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Architectures for Flexible 
Collaborative Systems 

Collaborative systems are characterized by their interaction with other systems in 
collaborative system groups in order to reach a common goal. These systems interact 
based on fixed rules and have the ability to change structurally, if necessary. Changes in 
the collaboration are usually triggered from outside and are time-discrete with a rather 
wide time scale. The architectures of these systems and system groups must support 
flexibility and adaptability at runtime while also ensuring specific qualities, although 
these changes and their consequences cannot be fully foreseen in all combinations at 
design time. 

In order to enable knowledge preservation and reuse for the design of system 
architectures for flexible collaborative systems and system groups, we present a method 
for designing reference architectures for systems and system groups. For this approach, 
we present an example of a reference architecture for an operator assistance system. To 
adequately consider safety requirements during the design, we further introduce a 
method which adapts safety argumentation for flexible collaborative systems to changes 
in their specification or operating context. 
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3.1 Introduction 

Designing architectures for flexible collaborative systems and their 
system groups is still a challenge due to the novelty of these systems 
and a lack of proven methods that address their specific requirements 
[Böhm et al. 2018]. This applies in particular to the design of system 
groups and the systems collaborating within these groups. 

Flexible collaborative systems assume a fixed collaboration that 
adheres to a fixed set of rules. Changes are usually triggered not from 
the system itself but, for example, by an operator of this system. These 
changes are not as frequent as in dynamically coupled or adaptive 
systems. Typical examples of flexible collaborative systems are 
adaptable and flexible factories. 

In Section 3.2, we provide a method for designing reference 
architectures for collaborative embedded systems (CESs) and 
collaborative system groups (CSGs). Such reference architectures can 
then be used as blueprints for deriving system architectures for 
specific systems. In addition, they can be used to design specific CSGs 
and collaborating CESs at an interface level to allow for independent 
design and development of the CESs and CSGs but enable their 
collaboration. We then apply this approach to adaptable and flexible 
factories, and briefly present the resulting high-level logical reference 
architecture. This overview is detailed in Section 3.3 by applying the 
approach to one of the CESs identified, a simulation-based operator 
assistance system. 

For numerous CESs and their CSGs, safety requirements are crucial 
and must be guaranteed. Our proposed safety case modeling approach 
in Section 3.4 supports the execution of automatic consistency checks 
between the safety case model and the system architecture. This 
approach can be used to prove that the architecture of a system 
satisfies the required safety properties. It ensures that, in the event of 
changes to the system specification or the operating context, the 
logical architecture still fulfills the safety requirements.  

Finally, in Section 3.5, we provide conclusions and give an outlook 
on future work. 

3.2 Designing Reference Architectures 

A typical approach for designing architectures for systems starts with 
eliciting specific requirements. This step is followed by identifying 
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functions needed. Based on these functions, we create a logical 
architecture and, finally, a problem-specific technical architecture. 
This procedure must be repeated from scratch for each specific 
system. Therefore, in particular for organizations that frequently 
design similar systems, reuse of existing solutions promises a 
reduction in effort and the possibility to make experiences and 
knowledge available to future projects or even across organizational 
borders. Various reuse approaches can be classified. For example, 
VDI/VDE 3695 defines, among other things, reference models or 
architectures as one possible way of enabling reuse of artifacts within 
the engineering of systems [VDI/VDE 3695 2010]. 

Reference architectures are a reuse approach for organizations 
that expect to build similar systems in the future and already have 
good knowledge of these systems. They are used as blueprints for 
future systems and may be adapted for specific systems. In addition, 
reference architectures may be also applied when designing specific 
CSGs (e.g., for the adaptable and flexible factory) to define the 
necessary roles, system, and collaboration functions of CESs but also 
protocols, data structures, etc. to enable collaboration within this CSG. 
Different organizations may subsequently use this reference 
architecture to design CESs which may collaborate in these CSGs. 

In this section, we present a method for designing reference 
architectures for CESs and CSGs. In addition, we give a short insight 
into a reference architecture for adaptable and flexible factories. This 
reference architecture is based on a general reference architecture for 
CESs and CSGs. 

A reference architecture is defined as “the outcome of applying the 
architectural framework to a class of systems to provide guidance and 
to identify, analyze and resolve common, important architectural 
concerns. A reference architecture can be used as a template for 
concrete architecture of systems of the class” [Lin et al. 2017]. 
Complementing this, an architecture framework is defined as 
“conventions, principles and practices for the description of 
architectures established within a specific domain of application 
and/or community of stakeholders” [ISO/IEC/IEEE 42010 2011]. The 
SPES_XT modeling framework (see Chapter 2) is an example of such 
an architecture framework and is used in the following for designing 
reference architectures as well as system architectures. 

Definition of reference 
architecture and 
architecture framework 
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3.2.1 Method for Designing Reference Architectures 

The general procedure for designing reference architectures and 
deriving system architectures from reference architectures is shown 
in Figure 3-1. While a reference architecture is created only once, 
numerous system architectures can be derived from a single 
reference architecture. The transitions between the viewpoints in 
Figure 3-1 show the general procedure for designing reference and 
system architectures. 

Fig. 3-1: General approach for designing reference and system architectures 

In addition, the role of non-functional requirements (e.g., 
requirements related to safety), which are elicited in the 
requirements viewpoint, is highlighted. In some cases, these 
requirements cannot be assigned to single functions or to logical or 
technical components and should therefore be revised regularly 
during the design of reference as well as system architectures — this 
is indicated by the arrows related to the non-functional requirements 
in the figure above. In Section 3.4, we provide a method for integrating 
safety cases into reference or system architectures to provide an 
approach for safety-related requirements. 

Finally, in Figure 3-1, the arrows from the reference architecture 
viewpoints to the system architecture viewpoints indicate the reuse 
of design results for designing system architectures. However, it may 
be necessary to adapt or complement the reference architecture 
content. 
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As a first and critical step within the requirements viewpoint for 
defining reference architectures, we define the scope of systems for 
which the reference architecture will be defined. This means that we 
need to forecast the future systems for which we want to use the 
reference architecture as a blueprint. 

Next, we determine which kind of reference architecture we want 
to design. There are several key design decisions that have to be taken, 
for example: 

 Coverage: Reference architectures can, for example, cover a 
common core of all considered systems, offer combinable and 
reusable building blocks, or provide a solution that will cover all 
requirements of all considered systems and is then tailored to fit 
to one specific system. 

 Extensibility: Reference architectures may, for example, allow 
white box extensibility, which means that its components can be 
fully adapted. On the other hand, only black box reuse that does 
not allow any internal modifications may be allowed. Other forms 
include grey box reuse, which is a mixture of both. 

 Granularity: The level of granularity of the reference architecture 
must also be decided. The goal is to be as detailed as possible 
while still covering the future system architectures for the 
intended set of systems. A reference architecture may, for 
example, define only interfaces of systems or components or 
provide a full detailing of all systems. 

 Viewpoints: Consequently, the reference architecture may define 
views of the requirements viewpoint only, or also comprise views 
of the functional, logical, technical, and other viewpoints. While a 
reference architecture that covers all viewpoints would appear to 
be the best option, it also allows less changeability or requires 
more effort if there are frequent changes. 

These key design decisions mainly depend on the similarity of the set 
of systems and their requirements. 

Subsequently, further requirements are elicited for the reference 
architecture based on the decisions made above. In addition, even 
requirements of the set of selected systems that are not implemented 
by the reference architecture may have to be considered to prepare 
their later implementation. For collaborative systems in particular, 
the CSG must be considered as well as the CESs — for both CSG and 
CES design. This results from the general concept described in 
Chapter 2. If a CES is to contribute to different CSGs, all relevant CSGs 
have to be involved. 

Scope definition 
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On this basis, we then extract the necessary functions of our 
reference architecture while also considering the collaboration and 
system functions for both CSGs and CESs. It is important to keep the 
relations between requirements and functions, and further on, to 
logical and technical components, as traces. These traces allow us to 
check, for example, whether all requirements are implemented by 
functions or logical and technical components. Vice versa, in the case 
of changes to the technical solution, the traces also enable us to check 
whether all requirements are still fulfilled. 

