
Chapter 3
Electronic Structure Theory for X-Ray
Absorption and Photoemission
Spectroscopy

Peter Krüger

Abstract The principles of X-ray absorption and photoemission spectroscopy cal-
culations are introduced and the basics of electronic structure theory, including the
Hartree–Fock approximation, density functional theory, its time-dependent version
and quasiparticle theory are reviewed on an elementary level. Emphasis is put on
polarization effects and the role played by electron correlation.

3.1 Introduction

In this chapter, the basic theory of X-ray absorption spectroscopy (XAS) and pho-
toemission spectroscopy (PES) is introduced and popular computational methods
are reviewed. Since XAS and PES mainly probe electronic excitations, a thorough
understanding of electronic structure theory is mandatory. We shall review the stan-
dard theoretical methods for ground state electronic structure calculations, namely,
Hartree–Fock (HF) and density functional theory (DFT). Among the various excited
state theories, we focus on time-dependent DFT and briefly touch upon Green’s
function quasiparticle methods and the Bethe–Salpeter equation approach. We do
not discuss ligand-field atomic multiplet theory, because this important method for
transition metal L-edge calculations is covered in Chap.4.

3.2 Light–Matter Interaction

As light is an electromagnetic wave, it interacts with all charged particles. In the
visible to X-ray regime, the interaction with the electrons hugely dominates the
interaction with the atomic nuclei. We shall therefore disregard the nuclear degrees
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of freedom in the following, focusing on the electronic state of the system. When
an X-ray photon impinges on an atom it can be either absorbed or scattered, energy,
momentum and spin being, of course, conserved in the whole process. In absorption,
the photon vanishes: all its energy is transferred to an electron which is excited to
an empty state above the vacuum level. In scattering, the energy of the photon can
remain the same [elastic (Thomson) scattering]; it can also be partly transferred to the
atom (inelastic scattering) as in Compton scattering, which leads to the ejection of an
electron, or in a Raman-like scattering, in which the energy lost by the photon brings
the atoms in an excited state, without any ionization. Neglecting relativistic effects
and treating the X-ray field classically, the light–electron interaction is obtained
by replacing, in the electronic Hamiltonian, the electron momentum operator p by
p − eA/c, where A(r, t) is the vector potential of the light [1]. In Coulomb gauge
(∇ · A = 0), the interaction Hamiltonian then becomes

Hint = − e

mc
A · p + e2

2mc2
A2 . (3.1)

The first-order term in A describes light absorption and stimulated emission while
the second-order term is responsible for (non-resonant) light scattering. Here we
focus on the absorption process and neglect the generally much weaker A2 term.
First-order perturbation theory (Fermi golden rule) leads to the following expression
for the absorption intensity from an initial state |i〉 of energy Ei :

I (ω) ∝
∑

f

|〈 f |A · p|i〉|2δ(�ω − E f + Ei ) , (3.2)

where the sum runs over all possible final states | f 〉with energy E f . It is common to
make the dipole approximation, i.e. to neglect the spatial variation of the X-ray field
A(r). We may also replace the transition operator A · p, by e · r, where e = A/|A|
is the light polarization vector and the change from p to r is possible by exploiting
commutation relations between r, p and H , and the fact that |i〉 and | f 〉 are energy
eigenstates [2]. Equation (3.2) is often interpreted in a single-particle picture, in
which case |i〉 is an atomic core state and | f 〉 are unoccupied states above the Fermi
level. However, electrons interact with each other through the Coulomb interaction,
such that the excitation of one electron affects the motion of the others. Therefore,
the correct use of (3.2) is in a many-particle sense, where |i〉 = |�g〉 is the many-
electron ground state, and | f 〉 = |� f 〉 are many-electron excited states with a core
hole. Putting the constants we have

I (ω) = 4π2α�ω
∑

f

|〈� f |e ·
∑

j

r j |�g〉|2δ(�ω − E f + Eg) , (3.3)

where α = e2/�c is the fine structure constant and j counts the electrons. Having
established the expressions of the absorption intensity, the remaining task is to calcu-
late the eigenstates of the (unperturbed) electronic system, |�g〉 and |� f 〉, and their
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energies. Thus, the main theoretical problem of XAS is the accurate description of
the electronic structure of the system, both for the ground and core-excited states.
We, therefore, start by reviewing the basics of (ground state) electronic structure
theory before turning to the specific methods for handling core-excited states.

3.3 Ground State Electronic Structure Theory

Consider N electrons interacting with each other and the atomic nuclei. Following
the Born–Oppenheimer approximation, we neglect the coupling between the nuclear
and electronic dynamics. For the electronic problem, this means that the nuclei are
at fixed positions and can be described by a static external potential Vext(r). The
electronic Hamiltonian is then given by

H = T + Vext + Vee =
∑

i

1

2
∇2
i +

∑

i

Vext(ri ) +
∑

i< j

1

|ri − r j | , (3.4)

where i, j count the electrons and atomic units are used (� = m = e = 1). The
kinetic energy T and the external potential Vext are one-particle operators whereas
the electron–electron interaction Vee is a two-particle operator. Because of Vee, the
electronic motion is correlated and the many-electron problem cannot be solved
exactly (except for a few electrons). Drastic approximations need to be made. The
most important ground state electronic structure methods are HF and DFT.

