
Chapter 11
Advancing Joint Design and Operation
of Water Resources Systems Under
Uncertainty
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11.1 Introduction

Hydropower has been employed as the first renewable energy source for electricity
generation back in the 19th century and today it still plays a major, multidimensional
role in the electricity sector worldwide for a variety of reasons. Firstly, it is a clean
and renewable source of energy that generates local, affordable power fostering
sustainable development, as promoted under the Sustainable Development Goals
(SDGs) [1]. Secondly, it allows to reduce dependence upon imported fuels, associated
to high risks of price volatility and supply uncertainty. Then, hydropower dams
can offer multiple co-benefits, from storing water for drinking and irrigation, to
being used for drought-preparedness, flood mitigation and recreation. In the end,
hydropower is very competitive with other electricity sources from a costs point of
view and provides a rapid-response when intermittent energy sources (e.g., solar)
are off-line [2, 3].

Hydropower is currently responsible for about 16% of global electricity produc-
tion, a percentage that is projected to substantially increase due to the doubling of
the total installed hydropower capacity expected by 2050 [4]. Since developed coun-
tries already exploited more than 50% of their hydropower potential, most of the
future hydropower expansion is predicted to occur in developing countries, which
still present a vast untapped potential. Among others, Africa represents an extreme
case with its almost 90% of undeveloped hydropower potential, with respect to a
25% global exploitation rate on average [2, 5]. This has motivated potential invest-
ments in the construction of approximately 3,700 new dams in the near future [6], a
large share of which will be built in Africa, Asia and Latin America [4], leading to
potential benefits in terms of increased energy supply but also negative impacts on
the environment (e.g., losses of fish biodiversity, deforestation).
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In the future, changes in water availability and extreme events (e.g., droughts)
due to climate change coupled with high rates of population growth will contribute
to an increase in both migration rates within a single region, as well as energy
and food demands, putting additional pressures on already stressed water resources.
Globally, both existing and planned dams will thus have to face a vast array of future
challenges, such as water scarcity, and growing resource conflicts in their demands
(e.g., hydropower production vs irrigation water supply).

When planning new dams, integrated, strategic approaches must be therefore
employed to find a balance between key economical, social and environmental objec-
tives, while accounting for different water users and changes in external conditions
that might strongly impact water resources systems in the future.

11.1.1 Research Challenges

The planning of large dams traditionally consists in basin-wide assessments of the
potential economic outcomes of different designs via financial metrics (e.g., net
present value) to evaluate their corresponding financial value [7, 8]. This approach
combines costs andmonetized downstream impacts of largewater infrastructures into
a single aggregatemonetary value, disregarding potentially conflicting objectives and
trade-offs among different water users within the basins of focus.

Secondly, over the last fifty years the interdependency between dam size and
operations has been largely neglected by traditional engineering approaches relying
on the widespread Rippl method [9], aimed at identifying a single optimal dam size
based on a sequence of pre-defined releases and observed inflows [10, 11].

Third, the long design life of large dams critically exposes them to future uncer-
tainties related to climatic and socio-economic changes. Yet, their planning is usu-
ally performed assuming stationarity in the long-term natural processes and without
accounting for uncertainty in the external drivers. Since the assumption of a sta-
tionary climate is unlikely to be valid in the future [12], uncertainties in the main
external drivers must be taken into account during dam planning in order to design
robust infrastructures that are able to perform satisfactorily in the future with respect
to multiple sources of uncertainty.

Building on the above mentioned research challenges, this contribution proposes
a set of modelling and optimization tools converging in multiple, novel integrated
frameworks for thoroughly capturing interdependencies betweenplanning andopera-
tion in non-linear systems, alsowith respect to uncertainty in themain external drivers
(e.g., hydro-climatology, human demands). The main focus is on water resources
systems and specifically on coupling dam sizing and operation design. In particu-
lar, Sect. 11.2 presents a novel Reinforcement Learning (RL)-based approach to inte-
grate dam sizing and operation design, while significantly containing computational
costswith respect to alternative state-of-the-artmethods.On the other hand, Sect. 11.3
shows a novel framework combining Multi-Objective Robust Decision Making and
EvolutionaryMulti-Objective Direct Policy Search into a novel approach to dam siz-
ing, which internalizes the operation design problem and explicitly considers uncer-
tainty in external drivers.
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11.2 Reinforcement Learning for Designing Water
Reservoirs

