
3

Architectures for Flexible
Collaborative Systems

Collaborative systems are characterized by their interaction with other systems in
collaborative system groups in order to reach a common goal. These systems interact
based on fixed rules and have the ability to change structurally, if necessary. Changes in
the collaboration are usually triggered from outside and are time-discrete with a rather
wide time scale. The architectures of these systems and system groups must support
flexibility and adaptability at runtime while also ensuring specific qualities, although
these changes and their consequences cannot be fully foreseen in all combinations at
design time.

In order to enable knowledge preservation and reuse for the design of system
architectures for flexible collaborative systems and system groups, we present a method
for designing reference architectures for systems and system groups. For this approach,
we present an example of a reference architecture for an operator assistance system. To
adequately consider safety requirements during the design, we further introduce a
method which adapts safety argumentation for flexible collaborative systems to changes
in their specification or operating context.

Birthe Böhm, Siemens AG
Carmen Cârlan, fortiss GmbH
Annelie Sohr, Siemens AG
Stephan Unverdorben, Siemens AG
Jan Vollmar, Siemens AG

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_3

49

https://doi.org/10.1007/978-3-030-62136-0_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_3&domain=pdf

50 Architectures for Flexible Collaborative Systems

3.1 Introduction

Designing architectures for flexible collaborative systems and their
system groups is still a challenge due to the novelty of these systems
and a lack of proven methods that address their specific requirements
[Böhm et al. 2018]. This applies in particular to the design of system
groups and the systems collaborating within these groups.

Flexible collaborative systems assume a fixed collaboration that
adheres to a fixed set of rules. Changes are usually triggered not from
the system itself but, for example, by an operator of this system. These
changes are not as frequent as in dynamically coupled or adaptive
systems. Typical examples of flexible collaborative systems are
adaptable and flexible factories.

In Section 3.2, we provide a method for designing reference
architectures for collaborative embedded systems (CESs) and
collaborative system groups (CSGs). Such reference architectures can
then be used as blueprints for deriving system architectures for
specific systems. In addition, they can be used to design specific CSGs
and collaborating CESs at an interface level to allow for independent
design and development of the CESs and CSGs but enable their
collaboration. We then apply this approach to adaptable and flexible
factories, and briefly present the resulting high-level logical reference
architecture. This overview is detailed in Section 3.3 by applying the
approach to one of the CESs identified, a simulation-based operator
assistance system.

For numerous CESs and their CSGs, safety requirements are crucial
and must be guaranteed. Our proposed safety case modeling approach
in Section 3.4 supports the execution of automatic consistency checks
between the safety case model and the system architecture. This
approach can be used to prove that the architecture of a system
satisfies the required safety properties. It ensures that, in the event of
changes to the system specification or the operating context, the
logical architecture still fulfills the safety requirements.

Finally, in Section 3.5, we provide conclusions and give an outlook
on future work.

3.2 Designing Reference Architectures

A typical approach for designing architectures for systems starts with
eliciting specific requirements. This step is followed by identifying

Characteristics of
flexible collaborative

systems

3.2 Designing Reference Architectures 51

functions needed. Based on these functions, we create a logical
architecture and, finally, a problem-specific technical architecture.
This procedure must be repeated from scratch for each specific
system. Therefore, in particular for organizations that frequently
design similar systems, reuse of existing solutions promises a
reduction in effort and the possibility to make experiences and
knowledge available to future projects or even across organizational
borders. Various reuse approaches can be classified. For example,
VDI/VDE 3695 defines, among other things, reference models or
architectures as one possible way of enabling reuse of artifacts within
the engineering of systems [VDI/VDE 3695 2010].

Reference architectures are a reuse approach for organizations
that expect to build similar systems in the future and already have
good knowledge of these systems. They are used as blueprints for
future systems and may be adapted for specific systems. In addition,
reference architectures may be also applied when designing specific
CSGs (e.g., for the adaptable and flexible factory) to define the
necessary roles, system, and collaboration functions of CESs but also
protocols, data structures, etc. to enable collaboration within this CSG.
Different organizations may subsequently use this reference
architecture to design CESs which may collaborate in these CSGs.

In this section, we present a method for designing reference
architectures for CESs and CSGs. In addition, we give a short insight
into a reference architecture for adaptable and flexible factories. This
reference architecture is based on a general reference architecture for
CESs and CSGs.

A reference architecture is defined as “the outcome of applying the
architectural framework to a class of systems to provide guidance and
to identify, analyze and resolve common, important architectural
concerns. A reference architecture can be used as a template for
concrete architecture of systems of the class” [Lin et al. 2017].
Complementing this, an architecture framework is defined as
“conventions, principles and practices for the description of
architectures established within a specific domain of application
and/or community of stakeholders” [ISO/IEC/IEEE 42010 2011]. The
SPES_XT modeling framework (see Chapter 2) is an example of such
an architecture framework and is used in the following for designing
reference architectures as well as system architectures.

