Skip to main content

Prediction and Explanation of Privacy Risk on Mobility Data with Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1323))

Abstract

The analysis of privacy risk for mobility data is a fundamental part of any privacy-aware process based on such data. Mobility data are highly sensitive. Therefore, the correct identification of the privacy risk before releasing the data to the public is of utmost importance. However, existing privacy risk assessment frameworks have high computational complexity. To tackle these issues, some recent work proposed a solution based on classification approaches to predict privacy risk using mobility features extracted from the data. In this paper, we propose an improvement of this approach by applying long short-term memory (LSTM) neural networks to predict the privacy risk directly from original mobility data. We empirically evaluate privacy risk on real data by applying our LSTM-based approach. Results show that our proposed method based on a LSTM network is effective in predicting the privacy risk with results in terms of F1 of up to 0.91. Moreover, to explain the predictions of our model, we employ a state-of-the-art explanation algorithm, Shap. We explore the resulting explanation, showing how it is possible to provide effective predictions while explaining them to the end-user.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Voronoi tessellation obtained using http://geoanalytics.net/V-Analytics.

  2. 2.

    Code available on https://github.com/francescanaretto/Privacy-Risk-onMobility-Data-with-LSTMs.

  3. 3.

    The analysis of the Lstm has been performed with the see-rnn package: https://github.com/OverLordGoldDragon/see-rnn.

References

  1. Altché, F., de La Fortelle, A.: An LSTM network for highway trajectory prediction. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 353–359 (2017)

    Google Scholar 

  2. Andrienko, N.V., Andrienko, G.L.: Spatial generalization and aggregation of massive movement data. IEEE Trans. Vis. Comput. Graph. 17(2), 205–219 (2011)

    Article  Google Scholar 

  3. Armando, A., Bezzi, M., Metoui, N., Sabetta, A.: Risk-based privacy-aware information disclosure. Int. J. Secur. Softw. Eng. 6(2), 70–89 (2015)

    Article  Google Scholar 

  4. Cavoukian, A., Emam, K.: Dispelling the myths surrounding de-identification: anonymization remains a strong tool for protecting privacy. DesLibris: Documents collection, Information and Privacy Commissioner of Ontario, Canada (2011)

    Google Scholar 

  5. Craven, M., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: NIPS, pp. 24–30 (1996)

    Google Scholar 

  6. Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: JMLR, pp. 37–45. Elsevier (1994)

    Google Scholar 

  7. Crivellari, A., Beinat, E.: LSTM-based deep learning model for predicting individual mobility traces of short-term foreign tourists. Sustainability 12, 349 (2020). https://doi.org/10.3390/su12010349

    Article  Google Scholar 

  8. Deng, H.: Interpreting tree ensembles with intrees. Int. J. Data Sci. Anal. 7(4), 277–287 (2019)

    Article  Google Scholar 

  9. Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini, F.: Factual and counterfactual explanations for black box decision making. IEEE Intell. Syst. 34(6), 14–23 (2019)

    Article  Google Scholar 

  10. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51, 1–42 (2019)

    Article  Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)

    Google Scholar 

  13. Meier, J., Corporation, M.: Improving Web Application Security: Threats and Countermeasures. Patterns & Practices. Microsoft, Redmond (2003)

    Google Scholar 

  14. Mohammed, N., Fung, B.C., Debbabi, M.: Walking in the crowd: anonymizing trajectory data for pattern analysis. In: CIKM, pp. 1441–1444. ACM (2009)

    Google Scholar 

  15. Monreale, A., et al.: Movement data anonymity through generalization. TDP 3(2), 91–121 (2010)

    MathSciNet  Google Scholar 

  16. de Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1376 (2013)

    Article  Google Scholar 

  17. Pellungrini, R., Pappalardo, L., Pratesi, F., Monreale, A.: A data mining approach to assess privacy risk in human mobility data. ACM TIST 9(3), 31:1–31:27 (2018)

    Google Scholar 

  18. Pratesi, F., Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., Yanagihara, T.: Prudence: a system for assessing privacy risk vs utility in data sharing ecosystems. Trans. Data Priv. 11(2), 139–167 (2018)

    Google Scholar 

  19. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: ACM SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  20. Rossi, L., Musolesi, M.: It’s the way you check-in: identifying users in location-based social networks. In: COSN, pp. 215–226. ACM (2014)

    Google Scholar 

  21. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  22. Shi, Z., Xu, M., Pan, Q., Yan, B., Zhang, H.: LSTM-based flight trajectory prediction. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018)

    Google Scholar 

  23. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, vol. 70 (2017)

    Google Scholar 

  24. Song, X., Kanasugi, H., Shibasaki, R.: Deeptransport: prediction and simulation of human mobility and transportation mode at a citywide level. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 2618–2624. AAAI Press (2016)

    Google Scholar 

  25. Song, Y., Dahlmeier, D., Bressan, S.: Not so unique in the crowd: a simple and effective algorithm for anonymizing location data. In: International Workshop on Privacy-Preserving IR: When Information Retrieval Meets Privacy and Security, pp. 19–24 (2014)

    Google Scholar 

  26. Torra, V.: Data Privacy: Foundations, New Developments and the Big Data Challenge. SBD, vol. 28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57358-8

    Book  Google Scholar 

  27. Wu, F., Fu, K., Wang, Y., Xiao, Z., Fu, X.: A spatial-temporal-semantic neural network algorithm for location prediction on moving objects. Algorithms 10(2), 37 (2017). https://doi.org/10.3390/a10020037

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the European projects SoBigData-PlusPlus (Grant Agreement 871042), XAI (Grant Agreement 834756) and HumanE-AI-Net (Grant Agreement 952026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pellungrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naretto, F., Pellungrini, R., Nardini, F.M., Giannotti, F. (2020). Prediction and Explanation of Privacy Risk on Mobility Data with Neural Networks. In: Koprinska, I., et al. ECML PKDD 2020 Workshops. ECML PKDD 2020. Communications in Computer and Information Science, vol 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-65965-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65965-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65964-6

  • Online ISBN: 978-3-030-65965-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics