Chapter 6 ®
Application Mapping Qs

Mapping of applications onto available hardware platforms is a key design step.
We need to map applications both to processors and to particular execution times.
This is feasible with appropriate scheduling techniques. Taking as many scheduling
decisions as reasonable at design time enables us to provide timing guarantees.
In this chapter, we will present a selected subset of the corresponding static
scheduling techniques. They will be classified according to the triplet notation
proposed by Pinedo and others. First of all, we will explain classical scheduling
algorithms for single processors. We will cover algorithms for aperiodic as well as
for periodic task systems, including the well-known earliest deadline first (EDF)
and rate monotonic scheduling (RMS) algorithms. We will briefly explain the use
of bin packing algorithms for homogeneous multiprocessor systems. This will be
followed by a presentation of selected scheduling algorithms for heterogeneous
multiprocessors. We will be presenting algorithms for independent and dependent
jobs. For dependent jobs, the focus is on heuristics. Finally, we will be pointing
toward issues in using dynamic scheduling.

6.1 Definition of Scheduling Problems

6.1.1 Elaboration on the Design Problem

The mentioned mapping to execution platforms is included in the simplified design
flow, as shown in Fig. 6.1.

Selected scheduling algorithms should allow us to use systems with a certain
combination of applications. For example, for a mobile phone, we expect being able
to make a phone call while the Bluetooth stack is transmitting the audio signals to
a headset and while we are looking up information in our “personal information
manager” (PIM). At the same time, there may be a concurrent file transfer or even
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Fig. 6.1 Simplified design information flow

a video connection. We must make sure that these applications can be used together
and that we are keeping the deadlines (no lost audio samples!). This is feasible
through an analysis of the use cases.

It is a characteristic of embedded and cyber-physical systems that both hardware
and software must be considered during their design. Therefore, this type of design
is also called hardware/software codesign. The overall goal is to find the right
combination of hardware and software resulting in the most efficient product
meeting the specification. Therefore, embedded systems cannot be designed by
a synthesis process taking only the behavioral specification into account. Rather,
available components must be accounted for. There are also other reasons for this
constraint: in order to cope with the increasing complexity of embedded systems
and their stringent time-to-market requirements, reuse is essentially unavoidable.
This led to the term platform-based design:

“A platform is a family of architectures satisfying a set of constraints imposed
to allow the reuse of hardware and software components. However, a hardware
platform is not enough. Quick, reliable, derivative design requires using a platform
application programming interface (API) to extend the platform toward application
software. In general, a platform is an abstraction layer that covers many possi-
ble refinements to a lower level. Platform-based design is a meet-in-the-middle
approach: in the top-down design flow, designers map an instance of the upper
platform to an instance of the lower, and propagate design constraints” [476].

The mapping is an iterative process in which performance evaluation tools guide
the next assignment.

In this book, we focus on embedded system design based on available execution
platforms. This reflects the fact that many modern systems are being built on top
of some existing platform. Techniques other than the ones described in this book
must be used when the execution platform needs to be designed as well. Due to
our focus, the mapping of applications to execution platforms can be seen as
the main design problem. In the general case, mapping will be performed onto
multiprocessor systems.

Even for platform-based design, there may be a number of design options. We
might be able to select between different variants of a platform, where each variant
might have a different number of processors, different speeds of processors, or a
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different communication architecture. Moreover, there may be different applicable
scheduling policies. Appropriate options must be selected.

This leads us to the following definition of our mapping problem [535]:
Given:

* aset of applications,
* use cases describing how the applications will be used,
* aset of possible candidate architectures:

— (possibly heterogeneous) processors,
— (possibly heterogeneous) communication architectures,
— possible scheduling policies.

Find:

* amapping of applications to processors,
e appropriate scheduling techniques (if not fixed),
e atarget architecture (if not fixed).

Objectives:

» Keeping deadlines and/or maximizing performance,
* minimizing cost, energy consumption, and possibly other objectives.

The exploration of possible architectural options is called design space exploration
(DSE). As a special case, we may consider a completely fixed platform architecture.

Designing an AUTOSAR-based automotive system can be seen as an example:
in AUTOSAR [28], we have a number of homogeneous execution units (called
ECUs) and a number of software components. The question is: how do we map
these software components to the ECUs such that all real-time constraints are met?
We would like to use the minimum number of ECUs.

For embedded systems, we can assume that the set of applications comprises
a number of tasks which are released (are ready for execution) repeatedly. The
executed code can be associated with tasks. For example, there may be the need
to execute certain code once for every input sample. We denote each task by t; and
sets of tasks by 7 = {rq, ..., 7, }.

Definition 6.1 Each execution of a task is called a job (cf. Definition 4.4). For each
task t;, there is an associated set of jobs J(7;). Due to the repeated executions, the
set of jobs of task t; is possibly not finite.

Definition 6.2 Tasks 7; which are released once every 7; units of time are called
periodic tasks, and T7; is called their period.

Definition 6.3 A task t; is called sporadic if there is a lower bound on the length
of the interval between successive releases of this task. For each sporadic task t;,
we call this interval length also 7;.
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Fig. 6.2 Notation used for jobs

This minimum separation is important: without such a separation, arrival curves for
any interval A could become unbounded. It would be impossible to find a schedule
for a bounded set of resources.

Definition 6.4 Tasks which are neither periodic nor sporadic are called aperiodic.

For periodic and sporadic task systems, the concept of hyper-periods simplifies
scheduling substantially:

Definition 6.5 Let T be a periodic or sporadic task system. Its hyper-period is
defined as the least common multiple of the periods of the individual tasks.

If tasks can be scheduled for one hyper-period, they can be scheduled for all hyper-
periods, due to the repeating nature of the task structure.

6.1.2 Types of Scheduling Problems

The following notation is used in the remainder of this chapter for jobs. Let J = {J;}
be a set of jobs. Let (see Fig. 6.2):

¢ r; be the release time of J; (the time at which it becomes available for execution),

¢ (; be the worst case execution time (WCET) of J;,

¢ d; be the (absolute) deadline of J;,

e D, be the relative deadline, that is, the time between a job J; becoming available
and the time until which the same job J; has to finish execution (D; = d; — r;),

¢ [; be the laxity or slack, defined as

l; = D; — C; 6.1)

(if [; = 0, then J; has to be started immediately after it is released),
* 5; be the actual starting time of J;,
* f; be the actual finishing time of J;.

In figures like Fig. 6.2, upward pointing vertical arrows indicate the release of jobs,
and downward pointing arrows denote the deadline of jobs.

In the following, we will be using the triplet classification for scheduling
problems which was presented by Pinedo [455], based on an notation introduced
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earlier by Graham et al. [190]. According to the notation, scheduling problems can
be classified by a triplet:

(«|Bly). (6.2)

The o Field

The « field describes the machine environment and consists of a single entry. Simple
scheduling algorithms handle the case of single processors, whereas more complex
algorithms also handle systems comprising multiple processors. In this book, we
consider the following possible values of the « field:

e A value of 1 indicates a single processor.

e A value of Pm indicates m processors which can be used in parallel. Each job
can be executed with the same speed on any of the m processors. In this case,
processors are said to be identical (or homogeneous). The g field can be used to
express constraints for the allocation of jobs to processors.

e A value of Om denotes parallel processors with different performances. The
performance is expressed as scaling factors relative to the performance of the
slowest processor. Scaling factors can be represented by a vector (s, .., Sp),
where component sy, is the scaling factor of processor . In this case, processors
are called uniform. The uniform processor model is very much simplified; we
will hardly refer to it.

e A value of Rm indicates m processors with unrelated processing speeds. The
execution time of the job or task i on processor k is C; . Processors are
called heterogeneous. Heterogeneous processors can be optimized for particular
objectives, e.g., for high performance or a small energy consumption. Hence,
heterogeneous processors are very important for embedded systems. Hardware
accelerators can be modeled as special-purpose processors.

The « field will always contain just a single element.

The B Field

The B field describes processing restrictions. This field may contain several
components. In this book, we will consider the following possible values of this
field:

* An entry r; denotes existing release times that are depending on the job i to be
allocated.

* Anentry prmp indicates that preemptions are allowed. Non-preemptive schedul-
ing is assumed if this entry is missing. Non-preemptive schedulers are based on
the assumption that jobs are executed until they are done. As a result, the response



300 6 Application Mapping

time for external events! may be quite long if some jobs have a large execution
time. Preemptive schedulers must be used if some jobs have long execution times
or if the response time for external events is required to be short. However,
preemption can result in unpredictable execution times of the preempted jobs.
Therefore, restricting preemptions may be required in order to guarantee meeting
the deadline of hard real-time jobs.

¢ Another possible entry would describe the type of timing constraints. We can
distinguish between soft and hard deadlines (see Definition 1.8 on p. 10).

Scheduling for soft deadlines is frequently based on extensions to standard
operating systems. We will not discuss these systems further in this book.
Therefore, the default assumption in this book is to have hard timing constraints.

* Entries periodic and sporadic may describe the type of task system considered.

* A value of prec expresses the fact that precedence constraints exist. Precedences
among the jobs require jobs to be executed according to certain partial orders.
They may be caused by communication between jobs. For embedded systems,
precedences are the rule rather than an exception.

* For sporadic and periodic task sets, we are frequently differentiating scheduling
problems with respect to their deadlines:

The case D; = T;, for all i, is called the case of implicit-deadline tasks,
or Liu-and-Layland (L&L) tasks [348]. This case is indicated by an entry
D; = T;. Task sets which must satisfy Vi : D; < T; are called constrained-
deadline tasks.

Tasks whose deadlines do not need to meet any constraints regarding their
period are called arbitrary-deadline tasks. These cases can also be indicated
by corresponding entries.

e We could use this field also to describe the type of scheduling employed. For
example, we could use entries fixed-job-prio and fixed-task-prio for jobs and
tasks with a fixed priority.