3.3.1 Hartree–Fock Approximation

Historically, the first accurate electronic structure method is the Hartree–Fock
approximation (HFA) [3]. It is still widely used for single molecule calculations
and as a starting point for more advanced schemes. The basic assumption of the HFA
is that the many-electron ground state wave function is a Slater determinant, i.e. an
antisymmetrized product of single-electron states (spin-orbitals). By applying the
Rayleigh–Ritz variational principle, the HF equations are obtained, whose solutions
are the HF orbitals φn(r) and energies εn . For convenience, we suppress the spin part
of the single-particle wave functions. The HF equations are

(
−1

2
∇2 + Vext(r) + VH(r) + VX

)
φn(r) = εnφn(r) . (3.5)

This is a one-electron Schrödinger equation where the pair-wise electron–electron
interaction is replaced by an effective potential VH + VX .
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VH(r) =
occ∑

m

∫
dr′ |φm(r′)|2

|r − r′| =
∫

dr′ n(r′)
|r − r′| (3.6)

is called the Hartree potential and corresponds to the classical electrostatic potential
due to the electronic charge density n(r) = ∑occ

m |φm(r)|2 of the occupied orbitals.

VX φn(r) = −
same spin∑

m

∫
dr′ φ

∗
m(r′)φm(r)φn(r′)

|r − r′| (3.7)

is the exchange potential which is due to the electron–electron interaction together
with the antisymmetry of Slater determinants under permutation of two electrons.
VX is a non-local potential and has no classical analogue. Both VH and VX are
static ‘mean-field’ potentials, obtained from the time-averaged orbital motion of the
electrons. Dynamical effects are neglected. The exchange interaction induces some
correlation between electrons of same spin, which avoid each other due to the Pauli
principle. Correlation between electrons of opposite spin is completely absent in the
HFA. By definition, the difference between the exact ground state and the HF ground
state is called the electron correlation effect (even though mathematically speaking,
there is correlation between same spin electrons in the HFA).

There are various methods to take account of electron correlation, often termed
collectively as ‘post-HF’ methods in the chemical literature. The conceptually most
simple way to include electron correlation is the configuration interaction (CI)
method. In CI, a set of Slater determinants is generated from the HF ground state
by (multiple) particle–hole excitations. The CI wave function is a linear combina-
tion of these many-electron basis states and the coefficients and total energy levels
are determined variationally by diagonalizing the Hamiltonian in this sub-space. CI
can be very accurate for atoms and small molecules, but cannot directly be applied
to large molecules and materials because the number of Slater determinants grows
exponentially with system size. For X-ray absorption spectra, CI effects, i.e. mixing
between Slater determinants, are especially strong at transition metal L-edges and
lanthanide M-edges, which correspond to excitations into the localized 3d- and 4 f -
orbitals. For these spectra, CI must be taken into account. This can be done with the
ligand-field multiplet method which is based on CI of a single atom or a very small
cluster (see Chap.4 for details).

3.3.2 Density Functional Theory

Nowadays, most electronic structure methods are based on DFT [4, 5]. In DFT, one
does not try to find approximations to the many-electron wave function. Instead,
the idea is to directly find the exact electronic density n(r) and total energy, which
is expressed as a functional of the density. DFT is based on two theorems due to
Hohenberg and Kohn [4] about the (non-degenerate) ground state of the interacting,

http://dx.doi.org/10.1007/978-3-030-64623-3_4
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inhomogeneous electron gas. The first theorem states that the external potential Vext

is uniquely determined by the ground state electronic density n(r) and that the total
energy E (minus the external potential energy) is a unique and universal functional
of n.1 The consequence of the theorem is that knowledge of the ground state density
alone is, in principle, sufficient to determine all properties of the system. The second
theorem states that the exact ground state density n0(r) minimizes the total energy
functional E[n] in the space of all possible functions n(r). Thus, approximations to
E and n can be found variationally.

The Hohenberg–Kohn theorems are exact mathematical theorems. If the universal
functional E[n] were known, DFT would yield the exact total energy and electron
density of the interacting electron system. But the exact functional E[n] is unknown.
Various approximate functionals havebeenproposed such as the local density approx-
imation (LDA), generalized gradient approximations (GGA) and hybrid functionals,
i.e. mixtures of GGA and HF exchange. In practical DFT calculations, Kohn–Sham
theory is employed, which introduces an auxiliary, non-interacting system which,
by definition, has the same electronic density as the real, interacting system. In the
auxiliary system, the external potential is called Kohn–Sham potential VKS and it is
the sum of the true external (nuclei) potential and an effective one-electron potential
which replaces the electron–electron interaction. The Kohn–Sham potential VKS is
given by the functional derivative of the total energy functional E[n] with respect to
the electron density. The effective electron–electron potential is written as the sum
of the Hartree potential VH and a rest, which is called exchange–correlation potential
VXC . As the exact energy functional E[n] is unknown, so is VXC , and the actual
expression depends on the approximation used (LDA, GGA, hybrid).