The method proposed relies on a novel algorithm, called Planning Fitted Q-Iteration
(pFQI), which extends the batch-mode RL Fitted Q-Iteration (FQI) algorithm devel-
oped by [13] by enlarging the original FQI state space to include the discrete planning
decision (i.e., dam size) as an additional state variable. The key idea behind pFQI
originates from the Multi-Objective Fitted-Q Iteration (MOFQI) algorithm devel-
oped by [14]: the continuous approximation of the action-value function originally
performed by FQI over the state-action space is now enlarged to the planning space
by including dam sizes as new variables within the arguments of the action-value
function. This enables pFQI to approximate the optimal operating policy associated
to any dam size within a single learning process.

This new algorithm therefore overcomes the limitations and biases introduced by
traditional sizing methods by directly addressing the strict interdependency between
dam size and operation within an integrated framework through an operating policy
parametric in the dam size. Secondly, it overcomes the high computational costs asso-
ciatedwith state-of-the-art nestedand integratedapproachesbysolvingasingleopera-
tion optimization via pFQI, as the resulting policy can be used to simulate the optimal
operations of all the possible dam sizes associated to alternative trade-offs between
least cost planning and operating objectives (e.g., downstream water supply). This
characteristic contributes to significantly reducing the computational burden of pFQI.

The pFQI algorithm is tested on the multi-objective numerical case study, con-
sisting of a synthetic water reservoir that must be sized and simultaneously operated
to satisfy the water demand of downstream users.

11.2.1 pFQI Algorithm

The novel principle underlying the pFQI algorithm is to enlarge the traditional
FQI state-action (xt , ut ) space to include an additional time invariant state variable,
namely the dam size θ ∈ �. This latter is described by the dummy deterministic state
transition function θt+1 = θt = θ , where the dam size does not evolve in time, assum-
ing a constant value throughout the entire evaluation horizon. The key idea behind
pFQI originates from the Multi-Objective Fitted Q-Iteration (MOFQI) algorithm
developed by [14], where linear combinations of preferences (weights) assigned to
the objectives represent the dummy state variable to generate an entire Pareto front
in a single optimization run. The resulting enlarged state-action space of pFQI can be
therefore defined as (x̃t , ut ), where x̃t = [xt , θ ], over which the optimal Q-function
is continuously approximated. A new learning datasetFθ is thus produced, enlarging
the original set of experience samples F as follows:

Fθ = {
< x̃ it , u

i
t , x̃

i
t+1, g

i
t+1 >, i = 1, . . . , Nθ

}
(11.1)

where Nθ = N · nθ is the number of tuples in the new pFQI dataset and nθ is the
number of sampled dam sizes θ . Since nθ new tuples are produced for each four-tuple
in F , Nθ is larger than N . A tabular version of the Planning FQI algorithm proposed
in this study is presented in Algorithm 1.
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Likewise the traditional FQI algorithm, pFQI exploits the information in the sam-
ple datasetFθ to iteratively approximate the optimal action-value function Q∗ (x̃t , ut )
over the enlarged state-action space (x̃t , ut ). Being the optimal operating rule, and
thus operating policy, strictly related to the Q-function, the pFQI algorithm is also
able to learn a continuous approximation of the optimal operating policy π∗ (·) over
the enlarged state space x̃t = [xt , θ ]. This policy therefore results parametric in the
dam size θ ∈ �, and can be used to operate any dam size within this feasibility set.

Algorithm 1 Planning FQI Algorithm
Inputs: a learning set of tuples Fθ and a regression
algorithm
Initialization:
Set h = 0
Set Q̂0 (·) = 0 over the whole enlarged state-action space X̃ × U
Iterations: repeat until stopping conditions are met
- h ← h + 1
- build the training set
T Sθ = {(

I N i , OUT i
)
, i = 1, . . . , Nθ

}

where
I N i = (

x̃ it , u
i
t

)

OUT i = git+1 + γ min
ut+1

Q̂h−1

(
x̃ it+1, u

i
t+1

)

- Run the regression algorithm on T Sθ to get Q̂h (x̃t , ut )
Output: derive the final operating policy π̂∗

h parametric in θ

11.2.2 Comparison with Traditional Least Cost Dam Design

In order to prove the importance of capturing interdependencies between dam size
and operations, we compare the least cost planning solutions identified via traditional
sizing methods and the optimal system configurations designed via pFQI.