Furthermore, we could distinguish between static and dynamic scheduling.
Dynamic schedulers take decisions at run-time. They are quite flexible but
generate overhead at run-time. Also, they are usually not aware of global contexts
such as resource requirements or precedences between jobs. For embedded
systems, such global contexts are typically available at design time, and they
should be exploited.

Static schedulers take their decisions at design time. They are based on
planning the start times of jobs and generate tables of start times forwarded to
a simple dispatcher. The dispatcher does not take any decisions, but is just in
charge of starting jobs at the times indicated in the table. The dispatcher can be
controlled by a timer, causing the dispatcher to analyze the table.

IThis is the time from the occurrence of an external event until the completion of the reaction
required for the event.
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Systems which are totally controlled by a timer are said to be entirely time-
triggered (TT systems). Such systems are explained in detail in the book by
Kopetz [303]:

“In an entirely time-triggered system, the temporal control structure of all
tasks is established a priori by off-line support-tools. This temporal control
structure is encoded in a Task-Descriptor List (TDL) that contains the cyclic
schedule for all activities of the node* (Fig. 6.3). This schedule considers the
required precedence and mutual exclusion relationships among the tasks such
that an explicit coordination of the tasks by the operating system at run time is
not necessary. ... The dispatcher is activated by the synchronized clock tick. It
looks at the TDL, and then performs the action that has been planned for this
instant ....”

The main advantage of static scheduling is that it can be easily checked if
timing constraints are met: “For satisfying timing constraints in hard real-time
systems, predictability of the system behavior is the most important concern; pre-
run-time scheduling is often the only practical means of providing predictability
in a complex system” [604]. The main disadvantage is that the response to events
may be quite poor.

Multiprocessor scheduling algorithms either can be executed locally on one
processor or can be distributed among a set of processors. Hence, we can also
distinguish between centralized and distributed scheduling. This distinction
could also be expressed in the f field.

The y Field

The y field describes the objective function. In this book, we consider the following
possible values of this field:

An entry of L,,,, means that the maximum lateness is to be minimized.

Definition 6.6 Maximum lateness is defined as the difference between the
completion time and the deadline, maximized over all jobs.

Maximum lateness is negative if all tasks complete before their deadline.

2This term refers to a processor in this case.
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e An entry of MS,,,, denotes the case of minimizing the makespan (the time at
which the last job finishes).

Definition 6.7 The makespan is defined as®
M Sypax = max;(f;) (6.3)

* In addition to the entries considered by Pinedo, other entries are relevant
for embedded systems. For example, we might want to minimize the energy
consumption, or we might even consider trade-offs between several objectives.

A huge amount of scheduling algorithms is available, and comprehensive
coverage of existing algorithms would be infeasible even if an entire book or
course were available. In a standard undergraduate curriculum, there is typically not
enough headroom for a dedicated course on scheduling (but this may be different
for courses for graduate students). Therefore, we provide only a brief introduction to
scheduling in this book. Many scheduling problems are known to be very complex
[41, 455]. In many cases, only approximately optimal mappings can be guaranteed.
We will provide an overview of scheduling algorithms frequently considered in
embedded systems. Table 6.1 comprises an overview of the techniques in this
chapter. From left to right, columns refer to the processor model, asynchronous
arrival times, preemptiveness, precedences, periodic/sporadic tasks vs. aperiodic
jobs, the deadline model (for periodic/sporadic tasks), job- vs. task-based priorities
(for periodic/sporadic tasks), global vs. local scheduling (for multiprocessors),
the objective, the subsection, and the name of algorithm(s). Algorithms like
earliest deadline first are designed for nonperiodic systems but can be applied in
periodic/sporadic systems as well. Note that only the last three lines correspond to
full support for heterogeneous processors, as can be seen in column one. Uniform
processors will be mentioned only as a possible use of the 0/1 multi-knapsack
model. If all jobs arrive at the same time (indicated by an entry of “~" for the second
column), preemption is useless, and hence, the third column is not marked by an
X. Entries for column D; are relevant only for periodic/sporadic tasks. Regarding
the objectives, we observe that lateness is the relevant objective in many cases.
However, for periodic/sporadic scheduling, the key question is: is there a schedule
which meets the deadlines? Bin packing is designed to minimize the number
of processors. For the HEFT and CPOP heuristics, the makespan is the relevant
objective. Only the last line corresponds to a minimization of several objectives, in
the form either of a single objective at a time or of real multi-objective optimization
using Pareto optimality.

Scheduling is similar to performance evaluation in that it cannot be constrained
to a single design step. Rather, scheduling algorithms may be required a number
of times during the design of such systems. Very rough calculations may already be
required while fixing the specification. Later, more detailed predictions of execution

3Pinedo denotes the makespan as C,,. We prefer to avoid confusion with execution times C;.
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times may be required. After compilation, even more detailed knowledge exists
about the execution times, and accordingly, more precise schedules can be made.
Finally, it may be necessary to decide at run-time which task is to be executed next.
In contrast, in time-triggered systems, RTOS scheduling may be limited to simple
table look-ups for tasks to be executed.

In practice, it is very important to know whether or not a schedule exists for
a given set of tasks and constraints. A set of tasks is said to be schedulable
under a given set of constraints if a schedule exists for that set of tasks and
constraints. For many applications, schedulability tests are important. Tests which
always return precise results (called exact tests) are NP-hard in many situations
[178]. Therefore, sufficient and necessary tests are used instead. For sufficient tests,
sufficient conditions for guaranteeing a schedule are checked. There is a (hopefully
small) probability of indicating that scheduling cannot be guaranteed even when a
schedule exists. Necessary tests are based on checking necessary conditions. They
can be used to show that no schedule exists. However, there may be cases in which
necessary tests are passed and the schedule still does not exist.

6.2 Scheduling for Uniprocessors

Let us first consider the case of uniprocessor systems. According to the triplet
notation, this corresponds to the case (1]..]..). We are using some of the material
from the book by Buttazzo [81] for this section. Refer to this book for additional
references.

6.2.1 Scheduling for Independent Jobs

Furthermore, we are restricting our discussion initially to the even more special case
of independent jobs executed on uniprocessors.

Earliest Due Date (EDD) Algorithm

First of all, we are looking at the situation where all jobs arrive at the same time,
and we try to minimize lateness. If all jobs arrive at the same time, preemption is
obviously useless. Therefore, according to the triplet notation, we are considering
the case (1| |Lyqx)- A very simple rule for this case was found by Jackson in 1955
[263].

Theorem 6.1 (Jackson’s Rule) Given a set of n independent jobs with deadlines,
any algorithm that executes the jobs in order of nondecreasing deadlines is optimal
with respect to minimizing the maximum lateness.
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The algorithm following this rule is called the earliest due date (EDD) algorithm.
If the deadlines are known in advance, EDD can be implemented as a static
scheduling algorithm. EDD requires all jobs to be sorted by their deadlines. Hence,
its complexity is O (n log(n)).

Proof of the Optimality of EDD Let S be a schedule generated by any algorithm A.
Suppose A does not lead to the same result as EDD. Then, there are jobs J, and
Jp such that the execution of Jp, precedes the execution of J, in J, even though the
deadline of J, is earlier than that of J,, (d, < dj). Now, consider a schedule S’. S’
is generated from S by swapping the execution orders of J, and Jp, (see Fig. 6.4).

In schedule S, the deadline of J, is earlier than that of J, but Jj, is executed first.
Hence, the maximum lateness among jobs J, and Jj, is that of J,, or L4« (a, b) =
f a da~

For schedule ', L'max(a, b) = max(L'a, L'b) is the maximum lateness among
jobs J, and Jp. L'a is the maximum lateness of job J, in schedule S'. L' is defined
accordingly. There are two possible cases:

1. L’a > L'b: In this case, we have
L'max(a,b) = f'a —d,
J, terminates earlier in the new schedule. Therefore, we have
L'max(a,b) = fla—d, < fo —d,.
The right side of this inequality is the maximum lateness in schedule S. Hence,
the following holds:
L'max(a, b) < Lyux(a,b)
2. L'a < L'b:
In this case, we have
L'max(a,b) = f'b—dp = f, — dp (see Fig. 6.4).
The deadline of J, is earlier than the one of Jj.
This leads to
L'max(a,b) < f, —d,
Again, we have
L'max(a, b) < Lyux(a, b)

As aresult, any schedule (which is not an EDD schedule) can be turned into an EDD
schedule by a finite number of swaps. Maximum lateness can only decrease during
these swaps. Therefore, EDD is optimal for this class of scheduling problems. O
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Earliest Deadline First (EDF) Algorithm

Let us consider the case of different release times for uniprocessor systems
next. Under this scenario, preemption can potentially reduce maximum lateness.
According to the triplet notation, this corresponds to the case (1|7;, prmp|Lyax).

The earliest deadline first (EDF) algorithm is optimal with respect to minimizing
the maximum lateness. It is based on the following theorem [222]:

Theorem 6.2 Given a set of n independent jobs with arbitrary arrival times, any
algorithm that at any instant executes the job with the earliest absolute deadline
among all the ready jobs is optimal with respect to minimizing the maximum
lateness.

EDF requires that each time a new ready job arrives, it is inserted into a queue
of ready jobs, sorted by their deadlines. Hence, EDF is a dynamic scheduling
algorithm. If a newly arrived job is inserted at the head of the queue, the currently
executing job is preempted. If sorted lists are used for the queue, the complexity of
EDF is O (n?). Bucket arrays could be used for reducing the execution time, but this
option is typically not considered.