As the Kohn–Sham auxiliary system is non-interacting, its eigenstates are Slater
determinants made of orbitals φn that are solutions of the Kohn–Sham equations

(
−1

2
∇2 + Vext(r) + VH(r) + VXC

)
φn(r) = εnφn(r) . (3.8)

The Kohn–Sham equations (3.8) are similar to the HF equations (3.5) except that the
exchange potential VX is replaced by the exchange–correlation potential VXC and
the expression of the total energy as a function of the orbitals is different.

DFT takes account of electron correlation through VXC and generally performs
better than the HFA for ground state properties. This is, however, not necessarily
true for excited states for which DFT should, in principle, not be used, because the
Kohn–Sham orbitals and levels εn describe the auxiliary system and have, strictly
speaking, no direct physical meaning for the real system. In practice, however, the
orbitals and energy levels are used in the same way as the HF orbitals, namely, as a
first-order approximation for the one-electron or one-hole excitations of the system.

1The opposite is obvious because when Vext is fixed, the Hamiltonian is known and so all properties,
including the electronic density, are determined.
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3.4 Absorption Spectra in the Independent Particle
Approximation

Recalling (3.3), the absorption intensity is determined by the transition amplitude
M fg = 〈� f |e · ∑

n rn|�g〉. If both �g and � f are Slater determinants made of
orbitals which are eigenstates of the same one-electron Hamiltonian, then it is easy
to see that M fg reduces to a one-particle transition matrix element between the core
orbital |φc〉 with energy εc and an unoccupied orbital |φk〉 with energy εk and (3.3)
simplifies to

I (ω) = 4π2α�ω

εk>εF∑

k

|〈φk |e · r|φc〉|2δ(�ω − εk + εc) . (3.9)

This is the basic equation of XAS in the independent particle approximation.
So far we have implicitly assumed that φk are the unoccupied orbitals of a ground

state calculation. However,� f is an excited state with a core hole. The core hole acts
as a local positive charge which modifies the effective potential (VH + VX/XC ) and
so the best Slater determinant for � f is made of a different set of orbitals φ̃k than
the ground state orbitals φk . Accordingly, better results are usually obtained with
‘relaxed’ orbitals φ̃k , corresponding to a constraint HF or DFT calculation with a
core hole. As core holes are localized on one atomic site, the symmetry of the system
is generally lowered in a core hole calculation and the computational cost increases.
For crystals, in particular, a supercell calculation is needed in order to effectively
separate the artificially repeated core hole sites. In the following, we shall write φk

regardless for relaxed and unrelaxed orbitals.

3.4.1 Dipole Selection Rules and Density of States

For the calculation of the dipole transition matrix elements 〈φk |e · r|φc〉, it is useful
to expand the states |φk〉 in a spherical harmonics basis centred at the atomic sitesRi .
By doing so, the dipole transition selection rules known from atomic physics can be
exploited. This simplifies the calculation and yields an interpretation of the spectra
in terms of projected density of states as we shall see. We write

φk =
∑

ilm

Bk
ilmχilm , χilm(r) = Ril(ri )Ylm(ri ) , (3.10)

where ri ≡ r − Ri , Ylm are spherical harmonics, Ril radial functions and Bilm com-
plex coefficients. The core orbital is localized at some site (ic). Therefore, only
orbitals χilm with i = ic give a non-zero contribution to the matrix element. Next
we write the dipole operator as a spherical tensor product e · r = ∑

q(−1)qe−qrq ,
where q = 0,±1 are the spherical components of a vector a, given by a0 = az ,
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a± = (∓ax − iay)/
√
2. The angular integrals of the matrix elements can then be

simplified with the help of the Wigner–Eckart theorem [2]

〈n′l ′m ′|rq |nlm〉 = (−1)l
′−m ′

(
l ′ 1 l

−m ′ q m

)
〈n′l ′||r ||nl〉 , (3.11)

where (..
.
.

.

.) are Wigner-3j symbols and 〈n′l ′||r ||nl〉 are reduced matrix elements,
which are independent of m,m ′, q. The Wigner-3j symbol is non-zero only for l ′ =
l ± 1 and m ′ = m + q. These are the dipole selection rules. For example, for K -
edge spectra l = m = 0 and thus only l ′ = 1, i.e. p-type final states can be reached.
If polarized light is used we further havem ′ = q, e.g. in z-polarization only pz states
are probed.We thus see that XAS is a local probe of the unoccupied electronic states,
where different orbital symmetries can be projected out by appropriately choosing
the absorption edge l value and the light polarization q.