Based on the functional architecture, we create a logical 
architecture for the set of selected systems. Within this logical 
architecture, the CSGs are usually logical components and are 
composed by the CESs. 

Finally, a technical reference architecture may be created. Since 
CSGs are virtual, the collaboration and system functions have to be 
implemented by the CESs. For all architecture viewpoints, it is crucial 
to document design decisions and trace the relationships between the 
different viewpoints and between the elements in the viewpoints. We 
then refine any viewpoints as far as possible. 

Once the reference architecture is created, we can use it to derive 
system architectures for future systems. Again, we need to elicit 
requirements but now for a specific system we want to build. We then 
compare these requirements with the requirements for our reference 
architecture and identify similarities as well as differences. 
Subsequently, we assess these similarities and differences while 
keeping in mind the parameters for our reference architecture. By 
using the traces between all architectural components, we can then 
customize the reference architecture by following the traces and 
adjusting the elements with divergent or refined requirements — if 
our extensibility concept permits these adaptions. In addition, we 
have to integrate new requirements which have not been considered 
in the reference architecture but are needed for the specific system 
[Unverdorben et al. 2019]. 

Example 3-2: Using a Reference Architecture as a Template 
Imagine a reference architecture for a factory which includes a 
requirement to display all alarm data to operators to allow them to 
recognize critical situations and ensure smooth production. However, for 
one specific factory, the data will be analyzed first to identify critical 
situations and only decision-relevant data will be displayed to the 
operators. 

Functional architecture 

Logical architecture 

Technical architecture 
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Since just one requirement has changed, we still want to use the reference 
architecture for this factory. Therefore, we identify the changed 
requirement in the reference architecture and follow the traces to related 
requirements (e.g., alarms will be displayed in a flat list), functions, and 
logical and technical components. In our example, we find that all 
requirements dedicated to the data collection are still applicable and the 
related functions and logical and technical components can remain 
unchanged. However, the requirements that address data preparation for 
the operator must be replaced by, firstly, data analysis and, secondly, an 
adapted user interface for the operator. This affects the related functions 
but also the logical and technical components. For example, an additional 
data analysis function is introduced which is assigned to a logical data 
analysis component. In the technical solution, this logical component is 
realized by an additional software component. 

Note that any changes to the original reference architecture during 
derivation of a system architecture must be reflected on carefully 
since they may indicate improvements for the reference architecture. 
Thus, continuous feedback from system architecture design to 
reference architecture design is important for keeping the reference 
architecture up to date. In the case of changes to the reference 
architecture, there must also be an update concept for existing 
systems based on a prior version of the reference architecture. 

To use the method described above successfully, tool support for 
modeling reference and system architectures is useful. [Böhm et al. 
2020] introduces a modeling tool which implements this method. 

3.2.2 Application Example: Reference Architecture for 
Adaptable and Flexible Factories 

For adaptable and flexible factories, we created a reference 
architecture using the method described above. The focus is on core 
requirements and the reference architecture must cover the 
requirements, functional, and logical viewpoints. Since we want to be 
independent from any specific technical solution, the objective is not 
a technical reference architecture. 

The adaptable and flexible factory was already introduced in 
Chapter 1. In order to extend the requirements for such a factory, we 
used the application scenarios described in [BMWi 2017a] and [BMWi 
2017b] as a basis: the main goal of the factory is to produce products. 
Incoming product orders must be analyzed in terms of required 
capabilities and compared with available capabilities within and, 
optionally, across factories (see also Section 6.4.2). The factory might 
need to reconfigure its production and, eventually, produces the 
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product. Besides this basic production process, we assumed that a 
need for high capacity utilization and guaranteed delivery dates 
requires production planning. Other goals of the factory are 
optimization of production, integrated maintenance, collaboration in 
marketplaces, and continuous development of its product portfolio. 