Example 6.1 Figure 6.5 shows a schedule derived with the EDF algorithm. At time
4, job J> has an earlier deadline. Therefore, it preempts J;. At time 5, job J3 arrives.
Due to its later deadline, it does not preempt J>. The deadline of J; is lather than that
of J3, and hence, it resumes only after J3 has terminated. Priorities are obviously
dynamic: they depend on which deadline is next. Since EDF uses dynamic priorities,
it cannot be used with an operating system providing only fixed priorities. However,
it has been shown that operating systems can be extended to simulate an EDF policy
at the application level [132]. \Y%

Proof of Theorem 6.2 Let S be a schedule generated by some algorithm A, where A
is different from EDF. Let Sg pr be a schedule generated by EDF. Now, we partition
time into disjoint intervals of length 1.* Each interval comprises times within the

arrival |duration| deadline
5] o 10 33
arrivals Jy| 4 3 28
AN J;| 5 10 29
: N
), e |

I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 ¢

Fig. 6.5 EDF schedule

“This proof assumes a discrete time domain. It can be extended to a continuous time domain.
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Fig. 6.7 Schedule after swapping jobs S(¢) and E(¢)

range [z, t+1). Let S(¢) be the job which—according to schedule S—is executed
during the interval [¢, #+1). Let E(¢) be the job which at time ¢ has the earliest
deadline among all jobs. Let 75 (¢) be the time (> ¢) at which job E () is starting its
execution in schedule S. S is not an EDF schedule. Therefore, there must be a time
t at which we are not executing the job having the earliest deadline. For ¢, we have
S(t) # E(¢) (see Fig. 6.6).

Using the same arguments as for Jackson’s rule, we can show that swapping
S(t) # E(¢) like in Fig. 6.7 does not increase maximum lateness. Therefore, by
a number of swaps, any non-EDF schedule can be turned into an EDF schedule
without increasing maximum lateness. This proves that EDF is optimal among all
possible scheduling algorithms.

We can show that swapping will keep all deadlines, provided they were kept
in schedule S. According to the initial assumption, the maximum lateness in
the schedule S is 0. Since EDF returns the optimal schedule for minimizing the
maximum lateness, the maximum lateness of the EDF schedule is also 0. Hence, for
this problem class, the EDF schedule is the optimal schedule to meet the deadlines.

0

Least Laxity (LL) Algorithm

Focusing on laxity, we are now considering the case (1 | r;, prmp, .. |..), with the goal
of finding a schedule if one exists. Least laxity (LL), least slack time first (LST), and
minimum laxity first (MLF) are three names for a laxity-based scheduling strategy



308 6 Application Mapping

arrival | duration| deadline

J 0 1

J1 4 g gg 1(J4)=33-15-6=12
2 ; )=29-15-2=12

J3 5 10 29 .

7 = — !

[
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1(/4)=33-4-6=23 1(J4)=33-5-6=22 1(/;)=33-13-6=14 7(/;)=33-16-6=11

3 1(J4
11(Jo)=28-5-2=21 (J5)=28-13-2=13 [(J3)=29-16-1=12
(J3)=29-5-10=14 1(J3)=29-13-2=14

23 1
15 )=28-4-3=21 1
!

Fig. 6.8 Least laxity schedule

[347]. According to LL scheduling, job priorities are a monotonically decreasing
function of the laxity (see Eq. (6.1); the less laxity, the higher the priority). Laxity is
dynamically changing and needs to be dynamically recomputed.

Example 6.2 Figure 6.8 shows an LL schedule. Computation of the laxity is
included. At time 4, job Jj is preempted, as before. At time 5, J> is now also
preempted, due to the lower laxity of job J3. \Y%

LL scheduling is also preemptive. Preemptions are not restricted to times at
which new jobs become available. Negative laxities provide an early warning for
deadlines to be missed. It can be shown (this is left as an exercise in [347]) that
LL is also an optimal scheduling policy for uniprocessor systems with meeting
deadlines as the objective. This means that it will find a schedule if one exists. Due
to its dynamic priorities, it cannot be used with a standard OS providing only fixed
priorities. Furthermore, LL scheduling—in contrast to EDF scheduling—requires
the knowledge of the execution time and typically generates many context switches.
Its use is therefore restricted to special situations where its properties are attractive.
Also, laxity can play a role in multiprocessor scheduling, as will be shown in
Sects. 6.3.3 and 6.3.4.

Scheduling Without Preemption

Let us now consider the case of not allowing preemptions, denoted as (1|7;|Lyqx)-

Theorem 6.3 If preemption is not allowed, optimal schedules must leave the
processor idle at certain times in order to finish jobs with early deadlines arriving
late.

Proof Let us assume that an optimal non-preemptive scheduler (not having knowl-
edge about the future) never leaves the processor idle. This scheduler must schedule
the example of Fig. 6.9 optimally (it must find a schedule if one exists). For the
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Fig. 6.9 Scheduler needs to leave processor idle

example of Fig. 6.9, we assume we are given two tasks. Let 71 be a periodic task
with C; = 2,71 =4, D1 =4, and r; = 0. Let 73 be a sporadic task with C; = 1,
D, =1,T, =4,and r; = 1, i.e., sporadically becoming available at times 4 xn + 1.

Under the above assumptions, our scheduler has to start the execution of task 7
at time 0, since it is supposed not to leave any idle time. Since the scheduler is non-
preemptive, it cannot start 7o when it becomes available at time 1. Hence, 7 misses
its deadline. If the scheduler had left the processor idle (as shown in Fig. 6.9 at time
4), a legal schedule would have been found. Hence, the scheduler is not optimal.
This is a contradiction to the assumptions that optimal schedulers not leaving the
processor idle at certain times exist. O

We conclude in order to avoid missed deadlines, the scheduler needs knowledge
about the future. Such algorithms are called clairvoyant. An algorithm leaving the
processor idle in the presence of executable tasks is not work-conserving:

Definition 6.8 A scheduling algorithm is work-conserving if it does not allow
there to be a time at which a processor is idle and there is an executable task [119].

If no knowledge about the arrival times is available a priori, then no online algorithm
can decide whether or not to keep the processor idle.

If arrival times are known a priori, the scheduling problem becomes NP-hard
in general, and branch and bound techniques are typically used for generating
schedules.

6.2.2 Scheduling with Precedence Constraints

Next, let us consider precedence constraints, according to the triplet notation
denoted as (1l r;, prmp, prec | Lyax).

Task Graphs

Precedence constraints are expressed by directed acyclic graphs (DAGs, cf. Defini-
tion 2.6) G = (7, E). The set t represents the vertices (or nodes) of the DAG and
E C t x 1 its edges.
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Fig. 6.10 Task DAG

Fig. 6.11 Precedence graph
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Example 6.3 In Fig. 6.10, edges express that source nodes (the first components of
the tuples representing edges) must be executed before their sink nodes (the second

components of the tuples representing edges). Vertex labels denote task numbers.
v

There may be several reasons for describing applications as DAGs:

1. On the one hand, each vertex might correspond to an instance of a task, and edges
would then represent dependencies between tasks.

2. On the other hand, the availability of multiprocessors leads to the idea of splitting
tasks into subtasks and executing these subtasks in an overlapping manner on
different processors. Each vertex could then correspond to a subtask. Automatic
partitioning of tasks into subtasks such that parallel processors can be efficiently
exploited is called automatic parallelization. Automatic parallelization is even
more difficult than automatic scheduling for a given number of subtasks.

Both cases of creating DAGs can be used in combination: we can have dependencies
among tasks, and tasks can be split into subtasks. In the following, we assume that
the DAG represents any of the situations just described, and we will call the DAGs
task graphs. For scheduling, it is not relevant how the DAG was actually generated.

Example 6.4 A legal schedule for a simpler task graph including message transmis-
sion is shown in Fig. 6.11. Task 73 can be executed only after task 7; and 7, have
completed and sent messages to 73. v
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Latest Deadline First (LDF) Algorithm

An optimal algorithm for minimizing the maximum lateness for the case of
simultaneous arrival times of dependent tasks or jobs was presented by Lawler
[326]. The algorithm is called latest deadline first (LDF). LDF reads the task graph.
Among all tasks with no successors, it picks the one with the latest deadline and puts
it into a queue. It then repeats this process, always selecting the task with the latest
deadline among tasks whose successors have all been selected and inserting it into
the queue. At run-time, the tasks are executed in an order opposite to the order in
which tasks have been entered into the queue. LDF is non-preemptive and is optimal
for uniprocessors.

Example 6.5 Consider the case of Fig.6.11. LDF would first store 73 in a queue,
since it has no successor. As a result, successors of t; and 7, have all been selected
already. Which of the two is stored in the queue first depends on their deadline. The
node having the later deadline is stored in the queue first. At run-time, the queue is
processed in reverse order, starting, for example, with 77. \Y

The case of asynchronous arrival times can be handled with a modified EDF
algorithm. The key idea is to transform the problem from a given set of dependent
jobs into a set of independent jobs with different timing parameters [98]. This
algorithm is again optimal for uniprocessor systems.

If preemption is not allowed, the heuristic algorithm developed by Stankovic
and Ramamritham [508] can be used.

6.2.3 Periodic Scheduling Without Precedence Constraints

Next, we will consider the periodic case. We will consider mostly tasks instead
of jobs, since most properties for periodic systems can be derived for tasks. We
will restrict ourselves to a description of the case in which tasks are independent,
described as (1lr;,prmp,periodicl. . .) in the triplet notation.

Notation

For periodic scheduling, objectives relevant for aperiodic scheduling are less useful.
For example, minimization of the total length of the schedule is not an issue if we
are talking about an infinite repetition of jobs. The best that we can do is to design
an algorithm which will always find a schedule if one exists. This motivates the
definition of optimality for periodic schedules.

Definition 6.9 For periodic scheduling, a scheduler is defined to be optimal iff it
will find a feasible schedule if one exists.
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Definition 6.10 For periodic and sporadic task systems t = {ty, .., 7,}, we define
task utilization as
Ci
U = — 6.4
=T (6.4)
This means that for sporadic task systems, we are using the same definition as for
periodic systems, even though 7; just denotes the minimum separation of jobs.