Definition of reference
architecture and
architecture framework

52 Architectures for Flexible Collaborative Systems

3.2.1 Method for Designing Reference Architectures

The general procedure for designing reference architectures and
deriving system architectures from reference architectures is shown
in Figure 3-1. While a reference architecture is created only once,
numerous system architectures can be derived from a single
reference architecture. The transitions between the viewpoints in
Figure 3-1 show the general procedure for designing reference and
system architectures.

Fig. 3-1: General approach for designing reference and system architectures

In addition, the role of non-functional requirements (e.g.,
requirements related to safety), which are elicited in the
requirements viewpoint, is highlighted. In some cases, these
requirements cannot be assigned to single functions or to logical or
technical components and should therefore be revised regularly
during the design of reference as well as system architectures — this
is indicated by the arrows related to the non-functional requirements
in the figure above. In Section 3.4, we provide a method for integrating
safety cases into reference or system architectures to provide an
approach for safety-related requirements.

Finally, in Figure 3-1, the arrows from the reference architecture
viewpoints to the system architecture viewpoints indicate the reuse
of design results for designing system architectures. However, it may
be necessary to adapt or complement the reference architecture
content.

Non-functional
requirements

3.2 Designing Reference Architectures 53

As a first and critical step within the requirements viewpoint for
defining reference architectures, we define the scope of systems for
which the reference architecture will be defined. This means that we
need to forecast the future systems for which we want to use the
reference architecture as a blueprint.

Next, we determine which kind of reference architecture we want
to design. There are several key design decisions that have to be taken,
for example:

 Coverage: Reference architectures can, for example, cover a
common core of all considered systems, offer combinable and
reusable building blocks, or provide a solution that will cover all
requirements of all considered systems and is then tailored to fit
to one specific system.

 Extensibility: Reference architectures may, for example, allow
white box extensibility, which means that its components can be
fully adapted. On the other hand, only black box reuse that does
not allow any internal modifications may be allowed. Other forms
include grey box reuse, which is a mixture of both.

 Granularity: The level of granularity of the reference architecture
must also be decided. The goal is to be as detailed as possible
while still covering the future system architectures for the
intended set of systems. A reference architecture may, for
example, define only interfaces of systems or components or
provide a full detailing of all systems.

 Viewpoints: Consequently, the reference architecture may define
views of the requirements viewpoint only, or also comprise views
of the functional, logical, technical, and other viewpoints. While a
reference architecture that covers all viewpoints would appear to
be the best option, it also allows less changeability or requires
more effort if there are frequent changes.

These key design decisions mainly depend on the similarity of the set
of systems and their requirements.

Subsequently, further requirements are elicited for the reference
architecture based on the decisions made above. In addition, even
requirements of the set of selected systems that are not implemented
by the reference architecture may have to be considered to prepare
their later implementation. For collaborative systems in particular,
the CSG must be considered as well as the CESs — for both CSG and
CES design. This results from the general concept described in
Chapter 2. If a CES is to contribute to different CSGs, all relevant CSGs
have to be involved.

Scope definition

Key design decisions for
reference architectures

Further requirements
elicitation considers the
scope of systems

54 Architectures for Flexible Collaborative Systems

On this basis, we then extract the necessary functions of our
reference architecture while also considering the collaboration and
system functions for both CSGs and CESs. It is important to keep the
relations between requirements and functions, and further on, to
logical and technical components, as traces. These traces allow us to
check, for example, whether all requirements are implemented by
functions or logical and technical components. Vice versa, in the case
of changes to the technical solution, the traces also enable us to check
whether all requirements are still fulfilled.

Based on the functional architecture, we create a logical
architecture for the set of selected systems. Within this logical
architecture, the CSGs are usually logical components and are
composed by the CESs.

Finally, a technical reference architecture may be created. Since
CSGs are virtual, the collaboration and system functions have to be
implemented by the CESs. For all architecture viewpoints, it is crucial
to document design decisions and trace the relationships between the
different viewpoints and between the elements in the viewpoints. We
then refine any viewpoints as far as possible.

Once the reference architecture is created, we can use it to derive
system architectures for future systems. Again, we need to elicit
requirements but now for a specific system we want to build. We then
compare these requirements with the requirements for our reference
architecture and identify similarities as well as differences.
Subsequently, we assess these similarities and differences while
keeping in mind the parameters for our reference architecture. By
using the traces between all architectural components, we can then
customize the reference architecture by following the traces and
adjusting the elements with divergent or refined requirements — if
our extensibility concept permits these adaptions. In addition, we
have to integrate new requirements which have not been considered
in the reference architecture but are needed for the specific system
[Unverdorben et al. 2019].

Example 3-2: Using a Reference Architecture as a Template
Imagine a reference architecture for a factory which includes a
requirement to display all alarm data to operators to allow them to
recognize critical situations and ensure smooth production. However, for
one specific factory, the data will be analyzed first to identify critical
situations and only decision-relevant data will be displayed to the
operators.