The traditional sizingmethod identifies the least cost dam size under a pre-defined
operating policy π̄ whilemeeting a specific reliability rate. The pre-defined operating
policy π̄ adopted is the Standard Operating Policy (SOP), which assumes that the
system operator is able to fully supply the downstream demand, unless constrained
by water availability in the reservoir storage and current period inflow [15]. We test
four different reliability rates r̄ , namely 95% (acceptable value for a dam aimed at
supplying water for agriculture according to [16] and [17]), 90%, 85% and 80%,
which are associated to four alternative least cost dam sizes operated under the
same given operating policy π̄ . This latter consists of a target release equal to the
downstream water demand w to be discharged at each time step.

Figure11.1 shows the performance of four alternative least cost dam sizes opti-
mized under four different reliability rates r̄ (pink circles), along with the perfor-
mance of two specific dam sizes θopt and θsim attained via nested approach (yellow
triangles) The four least cost dam sizes increase proportionally with the associ-
ated reliability. For each of them, the operating objective (i.e., water supply deficit)
is computed assuming a constant release equaling the downstream water demand
unless constrained by the physical water availability, namely the pre-defined Stan-
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Fig. 11.1 2D-objective space where both the least cost planning solutions (pink circles) and the
two nested solutions (yellow triangles) are compared against the system configurations identified
via novel RL approach relying on the pFQI algorithm (blue circles). Arrows indicate the direction
of preference in the objectives

dard Operating Policy π̄ . The four least cost system configurations are compared
against the optimal dam sizes and associated operating policy identified via novel
RL approach (blue circles). In this first experiment, the size of the learning dataset
Fθ of the pFQI algorithm employed during the novel RL operation optimization is
nθ = 11. As can be observed, the RL solutions dominate the four least cost system
configurations in terms of system performance. In particular, the dam size associated
to the highest reliability rate r̄ = 95%, which has a cost equal to $ 127 million (106
Mm3), is weakly dominated by the Equivalently Operated (EO) solution identified
via novel RL approach (Jc = $ 65 million and size equal to 54 Mm3).

A 50% smaller (thus less costly) infrastructure could be built while achieving the
same water supply deficit, meaning that the pFQI algorithm is able to fully capture
the interdependency between dam size and operationwithin an integrated framework,
yielding system configurations that strongly outperform the performance achieved
under traditional sizing methods. This is particularly true for reliability rates that are
equal to or higher than 85%, where the advantages of jointly optimizing dam size and
operationcanbeseen in termsofa significantdeviationbetween the least costplanning
and theRLsolutions.For lower reliability rates, thecorrespondingwater supplydeficit
is so high that almost any operating policy is able to attain it. The potential benefits of
optimizing the operation thus become almost negligible and the least cost system con-
figuration associated to an 80% reliability approaches the RL solutions. By coupling
smallerdamsizestomoreefficientoperatingschemes,andaccountingfortheimpactsof
short-termoperatingpolicieson the long-termsystemdesign, thenovelRLdamdesign
approach is therefore able to identify less costly,more efficient systemdesigns.

11.3 A Novel Robust Assessment Framework

In this section, we propose a robust dam design framework that is: (i) multi-objective;
(ii) capable of joint planning and management, capturing the interdependencies
between dam size and the associated trade-offs across candidate operating policies;
(iii) integrating state-of-the-art stochastic optimization, yielding design system con-
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figurations that are less vulnerable to intrinsic, stationary hydro-climatic variability;
and (iv) directly accounting for robustness to long term deep uncertainties, clarifying
how alternative system configurations performwith respect to uncertain drivers (e.g.,
inflows and demands).

We carefully evaluate the potential of this framework through an ex-post analysis
of the Kariba dam in the Zambezi river basin, which provides a rich and challenging
opportunity to demonstrate the limitations of prior standard sizing approaches.

11.3.1 Methodological Approach

Our proposed integrated design and operation framework therefore captures (i) key
trade-offs between water users, (ii) how dependencies in dam sizing and operations
influence these trade-offs, (iii) how intrinsic, stationary hydro-climatic variability
affectsdamdesign,and(iv)theultimaterobustnessofthewaterinfrastructuresdesigned.
Drawing on the methodological taxonomy for robustness frameworks suggested by
[18],we present in the following the fourmain elements of our proposed framework.