Definition 6.11 For a task system t = {r] ... 7} with utilization u; of task t;, we
define the maximum and the total utilization by

Umax = max (u;) (6.5)

Usum = Zui (6.6)

Rate Monotonic Scheduling

Rate monotonic (RM) scheduling [348] is probably the most well-known scheduling
algorithm for independent periodic tasks. Rate monotonic scheduling is based on the
following assumptions (“RM assumptions”):

. All tasks that have hard deadlines are periodic.

. All tasks are independent.

D; = T;, for all tasks.

. Cj is constant and is known for all tasks. Self-suspension (voluntarily relinquish-
ing the execution) is not allowed.

. The time required for context switching is negligible.

6. For a single processor and for n tasks, the accumulated utilization Uy,,,,, does not

exceed the following bound:

W=

9,1

n

C.
Usim =) — =n@/" =1 (6.7)

i=1 !

Figure 6.12 shows the bound of constraint (6.7).
The bound is about 0.7 for large n:

lim n* /" — 1) = log.(2) = In(2) ~ 0.7 (6.8)

n— o0
Then, according to the policy for rate monotonic scheduling, the priority of
tasks is a monotonically decreasing function of their period. In other words,
tasks with a short period will get a high priority, and tasks with a long period will
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Fig. 6.12 Bound of 1
constraint (6.7) n2n -1)
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Fig. 6.13 Example of a schedule generated with RM scheduling v

be assigned a low priority. RM scheduling is a preemptive scheduling policy with
fixed priorities.

Example 6.6 Figure 6.13 shows a schedule generated with RM scheduling. Task 7,
is preempted several times. Double-headed arrows indicate the arrival time of a job
as well as the deadline of the previous job. Tasks 77 to 73 have a period of 2, 6, and
6, respectively. Execution times are 0.5, 2, and 1.75. Task t; has the shortest period
and, hence, the highest rate and priority. Each time task t; becomes available, its
jobs preempt the currently active task. Task 1, has the same period as task 73, and
neither of them preempts the other.

Constraint (6.7) requires that some of the computing power of the processor is
not used in order to make sure that all requests are honored in time. What is the
reason for this bound on the utilization? The key reason is that RM scheduling, due
to its static priorities, will possibly preempt a task which is close to its deadline in
favor of some higher-priority task with a much later deadline. The task having a
lower priority can then miss its deadline.

Example 6.7 In Fig. 6.14, task parameters are 71 = 5,C; = 3,7, = 8, and C =

3. In this case, we have Uy, = % + % = % = 0.975. This value exceeds the bound:

2% (2% — 1) &~ 0.828. Not enough idle time is available to guarantee schedulability
for RM scheduling. Hence, schedulability is not guaranteed for RM scheduling, and
in fact, the deadline is missed at time 8. We assume that the missing computations
are not scheduled in the next period. v

Such missed deadlines cannot happen if the utilization of the processor is very
low, and obviously, they can happen when the utilization is high, as in Fig. 6.14.
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Fig. 6.14 RM schedule does not meet deadline at time 8

If the constraint (6.7) is met, the utilization is guaranteed to be low enough to prevent
problems like that of Fig. 6.14. Constraint (6.7) is a sufficient condition. This means
we might still find a schedule if the condition is not met. Other sufficient conditions
exist [54].

RM scheduling has the following important advantages:

*  We can show that it is an optimal fixed priority preemptive scheduling algorithm
for uniprocessor systems [54].

« It is based on static priorities, enabling its application in an operating system
with fixed priorities.

» If the above six RM assumptions (see p. 312) are met, all deadlines will be met
(see Buttazzo [81]).

RM scheduling is also the basis for a number of formal proofs of schedulability.
Designing examples and proofs is facilitated if the most problematic situations for
scheduling are known. To get started, we assume the following property:

Property 6.1 We assume that every job completes before the next job of the same
task is released.

Definition 6.12 A critical instant for a task t; is defined to be an instant ¢ at which
a release of that task will have the largest response time.

Theorem 6.4 (Critical Instant Theorem) For fixed priority scheduling, the
response time for execution on a uniprocessor system is maximized for each task t;
if t; is released at the same time as all tasks having a higher priority.

Proof Here we present the original proof by Liu and Layland [348], using the
wording of these authors (except for making the notation consistent with ours): “Let
T = {11, ..., 1,} denote a set of priority-ordered tasks with t, being the task with
the lowest priority. Consider a particular request for 7, that occurs at #1. Suppose
that between #; and #; + T}, the time at which the subsequent request of t,, occurs,
requests for task t;, i < n,occuratty, th+T;, th+27;, ..., tp+kT;, as illustrated
in Fig. 6.15. Clearly, the preemption of 7, by 7; will cause a certain amount of delay
in the completion of the request for 7, that occurred at 71, unless the request for t, is
completed before 7. Moreover, from Fig. 6.15 we see immediately that advancing
the request time #» will not speed up the completion of 7,,. The completion time is
either unchanged or delayed by such an advancement. Consequently, the delay in
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Fig. 6.15 Delaying task 7, by some 7; of higher priority

the completion of 7, is largest when #, coincides with ¢;. Repeating the argument
forall 7;,i =2,...,m — 1, we prove the theorem.” m]

Implicitly, we have used Property 6.1 in the proof. If we consider the general case
(i.e., the situation in which the assumption of Property 6.1 does not hold; see, for
example, Baker [35]), Theorem 6.4 remains valid, but the proof becomes more
complex, as shown by Devillers et al. [129] and Bril [69].

The critical instant theorem is of great help when scheduling uniprocessor
systems. In general, the critical instant theorem does not hold for multiprocessor
systems, which makes proofs much harder. So, the validity of this theorem should
really be appreciated!

Let us look at other properties of RM scheduling now. The idle time or spare
capacity of the processor is not always required.

Theorem 6.5 Let T be a system of periodic tasks. If the period of all tasks is a
multiple of the period of the task having the next higher priority, T can be scheduled
with RM scheduling if

Usum =1 (6.9)

Example 6.8 This requirement is met if tasks in a TV set must be executed at rates
of 25, 50, and 100 Hz (or 30, 60, and 120 Hz). v

Proof of Theorem 6.5 Let tasks be sorted by priorities, such that Vi : T; < T;j4.
Consider some task t; and the task with the next lower priority, task t;4+1 (see
Fig. 6.16). Note that the second deadline of 7;41 matches the fourth deadline of
7; neatly. Therefore, we can fold the execution times of task 7,4 into the execution
times of t; and create a new task rl.’ iy containing the execution times of the two
original tasks. This folding is feasible if the total execution time of the two tasks
does not exceed the period of 7; 1. The process can be repeated in the same way
with the next lower-priority task. Overall, folding is feasible as long as the overall
utilization does not exceed 1. O

The bounds in Constraints (6.7) and (6.9) allow us to check for schedulability.

51 owe this hint to J.J. Chen of TU Dortmund.
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Fig. 6.16 Folding of tasks of adjacent priorities
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Fig. 6.17 EDF generated schedule for the example of 6.14

Due to the critical instant theorem, the proof of optimality of RM scheduling
needs to consider only the case in which tasks are released concurrently with all
other tasks of higher priority.

Earliest Deadline First Scheduling

EDF can also be applied to periodic task sets. Obviously, it is sufficient to solve the
scheduling problem for a single hyper-period. This schedule can then be repeated
for the other hyper-periods. The hyper-period for the example of Fig. 6.14 is 40.
It follows from the optimality of EDF for nonperiodic schedules that EDF is
also optimal for a single hyper-period and therefore also for the entire scheduling
problem. No additional constraints must be met to guarantee optimality. This
implies that EDF is optimal also for the case of Uy, = 1.

Example 6.9 No deadline is missed if the example of Fig. 6.14 is scheduled with
EDF (see Fig. 6.17). At time 5, the behavior is different from that of RM scheduling:
due to the earlier deadline of 77, it is not preempted. \%

Explicit-Deadline Tasks

Now we move toward the consideration of tasks whose deadline is not the same
as the period. Such tasks are called explicit-deadline tasks. Each task 7; in such
a system is characterized a triple (C;, D;, T;), where D; is the relative deadline.
The case D; < T; is called the constrained-deadline case. The arbitrary-deadline
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case is characterized by the absence of such a constraint. Obviously, the class of
explicit-deadline tasks is more general than the class of implicit-deadline tasks, and
each implicit-deadline task is also an explicit-deadline task.

Utilization is of limited value for the characterization of computational demands
of explicit-deadline tasks. To some extent, density plays the role which utilization
played to far. Density is defined as

C;

dens; = ——— (6.10)
min(D;, T;)
denssm(t) = Z dens; (6.11)
T ET
densyq (1) = mgx(densi) (6.12)
T ET

Density values characterize computational requirements. A tighter bound is pro-
vided by the so-called demand bound function (DBF):

Definition 6.13 For any sporadic task t; and any real number t > 0, the demand
bound function DBF (t;,t) is the largest cumulative execution requirement of all
jobs that can be generated by t; to have both their release times and their deadlines
within a contiguous interval of length t.

The overall execution requirements of task t; over an interval [ty, 7y + ) are
maximized if one of its jobs arrives at the start of the interval—i.e., at time
instant fo—and its subsequent jobs arrive as rapidly as permitted, i.e., at instants
to+ T;, to + 2T;, to + 3T;, . . .. This observation leads to Eq. (6.13) [39, 41]:

t—D;
DBF(t;,t) = max (O, <{TJ + 1) * Ci) (6.13)

Density and the demand bound function are related:

Lemma 6.1 For all tasks t; and for all t > 0:
t xdens; > DBF(t;,1) (6.14)

Proof Let us compare the graphs depicting density and DB F as a function of time.
Figure 6.18 shows both functions. The left hand side of Eq. (6.14) is visualized as
the straight line with slope dens;. DBF is a step function with steps of height C;.
Whenever a task must be executed, the step function increases by C;. The first step
is at ¢ = D;. By definition of the density, this step does not exceed the straight line.
The next steps willbe att = D; + T;,t = D; +2T;,t = D; + 3T;, and so on, since
these are the intervals of time after which the demand increases by C;. Again, these
steps will not exceed the straight line. O
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Fig. 6.18 Comparison of DBF, dens
density and DBF
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EDF can be easily extended to handle the case when deadlines are different
from the periods. For RM scheduling, the extension is called deadline monotonic
scheduling.