Functional architecture

Logical architecture

Technical architecture

Deriving system
architectures from

reference architectures

3.2 Designing Reference Architectures 55

Since just one requirement has changed, we still want to use the reference
architecture for this factory. Therefore, we identify the changed
requirement in the reference architecture and follow the traces to related
requirements (e.g., alarms will be displayed in a flat list), functions, and
logical and technical components. In our example, we find that all
requirements dedicated to the data collection are still applicable and the
related functions and logical and technical components can remain
unchanged. However, the requirements that address data preparation for
the operator must be replaced by, firstly, data analysis and, secondly, an
adapted user interface for the operator. This affects the related functions
but also the logical and technical components. For example, an additional
data analysis function is introduced which is assigned to a logical data
analysis component. In the technical solution, this logical component is
realized by an additional software component.

Note that any changes to the original reference architecture during
derivation of a system architecture must be reflected on carefully
since they may indicate improvements for the reference architecture.
Thus, continuous feedback from system architecture design to
reference architecture design is important for keeping the reference
architecture up to date. In the case of changes to the reference
architecture, there must also be an update concept for existing
systems based on a prior version of the reference architecture.

To use the method described above successfully, tool support for
modeling reference and system architectures is useful. [Böhm et al.
2020] introduces a modeling tool which implements this method.

3.2.2 Application Example: Reference Architecture for
Adaptable and Flexible Factories

For adaptable and flexible factories, we created a reference
architecture using the method described above. The focus is on core
requirements and the reference architecture must cover the
requirements, functional, and logical viewpoints. Since we want to be
independent from any specific technical solution, the objective is not
a technical reference architecture.

The adaptable and flexible factory was already introduced in
Chapter 1. In order to extend the requirements for such a factory, we
used the application scenarios described in [BMWi 2017a] and [BMWi
2017b] as a basis: the main goal of the factory is to produce products.
Incoming product orders must be analyzed in terms of required
capabilities and compared with available capabilities within and,
optionally, across factories (see also Section 6.4.2). The factory might
need to reconfigure its production and, eventually, produces the

Requirements for the
adaptable and flexible
factory

56 Architectures for Flexible Collaborative Systems

product. Besides this basic production process, we assumed that a
need for high capacity utilization and guaranteed delivery dates
requires production planning. Other goals of the factory are
optimization of production, integrated maintenance, collaboration in
marketplaces, and continuous development of its product portfolio.

In addition to the application scenarios, requirements arose from
the use cases described in this book and the concepts presented in
Chapter 2 as guiding principles. On this basis, we designed a general
reference architecture for CESs and their CSGs, which not only
considers the general concepts but also refines, for example,
collaboration and system functions and, subsequently, the logical
architecture.

We then created our reference architecture for adaptable and
flexible factories. Figure 3-3 shows a basic diagram of the logical
reference architecture which presents the CSGs identified, which are
derived from the base CSG at the top.

Fig. 3-3: Refinement of CSG for adaptable and flexible factories

The CSGs within the reference architecture for adaptable and flexible
factories have the following goals and define, accordingly, the
following functions:

 ProductionCSG: The goal of this CSG is the manufacture of a
product specified within a production order. For this purpose, it
realizes functions for analyzing incoming product orders with
respect to producibility and additional constraints such as
delivery dates, price, etc. It also contains functions, for example,
for maintaining a production plan for this product, tracking the
production, and collecting data for operation control.

 ProductionOptimizationCSG: The main goal of this CSG is to
optimize the production of the factory. Therefore, it realizes
operator support functions—for example, detecting bottlenecks,
failures, or unused capacities in production—and deduces
measures based on these observations. A close interaction
between this CSG and the operator is crucial and may be realized

3.3 Reference Architecture for Operator Assistance Systems 57

by an operator assistance system as part of this CSG. This CES is
described in more detail in Section 3.3.

 MaintenanceCSG: In order to keep the factory productive and in a
good state, this CSG defines functions related to preventive and
reactive maintenance, as well as maintenance planning and
implementation.

 MarketplaceCSG: This CSG ensures collaboration between
adaptable and flexible factories by offering production
capabilities available in the factory and requesting external
capabilities via marketplaces.

 ProductPortfolioCSG: The goal of this CSG is the continuous
development of the factory in order to, for example, reach a high
capacity utilization. For this purpose, it combines functions for
analyzing missing production functions according to recent
product orders, detecting possible improvements (e.g., based on
current bottlenecks), and suggesting corresponding measures,
etc.

For these CSGs as well as for CESs within the adaptable and flexible
factory, the logical architecture was detailed further.

We also used the reference architecture for a factory model
demonstrator to derive a specific logical system architecture and to
define a technical architecture on top. This pilot showed that the
reference architecture is a good basis for deriving system
architectures, provided that the underlying general concept is
applicable.