In addition to the application scenarios, requirements arose from 
the use cases described in this book and the concepts presented in 
Chapter 2 as guiding principles. On this basis, we designed a general 
reference architecture for CESs and their CSGs, which not only 
considers the general concepts but also refines, for example, 
collaboration and system functions and, subsequently, the logical 
architecture. 

We then created our reference architecture for adaptable and 
flexible factories. Figure 3-3 shows a basic diagram of the logical 
reference architecture which presents the CSGs identified, which are 
derived from the base CSG at the top. 

Fig. 3-3: Refinement of CSG for adaptable and flexible factories 

The CSGs within the reference architecture for adaptable and flexible 
factories have the following goals and define, accordingly, the 
following functions: 

 ProductionCSG: The goal of this CSG is the manufacture of a 
product specified within a production order. For this purpose, it 
realizes functions for analyzing incoming product orders with 
respect to producibility and additional constraints such as 
delivery dates, price, etc. It also contains functions, for example, 
for maintaining a production plan for this product, tracking the 
production, and collecting data for operation control. 

 ProductionOptimizationCSG: The main goal of this CSG is to 
optimize the production of the factory. Therefore, it realizes 
operator support functions—for example, detecting bottlenecks, 
failures, or unused capacities in production—and deduces 
measures based on these observations. A close interaction 
between this CSG and the operator is crucial and may be realized 
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by an operator assistance system as part of this CSG. This CES is 
described in more detail in Section 3.3. 

 MaintenanceCSG: In order to keep the factory productive and in a 
good state, this CSG defines functions related to preventive and 
reactive maintenance, as well as maintenance planning and 
implementation. 

 MarketplaceCSG: This CSG ensures collaboration between 
adaptable and flexible factories by offering production 
capabilities available in the factory and requesting external 
capabilities via marketplaces. 

 ProductPortfolioCSG: The goal of this CSG is the continuous 
development of the factory in order to, for example, reach a high 
capacity utilization. For this purpose, it combines functions for 
analyzing missing production functions according to recent 
product orders, detecting possible improvements (e.g., based on 
current bottlenecks), and suggesting corresponding measures, 
etc. 

For these CSGs as well as for CESs within the adaptable and flexible 
factory, the logical architecture was detailed further. 

We also used the reference architecture for a factory model 
demonstrator to derive a specific logical system architecture and to 
define a technical architecture on top. This pilot showed that the 
reference architecture is a good basis for deriving system 
architectures, provided that the underlying general concept is 
applicable. 

3.3 Reference Architecture for Operator Assistance 
Systems 

In Subsection 3.2.2, we identified a CSG for production optimization 
for adaptable and flexible factories. A central CES contributing to this 
goal is an operator assistance system. It manages the collaboration of 
the various CESs in the CSG and offers an interface to the human 
operator. The CESs being handled by the operator assistance system 
comprise production machines providing data and they are controlled 
by the operator, planning and management tools, and additionally 
model- and data-based evaluation services such as simulation and 
optimization. These CESs must be combined dynamically in a context- 
and situation-specific manner. In this section, we now want to take a 
deep dive into a technical reference architecture for an operator 
assistance CES. 

Application to 
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3.3.1 Simulation-Based Operator Assistance 

It is a challenging task to operate adaptable and flexible systems, such 
as production plants in discrete manufacturing and process industries 
or connected infrastructure systems such as energy and water grids. 
The need for more flexibility in operation grows with a higher variety 
of products, smaller lot sizes, and fluctuating markets. Despite an 
increasing degree of automation, there are still many decisions to be 
made by human operators in a short time that target various aspects 
such as cost, time, and quality. Specific data- and simulation-driven 
operator support applications can help to handle the task [Boschert et 
al. 2018], [Rosen et al. 2018]. A digital twin, that is, a virtual replica of 
the physical system, connects data from different sources and models 
from different hierarchies. It can form the core of intelligent operator 
assistance systems [Rosen et al. 2019]. 