Deadline Monotonic Scheduling

Explicit-deadline tasks can be dealt with in deadline monotonic (DM) scheduling.
For DM scheduling, static task priorities are based on nonincreasing deadlines: for
any two tasks t; and t;/, the priority of t; will be higher than that of ¢y if D; < D;.

For constrained-deadline tasks, constraint (6.7) can be generalized into con-
straint (6.15) which is sufficient, but not necessary [81]:

n

Z % <n@/" -1 (6.15)

i=1 !

6.2.4 Periodic Scheduling with Precedence Constraints

Scheduling dependent tasks is more difficult than scheduling independent tasks, in
particular in the non-preemptive case ((1l r;, prec, periodic | L,,4x) in the triplet
notation). The problem of deciding whether or not a non-preemptive schedule exists
for a given set of dependent tasks and a given deadline is NP-complete [178]. In
order to reduce the scheduling effort, different strategies are used:

* adding additional resources such that scheduling becomes easier,

* partitioning of scheduling into static and dynamic parts. With this approach, as
many decisions as possible are taken at design time, and only a minimum of
decisions is left for run-time.

6.2.5 Sporadic Events

In the case of sporadic events, we could connect sporadic events to interrupts and
execute them immediately if their interrupt priority is the highest in the system.
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However, quite unpredictable timing behavior would result for all the other tasks.
Therefore, special sporadic task servers are used which execute at regular intervals
and check for ready sporadic tasks. This way, sporadic tasks are essentially turned
into periodic tasks, thereby improving the predictability of the whole system.

6.3 Scheduling for Independent Jobs on Identical
Multiprocessors

Next, we are going to consider multiprocessors, due to their widespread use in the
form of multi-cores in contemporary embedded systems. A large number of issues
have to be considered during the transition from uniprocessors to multiprocessors.
Initially, we assume having m identical processors (or “cores”). Furthermore,
we assume dealing with a task system 7 = {r1,...,17,} where each task i is
characterized by its worst case execution time (WCET) C; and—in case of periodic
or sporadic tasks—its period 7; which is considered to also define the deadline
unless otherwise noted. Whenever the periodic or sporadic nature of tasks is not
relevant, we may also consider a set of jobs with explicit deadlines d; instead.

For multiprocessor s, it is not sufficient to decide when to execute tasks or their
jobs. Rather, we must decide when to execute jobs and where to execute them.
Thus, a one-dimensional problem becomes a two-dimensional problem.

For m identical processors, obvious necessary conditions for schedulability are

Vi : u;
Usum

IA

(6.16)
6.17)

IA
3

6.3.1 Partitioned Scheduling

Our presentation in the next sections is based predominantly on a book written by
Baruah et al. [41] and complemented by material from other sources like a survey
paper by Davis et al. [119] and slides by I. Puaut [461, 462]. Baruah et al. focus on
sporadic task systems. This is partly motivated by the fact that for such systems—
in contrast to periodic task systems—no global time synchronization is required
for releasing jobs. Rather, it is sufficient to maintain a time base which ensures
that the minimum intervals 7; are kept. Also, sporadic task systems are considered
for complexity reasons. We start by considering sporadic implicit-deadline tasks on
identical multiprocessors. In the triplet notation, this corresponds to the case (Pm |
D; = T;, sporadicl. . .).

Furthermore, we are initially restricting ourselves to the case of partitioned
scheduling. This means that each task is allocated to a particular processor. Task
migration is not allowed. Partitioned scheduling for synchronous arrival times can
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be done by bin packing [306], defined in a notation adjusted for real-time scheduling
as follows:

Definition 6.14 Let T = {1, ..., n} be a set of items, where each item i € 7 has a
size ¢; € (0, 1]. Let m = {1, ...m} be a set of bins with capacity one. The problem
of finding an assignment a : t — 7 such that the number of nonempty bins m < n
is minimal and such that allocated sizes do not exceed the bin capacity is called the
bin packing problem.

Bin packing is known to be NP-hard [178]. Hence, optimal algorithms such as the
one proposed by Korf [305] need large run-times. Formalization of the scheduling
problem as a bin packing problem aims at the minimization of the number of
processors m.

For a given number m of processors, it is more appropriate to model scheduling
for synchronous arrival times as a knapsack problem, more precisely as a 0/1
multiple knapsack problem. This problem can be defined as follows, again using
a notation adjusted for real-time scheduling:

Definition 6.15 (Martello [367]) Lett = {1, ..., n} be a set of n items, each with
a size ¢; and a benefit b;. Let m be a set of m knapsacks, each with a capacity «y,
with (m < n). Suppose that we can partially allocate a subset of items to knapsacks
(a : T — m) such that size constraints are respected:

Vk : Z ¢i < K. (6.18)

i,ai—k

The problem of selecting disjoint subsets of items so that the total profit ), b; for
items in knapsacks is maximized is called the 0/1 multiple knapsack problem
(MKP).

Given an algorithm for the 0/1 multiple knapsack problem, we can allocate jobs
to m processors. For identical processors, capacities would all be equal. For uniform
processors, we can use capacities to take processor speeds into account. The 0/1
multiple knapsack problem is NP-hard as well. Note that we would possibly not
schedule all tasks.

Due to the complexity of scheduling for synchronous arrival times, there is
no hope for efficient optimal algorithms for the general problem, and in practice,
heuristics are used. Common heuristics are considering tasks and processors in a
certain sequence. Heuristics differ by the sequence they use. Lopez et al. [355] have
compared several heuristics. They restrict themselves to the so-called reasonable
allocation algorithms, defined as follows:

Definition 6.16 A reasonable allocation (RA) algorithm is defined as one that
fails to allocate a task to a multiprocessor platform only when the task does not fit
into any processor upon the platform.

Definition 6.17 A reasonable allocation decreasing (RAD) algorithm is defined
as an RA algorithm considering tasks in a nonincreasing order of utilization.
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The algorithms studied by Lopez et al. are obtained by combining all possible
combinations of two characteristics:

1. The order in which tasks are considered: tasks can be considered in decreasing
order of utilization (denoted by D), in increasing order of utilization (denoted by
I), and in arbitrary order (denoted by an empty character).

2. The search strategy for processor allocation: we consider processors to be
ordered in some way. Then, the first fit strategy (FF) will allocate the first
processor on which it fits. The worst fit strategy (WF) will allocate the processor
with the largest remaining capacity. The best fit strategy (BF) will allocate the
processor with the minimum remaining capacity on which it fits.

There are a total of nine combinations. All combinations can be implemented
efficiently. For example, algorithm FFD can be detailed as follows:

Sort task set according to nonincreasing utilizations u; = C; / T;;
/* Assume task set is renumbered according to the sorting;x/

for (mt=0; mt < m; mt++) K[mt] =1; /* initialize capacity x/
for (i=1; i<n; i++) { /* for each task */
for (mt=1; (u; >K[mt]) and (mt<m); mt++); /x sufficient capacity? */
if (mt > m) mt=0; /* no solution, use index @ */
afil=mt; /* return processor allocation in array =/
KEmt1=K[mt]-u; ; /* update remaining capacity */
3

The heuristic algorithm is certainly not optimal. There may be the question: how
far are we off the optimum? Many publications discuss upper bounds on the number
of additional processors needed, if compared to the minimum number of processors
needed for optimal bin packing. The paper by Dosa [136] is an example of this.
For real-time systems, a different question is relevant: is there, for a given number
of processors, any bound on the overall utilization up to which schedulability is
guaranteed? One utilization bound was proved by Lopez et al. [355]:

Theorem 6.6 Any reasonable allocation algorithm has a utilization bound no
smaller than

Ut(Unax) =m — (m — DUpax (6.19)

Proof When a task with utilization u; cannot be allocated, every processor must

have tasks allocated to it with a per processor utilization exceeding (1 — u;). The
overall utilization over all allocated tasks and including 7; must then exceed:

m(l—u))+u, =m—(m— Du; (6.20)

> m— (m— 1)Upax (6.21)
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This condition must be met for allocation not to be feasible. O

Furthermore, define 8 as

1
B = LUWJ 6.22)

B is a lower bound on the number of tasks of our task set which we can run on
a single processor. Let us assume that EDF is used for local scheduling on each
processor. Lopez et al. also showed the following theorem:

Theorem 6.7 No allocation algorithm can have a utilization bound larger than

Bm+1

Up2(B) = 1

(6.23)

Proof See Lopez et al. [355]. O

Lopez et al. also proved that WF and WFT have Eq. (6.19) as their lower bound;
the remaining algorithms have Eq.(6.23) as their lower bound. Whenever U,
approaches 1, the bound in Eq. (6.19) also approaches 1:

Ugi(1) =1 (6.24)
When Uy, gets close to 1, 8 becomes 1, and Up, becomes

1
Upa(1) = % (6.25)

The bound in Eq.(6.25) allows us to use multiple processors in a much more
efficient way compared to the bound in Eq. (6.24). Hence, with respect to these
bounds, WF and WFT are inferior to the other seven algorithms. Experimentally,
it has been shown that FFD seems to be superior to FF or FFI and BFD seems
to be superior to BF and BFI [41]. There is also some theoretical evidence which
supports this observation [41].