Using the expansion (3.10) and the dipole selection rules (3.11), we find for the
transition matrix elements from a core orbital φc

ilm

〈φk |rq |φc
ilm〉 =

∑

±
Bk∗
i,l±1,m+q〈χi,l±1,m+q |rq |φc

ilm〉 . (3.12)

The absorption intensity (3.9), dropping constants, from a core shell with angular
momentum l, located at site i , for light polarization q becomes

Iq(ω) =
∑

km

∣∣∣∣∣
∑

±
Bk∗
i,l±1,m+q〈χi,l±1,m+q |rq |φc

ilm〉
∣∣∣∣∣

2

δ(�ω − εk + εc) . (3.13)

As defined in (3.10), the orbitals Ril(r) and the expansion coefficients B are, in
principle, energy dependent. This is the choice in multiple scattering theory which
allows a minimal basis set (one orbital for each site and l). In the following, we
neglect the slow energy dependence of the radial waves. We then obtain

Iq(ω) ≈
∑

m,a,b=±
Ma∗

ilm,qM
b
ilm,q

∑

k

Bk
ilam+q B

k∗
ilbm+q δ(�ω − εk + εc) , (3.14)

where la , lb = l ± 1 and Mb
ilm,q = 〈χi,lb,m+q |rq |φc

ilm〉. We introduce the local, orbital
projected density of states matrix

ρilm,l ′m ′(ε) =
∑

k

〈χilm |φk〉δ(ε − εk)〈φk |χil ′m ′ 〉 =
∑

k

Bk
ilmδ(ε − εk)B

k∗
il ′m ′ . (3.15)

Note that the usual partial density of states (DOS) is given by the diagonal elements
(lm = l ′m ′). So (3.14) can be written as
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Iq(ω) ≈
∑

m,a,b=±
Ma∗

ilm,qM
b
ilm,qρilam+q,lbm+q(�ω + εc) . (3.16)

We see that the absorption intensity is a weighted sum of a few partial DOS com-
ponents with angular momentum la = l ± 1. For high enough symmetry, the inter-
ference terms a �= b vanish, leaving only the diagonal, usual partial DOS. In some
cases, e.g. for the linear dichroism at the sulphur L2,3-edges in MoS2, it was found
that interference between p → s and p → d transitions is non-negligible [6]. For the
special case of s-wave core states (K , L1, M1 edges) where l = m = 0, the selection
rules (3.11) give l ′ = 1,m = q, such that the absorption spectrum for q-polarized
light is directly proportional to the pq -DOS (where q = 0,±1 or q = x, y, z).

In this section, we have seen that in the independent particle and dipole approx-
imation, the X-ray absorption spectra are approximately given by a weighted sum
of partial DOS with momenta l ± 1,m + q. The weighting factors are local tran-
sition matrix elements and reflect the light polarization and orbital symmetry. As
a consequence, XAS can be used to probe the unoccupied DOS of the material in
a site and orbital-resolved way, which gives detailed insight into the local bonding
properties [7].

3.5 Absorption Spectra in Linear Response TDDFT

3.5.1 Time-Dependent Density Functional Theory

DFT is a ground state theory whose application to excited states is ill-founded.
However, a large class of excitations can be computed using the time-dependent
version of DFT. Time-dependent DFT (TDDFT) is the generalization of standard
DFT to time-dependent external potentials Vext(r, t). It was pioneered by Zangwill
and Soven in 1980 [8], who developed a linear response theory for optical absorption
spectroscopy of atoms using a time-dependent version of the LDA. In 1984, Runge
andGross [9] generalized the Hohenberg–Kohn theorems of DFT to the case of time-
dependent systems, thus putting TDDFT on a rigorous theoretical ground. TDDFT
has been applied to XAS of solids for the first time in 1998 by Schwitalla and
Ebert [10] and to molecules in 2003 by Stener et al. [11].

The problem at hand is to find the time-dependent electron density n(r, t) of an
interacting electron system subject to a time-dependent external field. In TDDFT,
the exact time-dependent electron density n(r, t) can, in principle, be found from the
knowledge of the external field, the universal energy functional E[n(r, t)] and the
initial density n(r, 0). Linear response functions, including absorption coefficients,
can be expressed as integrals over the electron density change induced by a time-
dependent external field.Thus, if the exact functional E[n(r, t)]wereknown,TDDFT
would allow to obtain exact absorption spectra. As in the case of time-independent
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DFT, however, the exact functional is unknown.Moreover, finding good approximate
functionals is even more difficult in TDDFT than in standard DFT.

3.5.2 Linear Response Theory

Herewe shall outline the theory of absorption spectroscopy in linear response follow-
ing Zangwill and Soven [8]. We consider an interacting electron system as described
by the unperturbed Hamiltonian H in (3.4), and try to find its response to a time-
dependent applied field ϕext(r, t) such as the electromagnetic field of an X-ray beam.
The perturbation Hamiltonian is written as

H ′(t) =
∫

ϕext(r, t)n(r, t)dr , (3.17)

where n(r, t) is the electron density. It differs from the density of the unperturbed
system n0(r) by the induced density

δn(r, t) = n(r, t) − n0(r) . (3.18)

The fundamental assumption of linear response theory is that the response of the
system, δn, is proportional to the applied field ϕext, i.e.