Today, integrating simulation and digital twin approaches into 
operation support for complex systems is still a time-consuming and 
resource-intensive, typically customer- and project-specific task. You 
need automation, software, simulation, and domain experts to do this. 
Therefore, we want to present a technical reference architecture that 
can support the development of such assistance systems. By using the 
reference architecture, operator assistance systems can be easily 
realized on a low-code and low-modeling base and development time 
can be reduced significantly. 

One of the main challenges for the development of an operator 
assistance CES is that it requires a high degree of flexibility: the CES 
provides different applications such as virtual monitoring and short-
term prediction and optimization on different levels such as machine, 
line, and factory level, and can run in different situations such as 
normal operation and failure situations. This imposes the need for 
flexible, situation-specific collaboration of calculation modules and 
multiple use of data and models. 

The concept of a reference architecture for an operator assistance 
CES will be outlined in the following. For more details, the reader is 
referred to [Zhou et al. 2019]. 

3.3.2 Design Decisions 

We make the following key design decisions for the operator 
assistance reference architecture: 

 Scope: We consider simulation-based assistance systems for the 
operation of adaptable and flexible factories. 
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 Coverage: We cover a common core with generic metamodels and 
an execution engine to run configurable workflows of evaluations 
and an extendible collection of re-usable data interfaces, 
evaluations, and user interface (UI) elements. 

 Extensibility: The common core is limited to black box reuse in 
order to guarantee interoperability of services in arbitrary 
workflows, for different assistance functions, across different 
plants, and over time. Full white box extensibility is provided for 
the collections of data interfaces, evaluations, and UI elements. 

 Granularity and viewpoints: A detailed technical architecture is set 
up since we aim to implement the architecture as a software 
framework for the future development of operator assistance 
systems. 

3.3.3 Technical Reference Architecture 

The technical reference architecture which is finally derived from the 
design decisions described in Subsection 3.3.2 and additional 
requirements implements a concept of a service-oriented 
architecture, model-based data structures and flows, and generic but 
customizable UI components. 

System functions are divided into encapsulated, exchangeable, and 
configurable sub-functions. These sub-functions or services can be 
recombined in many ways to create various workflows which offer 
different assistance functions. For seamless data exchange between 
all services, a common component-based metamodel is introduced 
which is most notably suited for model-based services such as 
simulation and optimization. 

The architecture for operator assistance systems can be divided 
into three horizontal layers: the data layer, the service layer, and the 
UI layer, see Figure 3-4. The technical reference architecture provides 
generic implementations of the core elements in this architecture: the 
execution engine calling services as specified in workflows, a UI 
backend, and a data management based on metamodels for 
component libraries, plants, and workflows. 

Modular, service-
oriented architecture 
and configurable 
workflows 
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Fig. 3-4: General technical architecture for an operator assistance system 

When implementing a specific operator assistance system, these 
reference architecture elements form the base. Starting from there, 
firstly, unspecific or domain-specific frontloading and, finally, project- 
or customer-specific engineering is performed, see Figure 3-5. 
Implementing new services or new adapters for existing 
computational modules such as simulation tools is part of the 
frontloading. With an increasing number of domains and projects 
addressed, the reference architecture becomes more elaborate and 
the collection of reusable services grows. The effort is shifted away 
from software implementation towards model engineering and 
system configuration: specifying domain libraries, setting up 
workflows and data contracts, generating plant models, and 
configuring UIs. The complete development process is further 
facilitated by defined process steps, toolkits, and many templates. 

Fig. 3-5: General steps of the reference-based development process 
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3.3.4 Workflow of Services and Data Flow 

The reference architecture strictly separates the logical and 
sequential workflow of services and the data flow during runtime 
execution, as shown for a generic workflow in Figure 3-6. There is no 
bilateral data exchange between the services. Each service 
communicates only with the current runtime model and does not 
know about the source and the destination of any specific variable 
value. This ensures consistency of data during the whole workflow, 
simplifies configuration of workflow sequences and data contracts, 
and guarantees flexibility to replace individual services. 