The first element is the generation of decision alternatives, namely alternative dam
sizes with associated candidate operating policies, via multi-objective optimization
under both historical and well-characterized, stationary streamflow uncertainty. It is
a useful insight to discover how planning and management trade-offs evolve when
moving from historical observation record to a better statistical representation of the
internal variability of extremes. Put more simply, the available historical observa-
tion record by itself is a poor estimator of rare extremes that are potentially highly
consequential to dam sizing and operations.

The secondelement is strongly linked to the search in thefirst element byhowalter-
native states of the world (SOWs) are sampled and exploited in the overall analysis.
Sampling strategies can be classified into three different groups: (i) historical records,
representingasingleSOWcomposedof theavailableobservedtime-series; (ii) station-
ary synthetic records, where each SOW is obtained by sampling well-characterized,
stationary model for uncertain hydro-climatic factors; and (iii) deeply uncertain sce-
narios, where each SOW is generated by globally sampling a suite of deeply uncer-
tain drivers. As discussed above, stationary synthetic records better capture system’s
stochastic hydrology, where the historical autocorrelation of recorded streamflows is
preserved while better accounting for their internal variability. As for sampling deep
uncertainties, the broader suite of SOWs used to stress test systems are drawn from
non-stationary future scenarios of both hydro-climatic (inflows) and socio-economic
(irrigation demand) factors. TheSOWsbelonging to thefirst twogroups are employed
during the optimal alternatives generation phase, whereas the latter are used in the a-
posteriori robustness assessment of the candidate alternatives identified.

Once the candidate alternatives for design and operation are re-evaluated over
the deeply uncertain SOWs, their robustness is assessed in terms of global domain
criterion satisficing metric [19, 20], namely the percentage of SOWs satisfying pre-
defined performance requirements (third element). As an innovation in this study’s
assessment of robustness, instead of pre-specifying acceptable performance thresh-
olds, we map the satisficing robustness measure into the objective space, forming a
multidimensional satisficing surface.
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The last element of our methodology is a sensitivity analysis conducted to identify
which deeply uncertain factors are the most responsible for failing specific perfor-
mance criteria (i.e., factor mapping or scenario discovery).

11.3.2 Assessing Robustness of Alternatives for Changing
Demands and Hydrology

Figure11.2 provides a broader evaluation of the hydropower maximizing (LH, MH,
and SH) and compromise alternatives (LC, MC, and SC) for large L, mediumM and
small S dam sizes with respect to deeply uncertain changes in demands and hydro-
climatology. These solutions were re-evaluated over our deeply uncertain scenarios,
composedof 143 sampled combinations of changes inmean streamflowand irrigation
demands. Here, the robustness of the different system configurations is assessed in
terms of a satisficing surface, which maps the satisficing robustness measure across
the conflicting objectives space for any combination of either hydropower (Fig. 11.2a)
or multivariate (Fig. 11.2b) thresholds for both hydropower and irrigation deficit. In
the case of the multivariate thresholds, the color of each point forming the satisficing
surface is given by the exact value of the satisficing robustness measure, namely the
percentage of SOWs satisfying that specific performance requirement on multiple
objectives simultaneously.

Figure11.2a distinguishes the hydropower focused robustness of the baseline
forensic solution (i.e., historical operating policy associated to the existing Kariba
dam size) relative to the large (LH), medium (MH), and small (SH) alternatives
attained using the stochastic joint optimization. It is very clear that the existingKariba

Fig. 11.2 Panel a: Cumulative distribution functions of the baseline forensic solution and the policy
maximizing hydropower productionHassociated to three optimal dams sizes (S: Small,M:Medium,
L:Large) across 143 deeply uncertain states of theworld. Panel b:Mapping of the robustness in terms
of satisficing metric of the compromise policy C in the 2D-management objective space. The color
is given by the percentage of deeply uncertain states of the world that satisfy a specific multivariate
threshold on both hydropower Jhyd and irrigation Jirr objectives (red = low percentage; green =
high percentage). In both panels, arrows indicate the direction of preference in the objectives
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design and operation does not in a general sense maximize hydropower. It has an
extremely narrow hydropower production range (2.8–3.0 TWh/yr) where it meets
performance goals for as few as 20% of sampled SOWs. Alternatively, Fig. 11.2a
shows that the robustness of the large LH and medium MH dam sizes are similar to
one another, as their cumulative distribution functions mostly overlap. This is due
to the fact that the hydropower maximizing operating policies associated to these
two dam alternatives behave the same, minimizing spillages and keeping releases
constant regardless of the water level in the reservoir. Dam size starts playing an
important role in robustness for small hydropower maximizing alternative (SH).
Although this alternative spills large volumes of water due to its size limitations, it is
striking that it fully outperforms the existing Kariba system being operated with the
idealized bang-bang forensic solution, which aims at tracking a prescribed storage
trajectory. Increasingly severe water scarcity captured in the deeply uncertain SOWs
with respect to historical conditions causes the baseline forensic solution to fail as
Kariba’s operations are not able to drive the reservoir storage back to its prescribed
storage trajectory. Note that the four cumulative distribution functions step-behavior
is reflective of the discretized sampling of the deeply uncertain factor space across
hydropower production levels (Fig. 11.2a).