δn(r, t) =
∫

dr′dt ′χ(r, r′, t − t ′)ϕext(r′, t ′) , (3.19)

where χ , the response function, is an intrinsic property of the unperturbed system.
In the frequency domain, this relation reads

δn(r, ω) =
∫

dr′χ(r, r′, ω)ϕext(r′, ω) . (3.20)

It can be shown that χ is given by the retarded density–density Green’s function

χ(r, r′, t − t ′) = −iθ(t − t ′)〈0|[n̂(r, t), n̂(r′, t ′)]|0〉 , (3.21)

where n̂(t) = eiHt n̂e−i Ht is the density operator in Heisenberg representation, |0〉 is
the exact ground state of H with energy E0, [ , ] denotes the commutator and θ(x) is
the Heaviside step function [θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0]. By insert-
ing a complete set of excited states

∑
m |m〉〈m| and performing a time-frequency

Fourier transformation, we obtain the following exact (‘Lehmann’) representation:

χ(r, r′, ω) =
∑

m

〈0|n̂(r)|m〉〈m|n̂(r′)|0〉
�ω − Em + E0 + iη

−
∑

m

〈0|n̂(r′)|m〉〈m|n̂(r)|0〉
�ω + Em − E0 + iη

, (3.22)
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where |m〉 are excited stateswith energy Em and η is an infinitesimal positive number.
The exact eigenstates and energies of the interacting electron systems are unknown,
so (3.22) cannot be evaluated directly. For a non-interacting electron gas, however,
all eigenstates are Slater determinants, and (3.22) can be calculated. The only exci-
tations which give non-zero matrix elements are single particle–hole excitations
|m〉 = c+

p ch |0〉 with energy εp − εh , where p and h label states above and below the
Fermi level, respectively. This gives the response function in the independent particle
approximation

χ0(r, r′, ω) =
∑

hp

φ∗
h(r)φp(r)φ∗

p(r
′)φh(r′)

�ω − εp + εh + iη
− [p ↔ h] . (3.23)

If the electrons did not interact we would have χ = χ0. But they do interact. In
TDDFT, the interaction is handled as in DFT, by introducing an auxiliary, non-
interacting system with the same electron density n(r, t) which corresponds to a
time-dependent effective potential. In the real system, the density change δn(r, t)
is induced by the external perturbation ϕext(r, t). In the auxiliary system, however,
the density n(r, t) corresponds to the sum of the Kohn–Sham potential VKS and the
perturbation ϕext. As the Kohn–Sham potential depends on the density, a density
change δn gives rise to an induced field ϕind(r, t) = δVKS[n(r, t)]. Thus, the density
change δn(r, t) is due not only to the true external potentialϕext but also to the induced
fieldϕind.Note that there is a feedback effect:ϕext → δn → ϕind → δ2n → δϕind . . . ,
sowe need to solve for δn andϕind self-consistently. Further, in linear response theory,
a linear relation between the induced charge density and the induced field is assumed

ϕind(rt) =
∫

dr′dt ′K (rt, r′t ′)δn(r′t ′) (3.24)

which defines the interaction kernel K . We have ϕind ≡ δVKS = δVH + δVXC , where

δVH(rt) =
∫

dr′ δn(r′t)
|r − r′| , δVXC(rt) =

∫
dr′dt ′

δVXC(rt)
δn(r′t ′)

δn(r′t ′) . (3.25)

The total time-dependent perturbation in the auxiliary system is often called the ‘local
field’, ϕloc = ϕext + ϕind. As the electrons of the auxiliary system are independent,
they respond to the perturbation ϕloc with the free response function χ0, i.e. δn(rt) =∫
dr′dt ′χ0(r, r′, t − t ′)φloc(r′t ′). By construction, the charge densities of the real and

auxiliary systems are the same, so we have

χ ϕext = δn = χ0 ϕloc = χ0(ϕext + K δn) = χ0(1 + Kχ)ϕext , (3.26)

where arguments and integration symbols have been suppressed to simplify the nota-
tion. Since ϕext is arbitrary, we have

χ = χ0 + χ0Kχ ⇔ χ = (χ−1
0 − K )−1 . (3.27)
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So the full response function χ can be calculated from free response function χ0

and the kernel K , by iteration or inversion. Equivalently one can calculate the local
potential directly by iteration of ϕloc = ϕext + Kχ0ϕloc [8]. The problem is that the
exchange–correlation part of the kernel

KXC(rt, r′t ′) = δVXC (rt)
δn(r′t ′)

(3.28)

is not knownexactly.The adiabatic approximation consists in using a static exchange–
correlation potential, which may be taken from standard time-independent DFT.
In this case, KXC = [δVXC(r)/δn(r′)]δ(t − t ′) such that ϕind(t) changes instanta-
neously with δn(t). As a result, K (r, r′, ω) is frequency independent and dynamical
screening is neglected. X-ray fields correspond to fast oscillations, so neglecting
dynamical effects is questionable.