Fig. 3-6: Workflow (upper part) and data flow (lower part) 

3.3.5 Application Example for an Adaptable and Flexible 
Factory 

The technical reference architecture presented was implemented as a 
software framework which was successfully applied in the 
development of a prototypical assistance system for the operation of 
an adaptable and flexible factory. The prototype system integrates 
data from an enterprise resource planning (ERP) system, from a 
manufacturing execution system (MES), and machine data via the 
standard communication protocol OPC UA. It contains functions for 
virtual monitoring of the production, online calibration of the models, 
detection of any failures and deviations, prediction of critical 
situations such as bottlenecks, and job shop and flow shop schedule 
optimization. Figure 3-7 shows the workflows of three of these 
functions and illustrates how services are reused and re-combined to 
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offer various functions. Development time was significantly reduced 
compared to a project- and task-specific development by using the 
reference architecture as the starting point and core of the system. 

Fig. 3-7: Workflows for three different assistance functions 

3.4 Checkable Safety Cases for Architecture Design 

In this section, we introduce a method for safety argumentation in the 
design of system and reference architectures. Safety requirements are 
crucial for CESs and CSGs that may harm people, equipment, or the 
environment. Adaptable and flexible factories are a typical example of 
safety-critical systems. Our goal is to support the construction and 
maintenance of the argumentation that the system architecture of a 
flexible system satisfies the system safety properties. To this end, we 
introduce checkable safety cases. 

Systems implementing safety functionality that will operate safely 
in a given operational context must be proven. To this end, more and 
more safety standards nowadays, such as ISO 26262 [ISO 2018] in the 
automotive industry, recommend the creation of a safety case. A 
safety case is a collection of documents entailing an implicit, well-
reasoned argument that the system is acceptably safe to operate in a 
given context, based on certain evidence [Bloomfield and Bishop 
2010]. To enable the automated manipulation of safety cases, several 
approaches for modeling safety cases have been proposed in 
literature, the most prominent approaches being based either on the 
Structured Assurance Case Metamodel (SACM) [SACM 2019] or the 
Goal Structuring Notation (GSN) [GSN 2018]. 

The validity of the safety case models must be revised every time 
there is a change in the system specification. However, currently, such 
validity revision is done manually, implying a considerable amount of 
effort and costs. Given the frequent changes to architectural 
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structures of flexible systems, there is a need to automate validity 
checks for safety cases. To this end, we introduce checkable safety 
case models with the scope of supporting safety engineers in 
maintaining valid safety case models given changes in other system 
models. Checkable safety case models are a special type of safety case 
model that is integrated with system models, which are amenable to 
automated checks. 

To this end, we extend the SPES_XT modeling framework with a 
new system view, that is, the safety case view. The safety case models 
are to be integrated with the other system models corresponding to 
different viewpoints (e.g., requirements viewpoint, logical viewpoint). 
The safety case model is to be modeled alongside the system 
development and will be maintained to ensure consistency with other 
system models during the entire system lifecycle. 

To support safety engineers in modeling checkable safety cases, 
we propose a set of checkable safety case patterns. Similar to design 
patterns, safety case patterns are templates for re-occurring safety 
fragments that can be reused in different safety cases [Kelly and 
McDermid 2010]. These templates entail placeholders for system-
specific information which are to be filled when the pattern is used in 
a certain safety case. We extend the concept of safety case patterns 
with checkable safety case patterns. Checkable safety case patterns 
come with a set of automated checks that may be performed on the 
safety case fragment obtained after the instantiation of the pattern.  
Among other things, the safety case of a system must entail an 
argument about the satisfaction of safety properties by the system 
architecture. As reference architectures are blueprints to be used for 
modeling system architectures, for each such reference architecture 
we provide a pattern for arguing about the fact that the reference 
architecture satisfies certain safety properties. When the architecture 
of a certain system uses a certain reference architecture as a blueprint, 
the corresponding safety case checkable pattern can be used to model 
the safety argumentation for the constructed system architecture. 