3.3 Reference Architecture for Operator Assistance
Systems

In Subsection 3.2.2, we identified a CSG for production optimization
for adaptable and flexible factories. A central CES contributing to this
goal is an operator assistance system. It manages the collaboration of
the various CESs in the CSG and offers an interface to the human
operator. The CESs being handled by the operator assistance system
comprise production machines providing data and they are controlled
by the operator, planning and management tools, and additionally
model- and data-based evaluation services such as simulation and
optimization. These CESs must be combined dynamically in a context-
and situation-specific manner. In this section, we now want to take a
deep dive into a technical reference architecture for an operator
assistance CES.

Application to
demonstrator

58 Architectures for Flexible Collaborative Systems

3.3.1 Simulation-Based Operator Assistance

It is a challenging task to operate adaptable and flexible systems, such
as production plants in discrete manufacturing and process industries
or connected infrastructure systems such as energy and water grids.
The need for more flexibility in operation grows with a higher variety
of products, smaller lot sizes, and fluctuating markets. Despite an
increasing degree of automation, there are still many decisions to be
made by human operators in a short time that target various aspects
such as cost, time, and quality. Specific data- and simulation-driven
operator support applications can help to handle the task [Boschert et
al. 2018], [Rosen et al. 2018]. A digital twin, that is, a virtual replica of
the physical system, connects data from different sources and models
from different hierarchies. It can form the core of intelligent operator
assistance systems [Rosen et al. 2019].

Today, integrating simulation and digital twin approaches into
operation support for complex systems is still a time-consuming and
resource-intensive, typically customer- and project-specific task. You
need automation, software, simulation, and domain experts to do this.
Therefore, we want to present a technical reference architecture that
can support the development of such assistance systems. By using the
reference architecture, operator assistance systems can be easily
realized on a low-code and low-modeling base and development time
can be reduced significantly.

One of the main challenges for the development of an operator
assistance CES is that it requires a high degree of flexibility: the CES
provides different applications such as virtual monitoring and short-
term prediction and optimization on different levels such as machine,
line, and factory level, and can run in different situations such as
normal operation and failure situations. This imposes the need for
flexible, situation-specific collaboration of calculation modules and
multiple use of data and models.

The concept of a reference architecture for an operator assistance
CES will be outlined in the following. For more details, the reader is
referred to [Zhou et al. 2019].

3.3.2 Design Decisions

We make the following key design decisions for the operator
assistance reference architecture:

 Scope: We consider simulation-based assistance systems for the
operation of adaptable and flexible factories.

Simulation can help to
optimize production

Reference architecture
as enabler for low-code

assistance system
development

Assistance systems need
to be very flexible

Reference architecture
contains execution core
and collections of basic

elements

3.3 Reference Architecture for Operator Assistance Systems 59

 Coverage: We cover a common core with generic metamodels and
an execution engine to run configurable workflows of evaluations
and an extendible collection of re-usable data interfaces,
evaluations, and user interface (UI) elements.

 Extensibility: The common core is limited to black box reuse in
order to guarantee interoperability of services in arbitrary
workflows, for different assistance functions, across different
plants, and over time. Full white box extensibility is provided for
the collections of data interfaces, evaluations, and UI elements.

 Granularity and viewpoints: A detailed technical architecture is set
up since we aim to implement the architecture as a software
framework for the future development of operator assistance
systems.

3.3.3 Technical Reference Architecture

The technical reference architecture which is finally derived from the
design decisions described in Subsection 3.3.2 and additional
requirements implements a concept of a service-oriented
architecture, model-based data structures and flows, and generic but
customizable UI components.

System functions are divided into encapsulated, exchangeable, and
configurable sub-functions. These sub-functions or services can be
recombined in many ways to create various workflows which offer
different assistance functions. For seamless data exchange between
all services, a common component-based metamodel is introduced
which is most notably suited for model-based services such as
simulation and optimization.

The architecture for operator assistance systems can be divided
into three horizontal layers: the data layer, the service layer, and the
UI layer, see Figure 3-4. The technical reference architecture provides
generic implementations of the core elements in this architecture: the
execution engine calling services as specified in workflows, a UI
backend, and a data management based on metamodels for
component libraries, plants, and workflows.

Modular, service-
oriented architecture
and configurable
workflows

60 Architectures for Flexible Collaborative Systems

Fig. 3-4: General technical architecture for an operator assistance system

When implementing a specific operator assistance system, these
reference architecture elements form the base. Starting from there,
firstly, unspecific or domain-specific frontloading and, finally, project-
or customer-specific engineering is performed, see Figure 3-5.
Implementing new services or new adapters for existing
computational modules such as simulation tools is part of the
frontloading. With an increasing number of domains and projects
addressed, the reference architecture becomes more elaborate and
the collection of reusable services grows. The effort is shifted away
from software implementation towards model engineering and
system configuration: specifying domain libraries, setting up
workflows and data contracts, generating plant models, and
configuring UIs. The complete development process is further
facilitated by defined process steps, toolkits, and many templates.