3.5.3 Absorption Spectra

The optical absorption coefficient is essentially the imaginary part of the response
function χ as we shall show now. We consider an electromagnetic wave given
by E(r, t) = eE0eiq·r−iωt , where e is the light polarization vector, not to be con-
fused with the electric charge e. The induced electrical polarization is P(r, t) =
−eδn(r, t)r and so the change in energy density is −E · P = eE · rδn. In the dipole
approximation, E(r, t) ≈ eE0e−iωt and the perturbation in (3.17) is given by

ϕext(r, ω) = eE0e · r . (3.29)

The total induced dipole moment is

µ(ω) = −e
∫

rδn(r, ω)dr = −e2E0

∫
rχ(r, r′, ω)e · r′drdr′ , (3.30)

and the absorbed energy is Re{E · dµ/dt} or equivalently Im{ωE · µ(ω)}. The
absorption coefficient σ(ω) is the absorbed energy divided by E2

0 , which yields

σ(ω) = −4πα�ω

∫
drdr′e · r Imχ(r, r′, ω)e · r′ . (3.31)

This expression of the absorption coefficient is fully equivalent to (3.3). In the inde-
pendent particle approximation, we put χ → χ0 and obtain from (3.23)

σ0(ω) = 4π2α�ω
∑

hp

|〈φp|e · r|φh〉|2δ(�ω + εh − εp) (3.32)

in agreement with (3.9).
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In summary, TDDFT with linear response provides a rigorous and efficient
framework for calculating absorption spectra. Compared to the independent particle
approximation, TDDFT takes the screening of the electromagnetic field into account
by introducing the induced field ϕind(t) which is calculated self-consistently with
the density change δn(t). In practice, the problem is to find good approximations for
the unknown exchange–correlation kernel KXC . The Hartree part alone, i.e. putting
KXC = 0, yields the well-known random-phase approximation (RPA) [10]. Apart
from the single particle–hole excitations included in χ0, the RPA can describe plas-
mon excitations, i.e. collective oscillations of electron gas, which can be observed,
for example, as satellite peaks in core-level photoemission spectra. The RPA kernel
also gives rise to a redistribution of spectral weight between different transitions.
This may strongly change the peak intensity ratio, e.g. between the L2 and L3 white
lines in transition elements [10]. In adiabatic TDDFT, KXC can be obtained from
standard DFT [8], but such static approximations to KXC do not improve much over
the RPA [10, 12]. It appears that complex configuration mixing such as multiplet
excitations cannot be described by the common, adiabatic kernels. Going beyond
the adiabatic approximation is difficult, but some non-adiabatic kernels have been
proposed and applied to the X-ray absorption problem [13].

3.6 Photoemission Spectroscopy

PES is probably the most direct way of probing the electronic structure of materials.
In a PES, light is shone on a surface and the kinetic energy, and possibly exit angle
and spin, of the emitted electrons is measured. In core-level PES, electrons from
the inner atomic shells are excited. As these levels are element specific, core-level
photoemission is a powerful tool for chemical analysis.

Angle-resolved core-level photoemission from crystal surfaces is known as X-
ray photoelectron diffraction [14]. The photoelectron wave spreads from the core
hole site and is diffracted by the neighbouring atoms. Analysis of the diffraction
pattern gives precise information about the local structure around the atoms of a
given chemical species. X-ray photoelectron diffraction can be well modelled with
real-space single or multiple scattering theory on a finite cluster of atoms.

3.6.1 Angle-Resolved Photoemission Spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is the major method for mea-
suring energy band dispersion (the ‘band structure’) of crystals. An intuitive picture
of ARPES is provided by the three-step model [15]. The three steps are as follows:

1. Photon absorption in the bulk of the material resulting in an inter-band transition
|mk〉 → |nk〉, with ε(n,k) = ε(m,k) + �ω. Here n,m are band indices and the
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three-dimensional crystal momentum vector k is conserved up to a reciprocal
lattice vector G.

2. Propagation of the excited wave to the surface, with damping due to inelastic
scattering.

3. Transmission through the surface by matching the Bloch wave |nk〉 to a plane
wave exp(ik′ · r). Thematching conditions are dictated by conservation of energy
and the surface parallel component of k, i.e. k′

|| = k|| and k ′2
⊥ = k2⊥ + 2mV0/�

2,
where V0 represents the surface potential barrier.

The three-step model is very useful for relating the photoemission data to the three-
dimensional band structure of the material. However, for an accurate calculation
of ARPES intensities, the one-step model should be used, where the photoelectron
final state is calculated in all space (bulk, surface and vacuum) as a single wave func-
tion with proper boundary conditions (so-called ‘time-reversed low-energy electron
diffraction’ boundary conditions). A suitable computational scheme is the layered
Korringa–Kohn–Rostoker method [16].

The hole left behind in the photoemission process is not an independent particle,
but it interacts with the electrons and the lattice, giving rise to various many-body
effects, which are conveniently described using quasiparticle theory.

3.7 Quasiparticle Theory

In a photoemission experiment, an electron is ejected from the system, which
becomes ionized. Neglecting the interaction between the photoelectron and the hole
left behind, i.e. applying the so-called sudden approximation, the photoemission
excitation is a one-electron removal process from the N -particle ground state to a
N − 1 particle excited state. In the same fashion, inverse photoemission probes the
one-electron addition process from the N -particle ground state to a N + 1-particle
excited state. The true excitations are called quasiparticles. In the limit of vanish-
ing electron interaction, the quasiparticle wave functions are the spin-orbitals of the
ground state Slater determinant and the quasiparticle energies are the one-electron
levels. In the independent particle approximation, the quasiparticles are taken as HF
or Kohn–Sham orbitals. This neglects electron correlation and the interaction of the
electrons with the lattice vibrations. These effects change the quasiparticle energies
andwave functions. The quasiparticles are said to be renormalized or ‘dressed’ by the
interaction. In particular, due to inelastic scattering at collective excitations such as
phonons and plasmons, the one-electron quasiparticles will decay after a character-
istic lifetime. As a result, compared to the delta-function-like photoemission peaks
corresponding to the independent particle approximation, the true photoemission
peaks are energy shifted and lifetime broadened. Moreover, some spectral weight
of the main peak is lost to extra (‘satellite’) peaks, corresponding to some inelastic
process.
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3.7.1 Green’s Functions