3.4.1 Checkable Safety Case Models – A Definition 

To support safety engineers in the cumbersome, time-consuming 
process of keeping safety case models consistent with system models 
(e.g., system architecture models), we propose checkable safety cases. 
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The validity of checkable safety case models is checked by the 
automatic execution of sanity checks, based on explicit specification 
of semantics of safety case elements, and the integration of the safety 
case model with system models and automated verification 
approaches [Cârlan et al. 2019], see Figure 3-8. 

Fig. 3-8: Safety argumentation based on contract-based verification 

Given a change in a system model that is traced from the safety case 
model, consistency checks between the safety case model and the 
system models are automatically executed. These consistency checks 
assess whether the argumentation is still valid considering the 
changes in the system model that the argumentation applies to. Then, 
the safety engineer must update the safety argument in accordance 
with the changes, while also generating the evidence required. Given 
that system models are amenable to automated checks, the results of 
such checks can be used as evidence in safety cases. Therefore, we 
integrate safety case models with such automated verification 
approaches, thus enabling 1) automatic detection of stale evidence, 
and 2) automatic integration of new verification results as evidence, 
while assessing the impact of the new evidence on the confidence in 
the overall argumentation. 

Checkable safety case models entail both checkable and non-
checkable argumentation fragments that are connected with each 
other. On the one hand, non-checkable argumentation fragments 
entail regular safety case elements, as defined by the Goal Structuring 
Notation (GSN) — a standardized graphical notation for describing 
safety cases and currently the most frequently used language for 

Checkable safety cases 
entail checkable and                  

non-checkable 
argumentation 

fragments 
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modeling safety cases [GSN 2018]. On the other hand, checkable safety 
case fragments entail a set of interconnected specialized safety case 
elements. Specialized safety case elements extend GSN, with each 
specialized element representing a reoccurring claim in safety cases, 
thus having certain semantics. Specialized safety case elements 
reference certain types of system model elements or entail metadata 
regarding certain verification approaches. They may be connected to 
each other only via specialized connections, which extend the 
connections specified in GSN. In contrast to GSN-based connection 
types that ensure the correct construction of arguments from a 
semantic point of view, specialized connections enable intrinsic 
checks on safety case models, which ensure the construction of 
semantically correct arguments. 

3.4.2 Checkable Safety Case Patterns 

To support safety engineers in modeling checkable safety cases, we 
propose an exemplary set of checkable safety case patterns. 

While the argumentation structure of checkable safety case 
patterns is based on state-of-the-art patterns, the connected elements 
the structure contains are specializations of regular safety case 
elements. The specialized safety case elements have variable 
declarations, which are placeholders for a reference to a certain type 
of system element or verification information. The variables are to be 
instantiated with specific references when the pattern is used to 
model the safety case of a certain system. The relationships among 
specialized safety case elements are described via dedicated 
connections, thus enabling intrinsic consistency checks, which 
prohibit pattern misuse — a specialized safety case element may be 
connected only to certain types of other specialized safety case 
elements. 

A checkable safety case pattern is specified as presented in the 
following [Kelly and McDermid 2010]. We extend the specification of 
regular safety case patterns with information specific to checkable 
safety case patterns: 

 Name: the identifying label of the pattern giving the key principle 
of its argument 

 Intent: the goal the pattern is trying to achieve 
 Motivation: the reasons that gave rise to the pattern and the 

associated checks 
 Structure: the structure of the argument in GSN 

Checkable safety case 
patterns enhance state-
of-the-art patterns to 
enable automated 
checks 
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 Participants: each element in the pattern and its description; here 
we differentiate between plain SACM-based elements and 
specialized elements — for the specialized elements, the 
corresponding metadata is explained 

 Collaborations: how the interactions of the pattern elements 
achieve the desired effect of the pattern; here we explain the 
specialized connections among the specialized elements and how 
the specialized safety case elements will be connected with the 
regular elements 

 Applicability: the circumstances under which the pattern could be 
applied, that is, the necessary context 

 Consequences: what remains to be completed after pattern 
application 

 Implementation: how the pattern should be applied; here we 
discuss how the safety case elements are to be instantiated 