The sketched nine algorithms are relatively simple algorithms. We refrain from
presenting more elaborate algorithms for the same problem since the problem
considered is too much simplified to apply to realistic applications:

* The scheduling problem, as it has been addressed in this section, is a very much
restricted one. There are no precedences, no preemption, and only identical
processors.

* Partitioned scheduling may lead to unused processor resources even in situations
where jobs are available. This means that partitioned scheduling is not work-
conserving. Therefore, optimality is not guaranteed.
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Hence, the information in this section provides fundamental knowledge, but practi-
cal applications require more sophisticated approaches, like the ones to be presented
in the following sections.

6.3.2 Global Dynamic-Priority Scheduling

Having unused processors in the presence of available jobs can be avoided with
global scheduling. For global scheduling, the allocation of processors to tasks
or jobs is dynamic. This gives us more flexibility, especially in the presence
of changing workloads or processor availabilities. In the absence of execution
constraints, upper bounds on the utilization like the ones in Constraints (6.19)
and (6.23) are replaced by

Usym <m (6.26)

However, this better utilization bound and flexibility comes at the price of a certain
overhead for scheduling decisions, preemptions, and job migrations.

Proportional Fair (Pfair) Scheduling

The key idea of proportional fair (pfair) scheduling [40] is to execute each task at
a rate corresponding to its utilization.® For example, if u; = 0.5 for a set of tasks,
then each task should be executed approximately half of the time, regardless of the
number of processors. For pfair scheduling, we assume that time is quantized and
enumerated with integers. Also, C; and 7; parameters are represented by integers.

Definition 6.18 The lag of a task t; at time 7 with respect to schedule S, denoted as
lag (S, t;, t), is the difference between the number of slots that a task has received
and the number of slots that it should have received:

-1
lag(S, ti, t) = u; %t — Zalloc(S, Ti, U) (6.27)
u=0

The first term is the target execution time of task 7;; the second is the time during
which this task has been executed in schedule S. A schedule is said to be a pfair
schedule if the lag remains in the interval (—1, +1).

5The presentation of pfair scheduling is based on slides by I. Puaut [462].
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executed time e P

Fig. 6.20 Intervals for allocated execution time

Example 6.10 Figure 6.19 shows the function of actually executed time as a
function of real time. The amount of executed time should not reach the two dashed
lines.

For pfair scheduling, we divide each task 7; into subtasks ‘L’l-] , where j enumerates
the execution intervals. For each subtask, we define a pseudo-release time and a
pseudo-deadline:

rt)) = Vu_ IJ (6.28)
d(r/)) = Lﬂ (6.29)

Example 6.11 Consider a task 7; with C; = 8 and 7; = 11. Possible intervals for
the number of allocated execution slots for each j are shown in Fig. 6.20.

For example:
6—1 55
6
e LS/HJ lsj

p 6 66
@) = (sﬂ = H =9

Hence, the sixth subtask of task 7; must be executed in time interval (6:9). \Y
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One particular approach for allocation of a correct number of execution slots is
presented in the book by Baruah et al. [41]. In general, there are variations of this
scheme: we can apply EDF to pseudo-deadlines, or we can modify EDF by defining
rules which are applied in case of ties. It is feasible to obtain schedulability for full
processor utilization, i.e., for Ugy,, < m.

Pfair scheduling potentially suffers from a large number of migrations between
processors. Also, due to the integer (over-)approximation of execution times, it is
not work-conserving. Variants have been proposed which reduce the overhead for
job migrations. Also, the overall complexity can be reduced with some variants.

Pfair scheduling finds many applications in operating systems, for example, for
scheduling virtual machines.

6.3.3 Global Fixed-Job-Priority Scheduling
G-EDF Scheduling

We can also try to solve the two-dimensional problem with extensions of uniproces-
sor scheduling algorithms. For example, we could use global EDF (G-EDF). G-EDF,
just like EDF, defines job priorities based on the closeness of the next deadlines.
If m processors are available, those m jobs having the highest priorities among
all available jobs are executed. Obviously, such priorities are job-dependent and
not just task-dependent. In a global scheduling strategy, we would like to keep
preemptions and task migrations to a minimum. For G-EDF, these numbers depend
on how we allocate tasks/jobs to a particular processor [189].

Lemma 6.2 G-EDF is not optimal.

Proof The proof is by counterexample, adopted from Cho et al. [102]. Suppose
m=2and Cy =3,D1 =4,C, =2,Dy =3,C3 =2, and D3 = 3. As shown
in Fig. 6.21 (left), G-EDF schedules J> and J3 first, due to their earlier deadline. J;
misses its deadline. However, a schedule is feasible, as shown in Fig. 6.21 (right).
O

Fig. 6.21 Left, G-EDF violates deadline at 1 = 4; right, feasible schedule
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Fig. 6.22 Dhall effect T,

I
— ~ t
1+¢

Obviously, the problem for G-EDF results from not being able to use the second
processor for ¢t > 2.

In general, G-EDF may suffer anomalies like the so-called Dhall effect [130]:
periodic task sets for which one task has a utilization close to one cannot be
scheduled with G-EDF.

Example 6.12 To demonstrate the effect, let us consider the case of n = m + 1 and

Viel[l..m]:T; =1,C; =2¢&,u; =2¢ (6.30)

Tuy1 =1+ Cuy1 = Ltmi1 = 715 (6.31)

A corresponding schedule is shown in Fig. 6.22. Initially, only tasks 7y, .., T
are executed. The execution of task 7,41 starts only after the first m tasks have
completed their execution, and it will miss its deadline. The presence of a single
task 7,41 with a high utilization is sufficient to cause a deadline miss att = 1 4 ¢.
This happens even though the utilization of the other tasks is very small. In fact, the
utilization of tasks 71, ..7,, can be arbitrarily small, and we will still have a deadline
miss. v

This motivates using variants of algorithms which assign high priorities to tasks
with a high utilization, regardless of their deadline or period.

Algorithm fpEDF is such an algorithm. We assume that we are given an implicit-
deadline sporadic task system t = {r1,...7,} and that tasks are ordered by
nonincreasing utilizations u;. Our goal is to schedule these tasks on m identical
processors while avoiding the Dhall effect. Algorithm fpEDF works as follows [41]:

for (i=1; i < m—1; i++){
if (u; >0.5) 1;’s jobs obtain highest priority (ties broken arbitrarily)
else break;

} /* Remaining jobs get priorities according to EDF. %/

This means that the m — 1 tasks of largest utilization will obtain the highest
priority if their utilization exceeds a value of 0.5.

Theorem 6.8 Algorithm fpE DF has a utilization bound no smaller than mTH

This is the best bound which we can expect unless some additional information is
known, as is evident from the following theorem.
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Fig. 6.23 G-EDF: left, missed deadlines; right, ZL improvement

Theorem 6.9 No m-processor fixed-job-scheduling algorithm has a schedulable

utilization greater than mT—H

The proofs of both theorems can be found in [41]. As in the case of partitioned
scheduling, stronger bounds are feasible if the largest utilization is known.

A similar idea is used in scheduling algorithm EDF(k): for EDF(k), k tasks of
highest utilization obtain the highest priority, breaking ties arbitrarily. All other tasks
are scheduled according to EDF.

Theorem 6.10 EDF(k)will schedule T on m unit-speed (homogeneous) processors,
where t is an implicit-deadline sporadic task system.

(k+1)
Ul(t_—uk)—‘ (6.32)

m:(k—1)+’7

and U (t**D) is the utilization for the task set with the first k tasks removed.

The proof of this theorem can again be found in [41].

EDZL Scheduling

Obviously, G-EDF can miss deadlines for task sets that are schedulable. We can
improve G-EDF by adding a consideration of laxity: the EDZL algorithm applies
G-EDF as long as the laxity of jobs is greater than zero (see [41, Chapter 20]).
However, whenever the laxity of a job becomes zero, the job gets the highest priority
among all jobs, even including currently executing jobs.

Example 6.13 Consider the example in Fig. 6.23, adopted from Puaut [461]. In this
example, parameters are as follows: n = 3, m = 2,71 = T» = T3 = 3, and
C1 = C, = C3 = 2. For this example, G-EDF misses the deadlines for r3 at times
t = 3nforn = 1,2,3.., as can be seen in Fig. 6.23 (left). However, EDZL keeps
the deadlines as can be seen in Fig.6.23 (right). The detailed behavior depends
somewhat on the processor allocation used by EDZL. v
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Fig. 6.24 Schedule generated by G-RM

EDZL is strictly superior to EDF, as shown by Choi et al. [101]. Informally,
this can be shown as follows:” suppose that S is a schedule from EDF, and S’ is a
schedule from EDZL for the same input task set. If a job at time 7 is scheduled in
EDZL but not in EDF, then the job misses the deadline in EDF but not in EDZL. If
both schedule the job, then the schedule remains the same. That is, the first moment
when S differs from S’ has the following results:

¢ either EDZL remains feasible but EDF becomes infeasible
¢ or both EDZL and EDF are infeasible.

Therefore, EDZL 1is superior to EDFE. Piao et al. [452] proved the following
utilization bound for EDZL

1
Usum < % (6.33)

6.3.4 Global Fixed-Task-Priority Scheduling
Global Rate Monotonic Scheduling

In a similar way, we can extend rate monotonic scheduling to global rate monotonic
scheduling (G-RM). For G-RM, there is an anomaly concerning relaxed schedules:

Lemma 6.3 For G-RM, there may be situations in which schedules exist for a
certain task system, but deadlines are violated if periods are extended.

Proof We prove the existence of such situations by means of an example, adopted
from Puaut [461]. Consider the case m = 2, n = 3,71 =3, Cy =2, T, = 4,
Cy =2,T3 =12, and C3 = 7. Figure 6.24 shows a schedule generated by G-RM.
If we extend the period of t; to 71 = 4, t3 will miss its deadline (see Fig. 6.25).

