tool Node.Fz in finding the bugs. We also show that ConFuzz can
detect bugs in large and widely used real-world OCaml applications without
having to modify the code under test. As future work, we are keen to extend
ConFuzz to test shared memory multi-threaded applications.
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