The following documentation information is specific to checkable 
safety case patterns: 

 Prerequisites: regarding the existence of certain system models or 
of certain verification tools 

 Automated checks: the checks that can be executed on the safety 
case fragments produced after the instantiation of the pattern 

3.4.3 An Example of Checkable Safety Case Patterns 

In Figure 3-9, we present part of the checkable safety case fragment 
concerning the satisfaction of a certain safety property by a system 
architecture built in a contract-based manner. The system 
architecture entails assume-guarantee (A/G) contracts that formalize 
safety properties. The properties are satisfied if: 1) the contracts of 
the architecture model are correctly refined by the contracts of the 
components within the architecture model (claim expressed as 
Refinement Check specialized goals); 2) the contracts of the 
architecture components are satisfied (claim expressed as 
Compatibility Check specialized goals); and 3) each architecture 
component correctly implements its contracts (claim expressed as 
Implementation Check specialized goals). Each claim in the argument 
is a specialized safety case element, with a certain meaning and with 
certain references to system model elements. Given specialized 
connections between specialized elements, intrinsic consistency 
checks are enabled. For example, elements of the type CBD Strategy 
may be supported only by goals of the type Compatibility Check, 

Arguing about the 
satisfaction of a certain 

safety property by an 
architecture 
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Refinement Check, and Implementation Check, ensuring the validity of 
the argument structure. The CBD Strategy references a certain 
component in the system architecture that will implement the safety 
contract. Consequently, to ensure the validity of the argumentation, 
we check whether the sub-goals of the type Implementation Check 
supporting CBD Strategy reference only children of the component 
referenced by the strategy. The validity of claims of the type 
Implementation Check is checked via an automated verification tool 
able to check architecture models annotated with contracts — a 
model checker. In the example presented in Figure 3-9 the model 
checker used is NuSMV [Cimatti et al. 2002]. 

Fig. 3-9: GSN-based safety case fragment 
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In Figure 3-9 a GSN-based safety case fragment is shown arguing 
about the verification via NuSMV model checker of the system 
architecture model against system safety properties specified as 
contracts. Due to space constraints, the figure displays only part of the 
argumentation, namely the argumentation legs regarding the correct 
implementation of the subcomponents of the architecture.  

In conclusion, we propose the creation of checkable safety case 
patterns that argue about the implementation of safety properties by 
a system architecture which may also be based on a certain reference 
architecture. Given the specialized safety case elements contained in 
the pattern and their integration with system models and verification 
tools, the validity of the argumentation fragment resulting from the 
pattern instantiation is automatically checked if there is a change in 
the corresponding system architecture model. These automated 
checks are especially needed if there are frequent changes. 

3.5 Conclusion 

In this chapter, we presented a general method for designing 
reference architectures and deriving system architectures for CESs 
and their CSGs in order to support reuse of system architectures. In 
addition, the method can be used to design a CSG and the interfaces of 
collaborating CESs within this CSG. In a next step, the architectures of 
the CES can be refined based on the reference architecture. This 
enables the integration of CESs of different organizations within one 
CSG. As an application example, we provided a short overview of the 
reference architecture for adaptable and flexible factories, detailed by 
a CES implementing an operator assistance system. The technical 
reference architecture for this CES shows the reuse potential for 
various operator assistance systems and provides a promising basis 
for future systems. 

In order to consider non-functional requirements in the system 
architecture, we also introduced checkable safety case models. These 
checkable safety cases support maintenance of the validity of safety 
case models and keep them consistent with system architecture. This 
method may be used for the construction of the safety argumentation 
system architectures based on reference architectures. 

In addition to the methods presented, we also developed 
prototypical tools which support and facilitate the application of the 
methods. The methods and reference architectures presented in this 
chapter have been applied successfully but should nevertheless be 
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applied to other CESs and their CSGs to prove their benefits. Future 
research may extend them beyond their current scope, for example, 
by involving artificial intelligence as design support as well as 
considering artificially intelligent CESs and CSGs in particular. 
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