Quasiparticles can be described using many-body Green’s function techniques. We
introduce the retarded one-electron Green’s function

G(r, r′, t − t ′) = −iθ(t − t ′)〈0|{�(rt),�+(r′t ′)}|0〉, (3.33)

where �+(rt) is a Heisenberg field operator which creates an electron at point r and
time t , and� destroys one. |0〉 is themany-particle ground state and {A, B} = AB +
BA denotes the anti-commutator. Note that we have suppressed spin for convenience.
ThisGreen’s function, or ‘propagator’, gives the probability amplitude for an electron
to be found at rt if one was added at r′t ′. The one-electron removal and addition
spectrum is given by the spectral function

A(k, ω) = − 1

π
ImG(k, ω) , (3.34)

where G(k, ω) is the space and time Fourier transform of (3.33). In the following,
we focus on a perfect crystal and suppress the band index. The Hamiltonian of the
non-interacting system is then given by H0 = ∑

k εkn̂k, where k labels the Bloch
eigenstates with energy εk and n̂k is the corresponding occupation number operator.
It is easy to see that in this non-interacting case, Green’s and spectral functions are
given by

G0(k, ω) = (ω − εk + iη)−1 , A(k, ω) = δ(ω − εk) . (3.35)

Thus, the photoemissionpeaks are delta functions,meaning thatBloch states are exact
excitations of energy εk (band energy) and infinite lifetime. Asmentioned above, due
to electron interaction, the true photoemission peaks are shifted, broadened and may
have satellite structures. In quasiparticle theory, these effects are described by the
so-called self-energy �, which is essentially the difference between the inverses of
the exact and the free Green’s function. The self-energy is defined through the Dyson
equation

G = G0 + G0�G ⇔ G−1 = G−1
0 − � . (3.36)

For a single band in a crystal, we have

G−1(k, ω) = ω − εk − �k(ω) . (3.37)

It is clear from (3.35) and (3.37) that Re� describes a shift of the eigenvalues εk
(band energy) and Im� results in peak broadening, i.e. it reflects the finite lifetime
τ = �/Im� of the quasiparticle. There are various methods to find (approximate)
self-energies. For the electron correlation effect, two of the most popular methods
are the so-called GW approximation and dynamical mean-field theory.
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3.7.2 GW Approximation

The GW approximation was invented by Hedin in 1965 [17] and owes its name from
the form of this self-energy, which is � = iGW , i.e. the product (or convolution) of
Green’s function (G) and the screened Coulomb interaction (W ). The latter is given
by [18]

W (r, r′, ω) = e2

4πε0

∫
dr′′ ε

−1(r, r′′, ω)

|r − r′| , (3.38)

where ε(r, r′, ω)−1 is the inverse dielectric function. This expression may be under-
stood by analogy to the electrostatic energy between two electrons in a polarizable
medium,which is given by e2/[4πε0εr |r − r′|], where εr is the relative dielectric per-
mittivity. The dielectric function ε(r, r′, ω) generalizes εr to inhomogeneous media
and dynamic screening effects. The GW approximation is most often used in a non-
self-consistent way, i.e. as � = iG0W0 with the free Green’s function G0 instead
of the full Green’s function G. The GW approximation has been very successful
for correcting band energies of weakly correlated systems. In particular, bandgaps
of semi-conductors are very well reproduced in the GW approximation, while the
values obtained in DFT (except for DFT-HF hybrid functionals) are systematically
too small [19].

3.7.3 Bethe–Salpeter Equation

At this point, we briefly switch back to the problem of absorption spectroscopy. Since
light absorption creates an electron–hole pair, absorption spectra are described with
an electron–hole (i.e. a two-particle) Green’s function Geh . If the excited electron
and the hole do not interact,Geh is just the product of the one-particle removal (hole)
Green’s function Gh and the addition (electron) Green’s function Ge. Electron–hole
interaction leads to coupling of these twoGreen’s functions, whichmay be expressed
in a Dyson-type equation as [20]

Geh(1, 2; 1′, 2′) = Ge(1, 1
′)Gh(2, 2

′) (3.39)