Fig. 3-5: General steps of the reference-based development process

Reuse of reference
architecture reduces

development effort

3.3 Reference Architecture for Operator Assistance Systems 61

3.3.4 Workflow of Services and Data Flow

The reference architecture strictly separates the logical and
sequential workflow of services and the data flow during runtime
execution, as shown for a generic workflow in Figure 3-6. There is no
bilateral data exchange between the services. Each service
communicates only with the current runtime model and does not
know about the source and the destination of any specific variable
value. This ensures consistency of data during the whole workflow,
simplifies configuration of workflow sequences and data contracts,
and guarantees flexibility to replace individual services.

Fig. 3-6: Workflow (upper part) and data flow (lower part)

3.3.5 Application Example for an Adaptable and Flexible
Factory

The technical reference architecture presented was implemented as a
software framework which was successfully applied in the
development of a prototypical assistance system for the operation of
an adaptable and flexible factory. The prototype system integrates
data from an enterprise resource planning (ERP) system, from a
manufacturing execution system (MES), and machine data via the
standard communication protocol OPC UA. It contains functions for
virtual monitoring of the production, online calibration of the models,
detection of any failures and deviations, prediction of critical
situations such as bottlenecks, and job shop and flow shop schedule
optimization. Figure 3-7 shows the workflows of three of these
functions and illustrates how services are reused and re-combined to

Collaboration of services
via common runtime
model

Reduced development
cost for operator
assistance in adaptable
and flexible factories

62 Architectures for Flexible Collaborative Systems

offer various functions. Development time was significantly reduced
compared to a project- and task-specific development by using the
reference architecture as the starting point and core of the system.

Fig. 3-7: Workflows for three different assistance functions

3.4 Checkable Safety Cases for Architecture Design

In this section, we introduce a method for safety argumentation in the
design of system and reference architectures. Safety requirements are
crucial for CESs and CSGs that may harm people, equipment, or the
environment. Adaptable and flexible factories are a typical example of
safety-critical systems. Our goal is to support the construction and
maintenance of the argumentation that the system architecture of a
flexible system satisfies the system safety properties. To this end, we
introduce checkable safety cases.

Systems implementing safety functionality that will operate safely
in a given operational context must be proven. To this end, more and
more safety standards nowadays, such as ISO 26262 [ISO 2018] in the
automotive industry, recommend the creation of a safety case. A
safety case is a collection of documents entailing an implicit, well-
reasoned argument that the system is acceptably safe to operate in a
given context, based on certain evidence [Bloomfield and Bishop
2010]. To enable the automated manipulation of safety cases, several
approaches for modeling safety cases have been proposed in
literature, the most prominent approaches being based either on the
Structured Assurance Case Metamodel (SACM) [SACM 2019] or the
Goal Structuring Notation (GSN) [GSN 2018].

The validity of the safety case models must be revised every time
there is a change in the system specification. However, currently, such
validity revision is done manually, implying a considerable amount of
effort and costs. Given the frequent changes to architectural

3.4 Checkable Safety Cases for Architecture Design 63

structures of flexible systems, there is a need to automate validity
checks for safety cases. To this end, we introduce checkable safety
case models with the scope of supporting safety engineers in
maintaining valid safety case models given changes in other system
models. Checkable safety case models are a special type of safety case
model that is integrated with system models, which are amenable to
automated checks.

To this end, we extend the SPES_XT modeling framework with a
new system view, that is, the safety case view. The safety case models
are to be integrated with the other system models corresponding to
different viewpoints (e.g., requirements viewpoint, logical viewpoint).
The safety case model is to be modeled alongside the system
development and will be maintained to ensure consistency with other
system models during the entire system lifecycle.

To support safety engineers in modeling checkable safety cases,
we propose a set of checkable safety case patterns. Similar to design
patterns, safety case patterns are templates for re-occurring safety
fragments that can be reused in different safety cases [Kelly and
McDermid 2010]. These templates entail placeholders for system-
specific information which are to be filled when the pattern is used in
a certain safety case. We extend the concept of safety case patterns
with checkable safety case patterns. Checkable safety case patterns
come with a set of automated checks that may be performed on the
safety case fragment obtained after the instantiation of the pattern.
Among other things, the safety case of a system must entail an
argument about the satisfaction of safety properties by the system
architecture. As reference architectures are blueprints to be used for
modeling system architectures, for each such reference architecture
we provide a pattern for arguing about the fact that the reference
architecture satisfies certain safety properties. When the architecture
of a certain system uses a certain reference architecture as a blueprint,
the corresponding safety case checkable pattern can be used to model
the safety argumentation for the constructed system architecture.

3.4.1 Checkable Safety Case Models – A Definition

To support safety engineers in the cumbersome, time-consuming
process of keeping safety case models consistent with system models
(e.g., system architecture models), we propose checkable safety cases.