7T owe this informal explanation to J.J. Chen, TU Dortmund.
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Fig. 6.25 Schedule with a missed deadline at t = 12 generated by G-RM

This counterintuitive result makes the design of proofs and examples much more
complex, compared to the uniprocessor case. O

The critical instant theorem for uniprocessors (see p. 314) is also not valid for multi-
core systems.
The following utilization bound has been shown for G-RM:®

Theorem 6.11 Any implicit-deadline periodic or sporadic task system T satisfying
m
Usum = 3(1 = Unax (1)) + Upax (7) (6.34)

is successfully scheduled by G-RM on m unit-speed (homogeneous) processors [50].

G-RM also suffers from the Dhall effect: note that Uy, in Eq.(6.34) approaches
zero as Uy,qx approaches one. Also, like G-EDF, the algorithm cannot fully exploit
the presence of multiple processors.

Therefore, algorithm RM-US(&) with threshold & has been proposed, where US
stands for utilization threshold. Given an implicit-deadline sporadic task system t =
{r1, ... 7,} and tasks ordered by nonincreasing utilizations u;, the goal is to schedule
these up to (m —1) high utilization tasks on m — 1 identical processors while avoiding
the Dhall effect, leaving at least one processor for the remaining tasks. RM-US(§)
works as follows:

for (i=1; i<m —1; i++) {
if (u; > &) 1; is assigned highest priority
else break;
} /* remaining tasks are allocated according to G-RM */

Theorem 6.12 Algorithm RM-US(§) has a utilization bound no smaller than
—(3,Z1i2) upon m unit-speed processors.

The proof was published by Andersson et al. [16]. For 3m > 2, this bound
approaches 7. A tighter bound was shown by Chen et al. [97].

8 A tighter bound has been shown by Chen et al. [97].
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RMZL Scheduling

G-RM might miss deadlines for task sets that are schedulable, and we can consider
improvements. One such improvement is RMZL scheduling. For RMZL scheduling,
we use (G-)RM scheduling as long as the current laxity is larger than zero. However,
when the laxity becomes zero for one of the jobs, we raise its priority to the highest.
RMZL scheduling is superior to RM scheduling, since schedules are changed only
when RM scheduling could have missed a deadline [41].

Partitioned Scheduling for Explicit Deadlines

Partitioned scheduling for explicit-deadline task systems can be done similar to
partitioned scheduling for implicit-deadline task systems by replacing sorting by
utilization with sorting by density. However, this approach is not recommended,
since density can be unbounded in certain cases. Baruah et al. present a better
approach for partitioned scheduling [41].

6.4 Dependent Jobs on Homogeneous Multiprocessors

Results presented in the previous section constitute fundamental basic knowledge,
but the restriction to independent tasks and identical processors inhibits their appli-
cation for many design problems. Next, we will be dropping these restrictions. First
of all, we will be dropping the restriction to independent tasks and focus on some
simple algorithms used in the design automation community. For example, as-soon-
as-possible (ASAP), as-late-as-possible (ALAP), and list (LS) and force-directed
scheduling (FDS) are very popular for automated synthesis from algorithmic design
descriptions, the so-called high-level synthesis (HLS) (see, for example, Coussy
[113]).

6.4.1 As-Soon-as-Possible Scheduling

Considering precedence constraints, as-soon-as-possible (ASAP) scheduling tries
to schedule each task as soon as feasible. ASAP scheduling, as used in HLS,
considers a mapping of tasks to integer start times: S : T — Ny. Allocation to
specific processors has to be performed after ASAP scheduling. Preemptions are
not allowed.

We assume that the execution times of all tasks are known and that they are
independent of the processor executing the tasks. Hence, we are assuming that
processors are homogeneous. The algorithm does not consider any constraints on
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the number of processors and assumes that the number of processors needed for the
resulting schedule is available. The ASAP algorithm works as follows:

for (¢=0; there are unscheduled tasks; r++) {
t/={all tasks for which all predecessors finished};
set start time of all tasks in 7’ to t;

}

Example 6.14 Let us assume that the task graph of Fig. 6.26 (left) is given.

Each node labeled i represents a task 7;. Furthermore, let us assume that
execution times correspond to those listed in Fig. 6.26 (right).

Then, ASAP scheduling will generate the schedule shown in Fig. 6.27. Numbers
in blue denote start times; numbers in green denote finish times. Tasks 72 to 74
all start immediately after task t; has finished, since they do not depend on any
other task. Also, tasks 77 to 79 start as soon as the last of their predecessors has
finished, and the same holds for task 71¢g. The red line in Fig. 6.27 (right) shows that
a maximum of five processors is needed, since ASAP scheduling does not consider
any constraints on the number of processors. \Y

Task | C;
1 9
2 13
3 11
4 8
5 10
6 9
7 7
8 5
9 12
10 7
01
1
10
12 6
201
Lo
301 9
] 101
404
t

Fig. 6.27 Left: ASAP scheduled task graph; right: time line
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ASAP scheduling minimizes the makespan, since all tasks are scheduled as early
as possible. The presented algorithm could be extended to also cover real numbers
as execution times. We may consider ASAP scheduling to be of linear complexity,
provided that we use a clever technique for computing 7’. The algorithm can also
be applied to personal life, corresponding to a situation where each person is eager
to perform available work as early as possible.

6.4.2 As-Late-as-Possible Scheduling

As-late-as-possible (ALAP) scheduling is the second simple scheduling algorithm
for dependent tasks. For ALAP scheduling, all tasks are started as late as possible.
The algorithm works as follows:

for (¢=0; there are unscheduled tasks; 7r--) {
7/={all tasks on which no unscheduled task depends};
set start time of all tasks in 7/ to (¢ - their execution time);

3
Shift all times such that the first tasks start at ¢=0.

The algorithm starts with tasks on which no other task depends. These tasks are
assumed to finish at time 0. Their start time is then computed from their execution
time. The loop then iterates backward over time steps. Whenever we reach a time
step, at which a task should finish the latest, its start time is computed, and the task
is scheduled. After finishing the loop, all times are shifted toward positive times
such that the first task starts at time 0. We could also consider ALAP scheduling as
a case of ASAP scheduling starting at the “other” end of the graph.

Example 6.15 For the task graph in Fig. 6.26, ALAP scheduling would generate the
result shown in Fig. 6.28. The color coding is the same as for the ASAP example.
Note that each task finishes as late as possible. In particular, tasks 77 to 79 finish only
at time 34. Tasks 74 to 7 finish later than for the ASAP schedule. Tasks 71, 17, 19,
and 11o are scheduled as in the ASAP schedule, since these tasks determine the
makespan. Tasks which determine the makespan are said to be on the critical path.
Five processors are needed, as indicated by the red line. \Y%

This scheduling strategy can also be applied to personal life. It corresponds to a
situation where each person (is lazy and) finishes tasks as late as possible. Many
processors are needed if the task graph is very wide at its lower end.’

9This corresponds to a lot of work in the final phase if people start lazy.
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Fig. 6.29 Running example, left: mobility; right, number of successors

6.4.3 List Scheduling

With list scheduling (LS), we try to maintain the low complexity of ASAP and
ALAP scheduling while making the algorithm aware of available processors.
Processors may be of different types, but we do still assume that there is a
one-to-one mapping between tasks and processor types. Hence, processors may
be heterogeneous, but the crucial mapping from tasks to processor types is not
generated by list scheduling.

We assume that we have a set L of processor types. List scheduling respects
upper bounds B; on the number of processors for each type [ € L.

List scheduling requires the availability of a priority function reflecting the
urgency of scheduling a certain task 7;. The following urgency metrics are in use
[528]:

* Mobility is defined as the difference between the start times for the ASAP and
ALAP schedule. Figure 6.29 (left) shows the mobility for our running example
in red. Obviously, scheduling is urgent for the four tasks on the critical path for
which mobility is zero.

* The number of nodes below task 7; in the tree (see Fig. 6.29 (right)).

* The path length for a task 7; is defined as the length of the path from starting
at 7; to finishing the entire graph G. The path length is typically weighted by
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Fig. 6.30 Left, task graph with path lengths; right, time line for path length based list scheduling

the execution time associated with the nodes, assuming that this information is
known. In Fig. 6.30 (left), path lengths have been added.

List scheduling requires the knowledge of the task graph G = (t, E) to be
scheduled, a mapping from each node of the graph to the corresponding resource
type ! € L, an upper bound B; for each [, a priority function (as just explained), and
the execution time for each task 7; € 7. List scheduling then fits nodes of maximum
priority into each of the time steps such that the constraints are not violated [528]:

for (¢#=0; there are unscheduled tasks; f++) /* loop over times */
for (Iel) { /* loop over resource types x/
f:z = set of tasks of type [ still executing at time 7;
r;f}k = set of tasks of type [ ready to start execution at time ¢;
Compute set 7/ C r:;k of maximum priority such that
|7/ + It < By.
Set start times of all 1; €7/ to r: 5; =¢;

}

Example 6.16 Figure 6.30 shows the result of list scheduling as applied to our
example in Fig. 6.26, using path length as priority. We assume that all processors
are of the same type and that we allow no more than three processors (B = 3).
At time 9, tasks 1, 74, and t5 have the longest path length and hence the highest
priority. 74 finishes at time 17, and 13 and 76 have the longest path length of the
remaining tasks. We assume that we schedule 3. At time 19, 75 finishes and 74 can
be started. At time 28, t3 and 74 finish, freeing processors for 7 and 7g. 77 finishes
at time 35, enabling dependent task 71 to start and to finish at time 42, only slightly
later than in the ASAP and ALAP schedules, despite using only three processors.

\Y

LS—Ilike ASAP and ALAP scheduling—does not allocate tasks to processors,
but there is also no need for doing this for the restricted resource model. LS can also
be extended to real numbers as execution times. The algorithm typically generates
good results and is easy to adapt to various scenarios. These two features make LS
a very popular scheduling algorithm for tasks with precedences.
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Force-directed scheduling (FDS) is another heuristic scheduling algorithm for
dependent tasks. FDS aims at an efficient use of processors. It tries to balance the
number of processors that may be needed at any particular time [449].