+
∫

Ge(1, 3)Gh(2, 4)K (3, 4; 5, 6)Geh(5, 6; 1′, 2′)d3d4d5d6 ,

where 1 stands for all coordinates of particle 1 and K is the interaction kernel.
In the Bethe–Salpeter equation (BSE) approach, (3.39) is solved with K given by
the screened Coulomb interaction in (3.38) and the bare exchange interaction. The
electron and hole Green’s functions, Ge and Gh , are commonly computed in the
GW approximation. The BSE approach is arguably the most accurate first-principles
method for absorption spectroscopy in solids, but it is computationally very demand-
ing. It was first applied to X-ray spectra by Shirley in 1998 [21]. It accounts well
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for strong excitonic effects and features electron–hole multiplet coupling in L-edge
spectra [22]. Let us note that the latter effect is also well described with multichannel
multiple scattering theory [23, 24], where the electron–hole coupling is dealt by a CI
calculation of the scattering matrix. However, at present, none of these particle–hole
theories can fully account for the complex multiplet structure of L-edge spectra of
open-shell transition metal compounds. These spectra are still best described with
CI methods, either the semi-empirical ligand-field multiplet model (see Chap. 4) or
the ab initio complete active space approach on small clusters [25].

3.7.4 Static and Dynamical Mean-Field Theory

In strongly correlated electron systems, e.g. 3d transition metal oxides and 5 f ele-
ments, collective phenomena such as band magnetism, metal–insulator transition
and high-Tc superconductivity are observed. These are genuine many-body effects
that cannot be explained in the independent particle picture. Itinerant magnetism
and the metal–insulator transition are due to the competition between the kinetic
energy, which leads to delocalized band states, and strong local Coulomb repulsion
which favours electron localization and formation of magnetic moments. The most
simple model to study these problems is the (one-band) Hubbard model [26], whose
Hamiltonian is given by

H =
∑

kσ

εknkσ +U
∑

i

ni↑ni↓ =
∑

i jσ

ti j c
+
iσ c jσ +U

∑

i

ni↑ni↓,

where lattice sites are labelled by i and j , the crystal momentum by k and spin
by σ . Further, c+

ν (cν) creates (destroys) an electron in state ν, and nν ≡ c+
ν cν counts

them. ti j is the hopping (or ‘transfer’) integral between sites i and j , and U is the
Coulomb energy between two electrons occupying the same site. The corresponding
one-electron Green’s function is

Gkσ (ω) = [ω − εk − �kσ (ω)]−1 .

Despite the apparent simplicity of the Hubbard model, the exact solution is unknown
(except in one dimension) and the self-energy� must be approximated. At the lowest
level, there is the normal mean-field (i.e. HF) approximation, where � is taken to
be static, i.e. independent of frequency ω. It is given by �kσ = U 〈nk−σ 〉, where the
occupation numbers 〈nk−σ 〉 must be calculated self-consistently. When the lowest
energy solution corresponds to a different occupation between spin-up and spin-down
bands 〈nk↑〉 �= 〈nk↓〉, the band energies Ekσ = εk +U 〈nk−σ 〉 become exchange split,
and the ground state is ferromagnetic. HF andLDAare such staticmean-field theories
and can account for certain static exchange effects, such as ferromagnetism. But they
lack all dynamic correlation, which is crucial for the metal–insulator transition and

http://dx.doi.org/10.1007/978-3-030-64623-3_4
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for various phenomena seen in photoemission spectra, such as band narrowing and
satellite structures.

Dynamic correlation effects can, to some extend, be described by the dynamical
mean-field theory (DMFT) [27], where the self-energy is taken to be frequency
dependent but local, i.e. momentum independent, �kσ (ω) → �σ(ω). We note that
self-energies from static mean-field theory (such as LDA) and dynamical mean-field
theory can be, and often are, combined. Although the total self-energy is then both
momentum and frequency dependent, it is still an approximation.

The basic idea of DMFT is to map the Hubbard model with correlation (U �= 0)
on all lattice sites onto the Andersonmodel, which describes one correlated atom (the
‘impurity’) coupled to an effective bath of band states. In the Anderson model, we
have U �= 0 only at the impurity site (i = 0), and as a consequence, the self-energy
is a frequency dependent, but local, quantity �i j (ω) = �0(ω)δi0δi j . In DMFT, this
local self-energy is taken as the self-energy of the lattice problem (Hubbard model).
Themapping, i.e. the definition of the effective bath, must be done in a self-consistent
manner such that the on-site matrix elements of the lattice model Green’s function
Gii (ω) coincide with those of the impurity model [27]. While the Anderson impurity
model is simpler than the Hubbard model, it is nonetheless a complex many-body
problem. Implementations of DMFT mostly differ in the approximations used for
solving the impurity problem.

DMFThas been applied to photoemission spectroscopy of correlated systems [28]
and results in improved spectra compared to independent particle approximation (HF
or LDA). In transition metal systems, for example, photoemission spectra calculated
in DMFT can account for finite temperature effects, correlation-driven band narrow-
ing and satellite peaks [29].

3.8 Conclusions

In this chapter, I have tried to give a brief introduction to the theory of X-ray absorp-
tion and photoemission spectroscopy. Along the way, it appeared useful to present
succinctly the principles of several computational methods of electronic structure
that are used in spectroscopic calculations. Given the vast nature of the subject, this
account is necessarily very incomplete. But I hope that the reader got an idea of
the physics underlying the different theoretical methods and that it aroused his/her
curiosity to dwell deeper into the subject by reading some of the cited literature.
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