Extension of the
SPES_XT modeling
framework

Modeling checkable
safety case fragments
for reference
architectures

Safety case models on
which automated
checks can be executed

64 Architectures for Flexible Collaborative Systems

The validity of checkable safety case models is checked by the
automatic execution of sanity checks, based on explicit specification
of semantics of safety case elements, and the integration of the safety
case model with system models and automated verification
approaches [Cârlan et al. 2019], see Figure 3-8.

Fig. 3-8: Safety argumentation based on contract-based verification

Given a change in a system model that is traced from the safety case
model, consistency checks between the safety case model and the
system models are automatically executed. These consistency checks
assess whether the argumentation is still valid considering the
changes in the system model that the argumentation applies to. Then,
the safety engineer must update the safety argument in accordance
with the changes, while also generating the evidence required. Given
that system models are amenable to automated checks, the results of
such checks can be used as evidence in safety cases. Therefore, we
integrate safety case models with such automated verification
approaches, thus enabling 1) automatic detection of stale evidence,
and 2) automatic integration of new verification results as evidence,
while assessing the impact of the new evidence on the confidence in
the overall argumentation.

Checkable safety case models entail both checkable and non-
checkable argumentation fragments that are connected with each
other. On the one hand, non-checkable argumentation fragments
entail regular safety case elements, as defined by the Goal Structuring
Notation (GSN) — a standardized graphical notation for describing
safety cases and currently the most frequently used language for

Checkable safety cases
entail checkable and

non-checkable
argumentation

fragments

3.4 Checkable Safety Cases for Architecture Design 65

modeling safety cases [GSN 2018]. On the other hand, checkable safety
case fragments entail a set of interconnected specialized safety case
elements. Specialized safety case elements extend GSN, with each
specialized element representing a reoccurring claim in safety cases,
thus having certain semantics. Specialized safety case elements
reference certain types of system model elements or entail metadata
regarding certain verification approaches. They may be connected to
each other only via specialized connections, which extend the
connections specified in GSN. In contrast to GSN-based connection
types that ensure the correct construction of arguments from a
semantic point of view, specialized connections enable intrinsic
checks on safety case models, which ensure the construction of
semantically correct arguments.

3.4.2 Checkable Safety Case Patterns

To support safety engineers in modeling checkable safety cases, we
propose an exemplary set of checkable safety case patterns.

While the argumentation structure of checkable safety case
patterns is based on state-of-the-art patterns, the connected elements
the structure contains are specializations of regular safety case
elements. The specialized safety case elements have variable
declarations, which are placeholders for a reference to a certain type
of system element or verification information. The variables are to be
instantiated with specific references when the pattern is used to
model the safety case of a certain system. The relationships among
specialized safety case elements are described via dedicated
connections, thus enabling intrinsic consistency checks, which
prohibit pattern misuse — a specialized safety case element may be
connected only to certain types of other specialized safety case
elements.

A checkable safety case pattern is specified as presented in the
following [Kelly and McDermid 2010]. We extend the specification of
regular safety case patterns with information specific to checkable
safety case patterns:

 Name: the identifying label of the pattern giving the key principle
of its argument

 Intent: the goal the pattern is trying to achieve
 Motivation: the reasons that gave rise to the pattern and the

associated checks
 Structure: the structure of the argument in GSN

Checkable safety case
patterns enhance state-
of-the-art patterns to
enable automated
checks

66 Architectures for Flexible Collaborative Systems

 Participants: each element in the pattern and its description; here
we differentiate between plain SACM-based elements and
specialized elements — for the specialized elements, the
corresponding metadata is explained

 Collaborations: how the interactions of the pattern elements
achieve the desired effect of the pattern; here we explain the
specialized connections among the specialized elements and how
the specialized safety case elements will be connected with the
regular elements

 Applicability: the circumstances under which the pattern could be
applied, that is, the necessary context

 Consequences: what remains to be completed after pattern
application

 Implementation: how the pattern should be applied; here we
discuss how the safety case elements are to be instantiated

The following documentation information is specific to checkable
safety case patterns:

 Prerequisites: regarding the existence of certain system models or
of certain verification tools

 Automated checks: the checks that can be executed on the safety
case fragments produced after the instantiation of the pattern

3.4.3 An Example of Checkable Safety Case Patterns

In Figure 3-9, we present part of the checkable safety case fragment
concerning the satisfaction of a certain safety property by a system
architecture built in a contract-based manner. The system
architecture entails assume-guarantee (A/G) contracts that formalize
safety properties. The properties are satisfied if: 1) the contracts of
the architecture model are correctly refined by the contracts of the
components within the architecture model (claim expressed as
Refinement Check specialized goals); 2) the contracts of the
architecture components are satisfied (claim expressed as
Compatibility Check specialized goals); and 3) each architecture
component correctly implements its contracts (claim expressed as
Implementation Check specialized goals). Each claim in the argument
is a specialized safety case element, with a certain meaning and with
certain references to system model elements. Given specialized
connections between specialized elements, intrinsic consistency
checks are enabled. For example, elements of the type CBD Strategy
may be supported only by goals of the type Compatibility Check,

Arguing about the
satisfaction of a certain

safety property by an
architecture

3.4 Checkable Safety Cases for Architecture Design 67

Refinement Check, and Implementation Check, ensuring the validity of
the argument structure. The CBD Strategy references a certain
component in the system architecture that will implement the safety
contract. Consequently, to ensure the validity of the argumentation,
we check whether the sub-goals of the type Implementation Check
supporting CBD Strategy reference only children of the component
referenced by the strategy. The validity of claims of the type
Implementation Check is checked via an automated verification tool
able to check architecture models annotated with contracts — a
model checker. In the example presented in Figure 3-9 the model
checker used is NuSMV [Cimatti et al. 2002].