The compromise alternatives (LC, MC, and SC) in Fig. 11.2b are evaluated for
sustaining their performance in both the hydropower and irrigation deficit objec-
tives for the more challenging deeply uncertain SOWs. It is clear in Fig. 11.2b that
maintaining high levels of performance in both objectives is very difficult and, as a
consequence, 0% of the sampled deeply uncertain SOWs meet the suite of perfor-
mance goals for a large swath of mapped satisficing surface, regardless of dam size.
However, there are some interesting differences across the dam sizes. Perhaps most
surprisingly, the large compromise (LC) solution’s robustness is not clearly superior
to the medium size compromise (MC). The medium compromise (MC) alternative
generalizes over lower irrigation deficits while still maintaining competitive perfor-
mance in hydropower robustness (also noticeable in Fig. 11.2a). Clearly, volumetric
size is not the sole control on the robustness of a design and the importance of oper-
ational policies are pronounced in the robustness results of Fig. 11.2b. Based on the
solutions selected and discussed, medium (MC) and small (SC) compromise dam
sizes are exploiting their operations to bemore robust than the large (LC) compromise
alternative. The small (SC) compromise dam is still disadvantaged volumetrically
relative to the medium (MC) compromise alternative’s reservoir capacity.

11.4 Conclusions

We presented two novel contributions whose main goal is to advance the current
planning and operation of water reservoir systems, focusing on the coupling of dam
sizing and operation design in order to thoroughly capture their interdependencies
also with respect to uncertainty in the main external drivers.

Results show that capturing the interdependencies between dam size and oper-
ations has proved to be essential to effectively design smaller yet more efficient
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water reservoirs that strongly outperform the performance achieved under traditional
engineering sizing methods, which instead neglect the optimal operation design
phase. When employing our novel Reinforcement Learning (RL)-based approach
on a numerical case study, where a synthetic reservoir must be sized and operated
to meet downstream users water demand while minimizing construction costs, a
50% smaller (thus less costly) dam could be built without degrading the system
performance achieved under the least cost infrastructure identified via traditional
sizing method (i.e., Behavior Analysis). When instead we use our robust dam design
framework to perform an ex-post analysis of the existingKariba dam, which has been
sized via traditional design methods assuming a pre-defined operating rule (i.e., tar-
get storage to be tracked), we are able to design a 32% less costly Kariba dam with
respect to the existing one, without degrading system performance.

Secondly, a careful considerationof thebroader arrayof future uncertaintieswithin
the planning phase is key for designing robust infrastructures, which will likely face
a wide range of future challenges such as reduced water availability and rising fre-
quency of extreme events (e.g., floods, droughts) related to climate change, together
with increases in both energy and food demands due to population growth. By includ-
ing stationary, hydro-climatic uncertaintywithin theKariba damdesign phase, we are
able to identify well operated but reduced volume alternative reservoirs that can fully
dominate larger designs in terms of their attained robustness. In particular, we clearly
highlight that Kariba, even if optimally implementing its pre-defined operating rule,
is critically vulnerable to stationary hydro-climatic variability, and that it produces
less hydropower than a well sized run-of-the-river hydropower plant.

Future research should mainly focus on (i) including a broader array of external
uncertainties in the coupled dam sizing and operation design problem in order to
fully understand which uncertainties drive the robustness of water reservoir systems,
by including them within the optimization process, and (ii) testing the contributed
methodological approaches on complex transboundary, multi-reservoir systems, in
order to explore potential interactions among several dams planned for the near
future and that must be operated to satisfy different management objectives (e.g.,
environmental flow requirements).
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