Fig. 3-9: GSN-based safety case fragment

68 Architectures for Flexible Collaborative Systems

In Figure 3-9 a GSN-based safety case fragment is shown arguing
about the verification via NuSMV model checker of the system
architecture model against system safety properties specified as
contracts. Due to space constraints, the figure displays only part of the
argumentation, namely the argumentation legs regarding the correct
implementation of the subcomponents of the architecture.

In conclusion, we propose the creation of checkable safety case
patterns that argue about the implementation of safety properties by
a system architecture which may also be based on a certain reference
architecture. Given the specialized safety case elements contained in
the pattern and their integration with system models and verification
tools, the validity of the argumentation fragment resulting from the
pattern instantiation is automatically checked if there is a change in
the corresponding system architecture model. These automated
checks are especially needed if there are frequent changes.

3.5 Conclusion

In this chapter, we presented a general method for designing
reference architectures and deriving system architectures for CESs
and their CSGs in order to support reuse of system architectures. In
addition, the method can be used to design a CSG and the interfaces of
collaborating CESs within this CSG. In a next step, the architectures of
the CES can be refined based on the reference architecture. This
enables the integration of CESs of different organizations within one
CSG. As an application example, we provided a short overview of the
reference architecture for adaptable and flexible factories, detailed by
a CES implementing an operator assistance system. The technical
reference architecture for this CES shows the reuse potential for
various operator assistance systems and provides a promising basis
for future systems.

In order to consider non-functional requirements in the system
architecture, we also introduced checkable safety case models. These
checkable safety cases support maintenance of the validity of safety
case models and keep them consistent with system architecture. This
method may be used for the construction of the safety argumentation
system architectures based on reference architectures.

In addition to the methods presented, we also developed
prototypical tools which support and facilitate the application of the
methods. The methods and reference architectures presented in this
chapter have been applied successfully but should nevertheless be

3.6 Literature 69

applied to other CESs and their CSGs to prove their benefits. Future
research may extend them beyond their current scope, for example,
by involving artificial intelligence as design support as well as
considering artificially intelligent CESs and CSGs in particular.

3.6 Literature
[Bloomfield and Bishop 2010] R. Bloomfield, P. Bishop: Safety and Assurance Cases:

Past, Present and Possible Future – an Adelard Perspective. In: Making Systems
Safer, Springer, London, 2010, pp. 51-67.

[BMWi 2017a] BMWi: Platform Industrie 4.0 – Aspects of the Research Roadmap. In
Application Scenarios. https://www.plattform-i40.de/I40/Redaktion/EN
/Downloads/Publikation/aspects-of-the-research-roadmap.pdf; accessed on
07/07/2020.

[BMWi 2017b] BMWi: Platform Industrie 4.0 – Fortschreibung der
Anwendungsszenarien der Plattform Industrie 4.0. https://www.plattform-
i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-
anwendungsszenarien.html; accessed on 07/07/2020 (available in German only).

[Böhm et al. 2018] B. Böhm, M. Zeller, J. Vollmar, S. Weiß, K. Höfig, V. Malik, S.
Unverdorben, C. Hildebrandt: Challenges in the Engineering of Adaptable and
Flexible Industrial Factories. In: I. Schaefer, L. Cleophas, M. Felderer (eds.):
Workshops at Modellierung 2018, Modellierung 2018, Braunschweig, Germany,
February 21–23, 2018, pp. 101–110.

[Böhm et al. 2020] B. Böhm, J. Vollmar, S. Unverdorben, A. Calà, S. Wolf: Holistic Model-
Based Design of System Architectures for Industrial Plants. In: VDI – Verein
Deutscher Ingenieure e.V. (eds.): Automation 2020, Baden-Baden, 2020.

[Boschert et al. 2018] S. Boschert, R. Rosen, C. Heinrich: Next Generation Digital Twin.
In: Proceedings of the 12th International Symposium on Tools and Methods of
Competitive Engineering — TMCE 2018, Delft, 2018, pp. 209-218.

[Cârlan et al. 2019] C. Cârlan, V. Nigam, S. Voss, A. Tsalidis: ExplicitCase: Tool-Support
for Creating and Maintaining Assurance Arguments Integrated with System Models.
In: Proceedings of IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), 2019, pp. 330-337.

[Cimatti et al. 2002] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M.
Roveri, R. Sebastiani, A. Tacchella: NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In: Computer Aided Verification. CAV 2002. Lecture Notes in
Computer Science, vol 2404. Springer, Berlin, Heidelberg.

[de La Vara et al. 2016] J. L. de La Vara, M. Borg, K. Wnuk, L. Moonen: An Industrial
Survey of Safety Evidence Change Impact Analysis Practice. In: IEEE Transactions
on Software Engineering, 42(12), 2016, pp: 1095-1117.

[GSN 2018] Assurance Case Working Group. Goal Structuring Notation Community
Standard (Version 2). https://www.goalstructuringnotation.info/; accessed on
01/11/2020.

 [ISO/IEC/IEEE 42010 2011] International Organization for Standardization,
International Electrotechnical Commission, Institute of Electrical and Electronics
Engineers (eds.): Systems and Software Engineering - Architecture Description.

https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.goalstructuringnotation.info/
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.pdf

70 Architectures for Flexible Collaborative Systems

Geneva, s.l., New York, http://ieeexplore.ieee.org/servlet/opac?punumber=
6129465; accessed on 04/04/2020.

[ISO 2018] International Organization for Standardization (ISO): 26262: Road Vehicles
- Functional Safety.

[Kelly and McDermid 2010] T. Kelly and J. McDermid, "Safety case patterns-reusing
successful arguments," IEE Colloquium on Understanding Patterns and Their
Application to Systems Engineering (Digest No. 1998/308), London, UK, 1998, pp.
3/1-3/9.

[Lin et al. 2017] S.-W. Lin, M. Crawford, S. Mellor (Eds.): The Industrial Internet of
Things Volume G1: Reference Architecture. Industrial Internet Consortium (IIC)
Technology Working Group, 2017. http://www.iiconsortium.org/
IIC_PUB_G1_V1.80_2017-01-31.pdf; accessed on 07/07/2020.

[Rosen et al. 2018] R. Rosen, S. Boschert, A. Sohr: Next Generation Digital Twin. In: atp
magazin, Atp-Mag. 60, 2018, pp. 86–96.

[Rosen et al. 2019] R. Rosen, J. Jaekel, M. Barth, O. Stern, R. Schmidt-Vollus, T.
Heinzerling, P. Hoffmann, C. Richter, P. Puntel Schmidt, C. Scheifele: Simulation und
Digitaler Zwilling im Engineering und Betrieb automatisierter Anlagen -
Standpunkte und Thesen des GMA FA 6.11. In: VDI – Verein Deutscher Ingenieure
e.V. (eds.): Automation 2019, Baden-Baden, 2019 (available in German only).

[SACM 2019] Structured Assurance Case Metamodel. URL
https://www.omg.org/spec/SACM/About-SACM/; accessed on 04/11/2020.

[Unverdorben et al. 2019] S. Unverdorben, B. Böhm, A. Lüder: Concept for Deriving
System Architectures from Reference Architectures. In: 2019 IEEE International
Conference on Industrial Engineering and Engineering Management: IEEM2019:
Dec. 15-18, Macau/IEEE International Conference on Industrial Engineering and
Engineering Management - [Piscataway, NJ]: IEEE, 2019, pp. 19-23.

[VDI/VDE 3695 2010] Association of German Engineers (VDI), Association for
Electrical, Electronic & Information Technologies (VDE): VDI 3695 Blatt 3 -
Engineering of Industrial Plants - Evaluation and Optimization - Subject Methods.
2010.

[Zhou et al. 2019] Y. Zhou, T. Schenk, M. Allmaras, A. Massalimova, A. Sohr, J. C.
Wehrstedt: Flexible Architecture to Integrate Simulation in Run-Time
Environment. Presented at the Automation Congress 2019, VDI, Baden-Baden,
2019.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://ieeexplore.ieee.org/servlet/opac?punumber=6129465
http://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
https://www.omg.org/spec/SACM/About-SACM/
http://creativecommons.org/licenses/by/4.0/
http://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=6129465

	3 Architectures for Flexible Collaborative Systems
	3.1 Introduction
	3.2 Designing Reference Architectures
	3.2.1 Method for Designing Reference Architectures
	3.2.2 Application Example: Reference Architecture for Adaptable and Flexible Factories

	3.3 Reference Architecture for Operator Assistance Systems
	3.3.1 Simulation-Based Operator Assistance
	3.3.2 Design Decisions
	3.3.3 Technical Reference Architecture
	3.3.4 Workflow of Services and Data Flow
	3.3.5 Application Example for an Adaptable and Flexible Factory

	3.4 Checkable Safety Cases for Architecture Design
	3.4.1 Checkable Safety Case Models – A Definition
	3.4.2 Checkable Safety Case Patterns
	3.4.3 An Example of Checkable Safety Case Patterns

	3.5 Conclusion
	3.6 Literature