6.4.4 Optimal Scheduling with Integer Linear Programming

Next, we will be describing an approach for mapping tasks to multiple processors for
which decisions are taken on a more global view of the design problem. It is based
on integer linear programming (ILP) (see Appendix A). In this way, constraints and
optimization goals are made explicit. We are adopting material from a publication
of Coscun et al. [112] in our presentation.
ILP models consist of a linear cost function and a set of linear constraints. We
will use the following variables in these two parts of the model:
xi : = 1 if task 7; is executed on processor m; and =0 otherwise
s; © start time of task T;
fi : finish time of task t;
C; : execution time of task t;
b; j : = 1if task 7; is executed before t; on the same processor, else = 0
Let us assume that our task graph G = (7, E) has a common exit node ;. If no
such node is initially present, we add a virtual node. The finish time of this node is

equivalent to the makespan M S,,,,,.. We can use this finish time as our cost function
to be minimized. Hence, the objective of ILP minimization can be expressed as:

Min(f,,) (6.35)

First, the set of constraints ensures that each task is executed on some processor:

Viet: Y xip=1 (6.36)
ke{l..m}

Second, the different times are related by the following equations:
Viiet: fi=si+C; (6.37)
Third, in order to respect precedence relations, the following equations can be used:
V(ti,tj))€E:s;— fi >0 (6.38)

Fourth, in a single core, execution is in a sequence as determined by variable b; ;:
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V(zi,Tj): fi <sjifbh;j =1 (6.39)

Fifth, each processor can execute only a single task at a time:
V(ti,tj) i bij+bji=1ifAm i =xj =1 (6.40)

Equations (6.39) and (6.40) can be turned into the linear form required for ILP [112].
The resulting ILP model can be fed into some available ILP solver. ILP
models have the advantage of precisely modeling the design problem and the
objectives. They enable optimizations from a global viewpoint, using mathematical
optimization techniques and stepping away from imperative programming.

The ILP problem is NP-hard. Therefore, run-times of ILP solvers can become
large, but there has been significant progress in the design of ILP solvers. Hence,
moderately large problems can be solved in acceptable times. However, due to
the complexity of ILP, these approaches do not scale to really large designs, and
run-times may be unacceptable. Nevertheless, these models can be used for exact
optimization of moderately large design problems and serve as a good starting point
for heuristics for larger problems.

6.5 Dependent Jobs on Heterogeneous Multiprocessors

6.5.1 Problem Description

Next to dropping the restriction to independent tasks, we would like to drop the
restriction to homogeneous processors. We assume that the processing speeds of
processors of our execution platform = = {my, ..., 7} are unrelated. According
to Pinedo’s triplet notation, we are considering the case (R, |ri, prec,...|...),
including platforms comprising a mixture of execution units, like FPGAs, GPUs,
etc.

The theory of the resulting scheduling problems has not been studied com-
prehensively. As a result, Baruah et al. [41] state (in Chapter 22): “although
unrelated multiprocessors are becoming increasingly more important in real-time
systems implementation, the resulting scheduling theoretic study of such systems is,
relatively speaking, still in its infancy.” Some first results are presented in the book
by Baruah, but we resort to presenting methods published in the design automation
community. They can handle realistic design tasks, sacrificing proofs of optimality.
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6.5.2 Static Scheduling with Local Heuristics

We will now describe the heterogeneous-earliest-finish-time (HEFT) and the
critical-path-on-a-processor (CPOP) algorithms for static scheduling of tasks
in a task graph G = (7, E) onto a heterogeneous multiprocessor system
n = {m,..., Ty} [545]. These two algorithms are standard examples of fast
algorithms. In a way, they extend ASAP and ALAP scheduling for heterogeneous
processors. This is the notation we need:

* We assume that the task graph has a common entry node 7;;,y. If no such node
is initially present, we will add an artificial node having zero execution time and
communication bandwidth requirements.

* We assume that the task graph has a common exit node t,,;;. If no such node is
initially present, we will add an artificial node having zero execution time and
communication bandwidth requirements.

* Matrix C = (c; x) denotes the execution time of task t; on processor 7.

* Matrix B = (by,) denotes the communication bandwidth for communication
from processor 7y to processor ;.

* Matrix data = (data; ;) represents the amount of data which must be
transmitted from task 7; to task ;.

e Vector k = (ki) contains the communication startup costs on processor k.

* Matrix H = (h; j ) describes the communication cost from task 7; to task t;
under the assumption that 7; is mapped to processor m; and task z; is mapped to
processor 7;.1°

We will use index i for the source of precedences and index k for its allocated
processor. For the sink, we use j and [ accordingly.

* For a mapping to processors 7ty and 7, h; j x,; Tepresents the communication cost
from task 7; to task t;:

dataij .
hi j k1 = Kk + L ifk #1 (6.41)
k.l
=0ifk =1 (6.42)

* The average communication cost is defined as

g = e 4 20 (6.43)
i,j = il .

where & is the average communication startup time and B is the average
communication bandwidth.

e Given a partial schedule, s.(7;, mx) is the earliest start time for task t; on
processor 1. Obviously, s¢(Tensry, k) is zero, for any k.

10Tndexes k and I are not explicit in the original paper.
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e We define f.(t;, ) as the earliest finishing time for task 7; on heterogeneous
processor mx. fe(Tentry, k) is equal to Conrry k-
* Once the decision to schedule task 7; on processor my has been taken, the actual
start time s(t;, x) and the actual finish time f(t;, ;) can be computed.
se(tj,m) and f.(tj, ;) can be computed from a partial schedule iteratively
as follows:

se(tj, 1) = max {avail(l), maxy,epreacr))(f () + hijrn)}  (6.44)
fe(tj,m) = cji+se(tj, m) (6.45)

where pred(t;) is the set of immediate predecessor tasks of task t;, k is the
processor task t; is mapped to in the partial schedule, and avail(l) is the time
that processor 7; completed the execution of its last task. The max expression in
the inner term is the time when all data needed by t; has arrived at processor ;.

* For HEFT and CPOP, we assume that the makespan is to be minimized. The
makespan is computed from the actual finish time of the exit node:

makespan = f(Texit) (6.46)

» The average execution time ¢; is the execution time ¢; ; averaged over all 7.
e The upward rank rank,(t;) of a task t; is the length of the critical path from
the exit node up to and including node t;:

ranky (Texit) = Cexit (6.47)
rank,(t;) = ¢ + max (h;; +rank,(z;)) (6.48)

Tj€esucc(t;)

succ(t;) is the set of successors of task 7; in the task graph.
* The downward rank rank,(t;) of a task t; is the length of the critical path from
the start node up to and excluding node 7;:

rankd(rentry) =0 (6.49)
rankg(t;) = max )(rankd(ri) +ci + m) (6.50)

Ti€pred(z;
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The HEFT algorithm is shown below:

Set the computation and communication costs to mean values;
Compute rank,(t;)Vt; (upward traversal starting at Teyi:);
Sort tasks in nonincreasing order of rank, values;
while there are unscheduled tasks in the list do {
select the first task 7; in the list for scheduling;
for each processor m; e {
compute f,(t;, Tx) using an insertion based scheduling policy;

}

assign task t; to processor m; minimizing f. (7, x);

}

In this context, “insertion-based policy” means that the algorithm searches for
a sufficiently large gap among already scheduled tasks such that an allocation into
this gap would respect precedence constraints.

Example 6.17 Suppose that execution times are given by the table in Fig. 6.31 (left).
Note that for each task, the execution times in Fig. 6.26 (right) have been selected
as the minimum time among the three processors. Figure 6.31 (center) shows the
schedule obtained by HEFT for the DAG shown in Fig. 6.26 (left). Precedences
have been correctly taken into account. We cannot expect to generate the same
short schedule as for ASAP or ALAP scheduling as these policies ignore resource
constraints. \Y

Task | Tp | T | 73

T |14]16]9 07 07
2 | 13[19]18 107] 107
3 [11[13]19 20 207 -
4 [13[8 |17 30 307
5 [12[13[10 407 407
6 |13]16]9 507 507
7 15[11 607 607
8 |5 11|14 707 707
9 |18]12]20 807 T 807
R o) 90

Fig. 6.31 Left, execution times; center, results for HEFT; right, results for CPOP

The CPOP algorithm focuses on the critical path in the DAG and uses different
task priorities and different processor allocation strategies. The CPOP algorithm
works as follows:
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Set the computation and communication costs to mean values;
Compute Vi : rank,(t;) and ranky(t;);
Compute Vi : priority(t;) = ranky(t;) + rank,(z;);
|CP| = priority(Tenry); /* length of the critical path %/
SETcp = {Teniry}, where SETcp is the set of tasks on the critical path;
Ti = Tentry;
while 7; is not the exit task {
Select t; € succ(t;), where priority(z;) == |CP|.
SETcp = SETcp U {‘Ej};
T = ‘L'j
33
Select processor mcp minimizing execution time on the critical path;
Initialize the priority queue with the entry task;
while there is an unscheduled task in the priority queue {
Select the highest priority task t; from the priority queue;
if t; € SETcp {assign task 7; on wcp 3
else{assign task 7; to the processor which minimizes f,(z;, mx)};
Update priority queue with successors of 7; if they become ready;

}

Example 6.18 Figure 6.31 (right) shows the scheduling result for algorithm CPOP.
\Y

The HEFT and CPOP algorithms are fast and relatively simple algorithms. Obvi-
ously, these algorithms make use of several approximations (e.g., average com-
munication costs) and heuristics. They were selected for this book to demonstrate
some key issues of scheduling algorithms for heterogeneous scheduling algorithms.
However, it is possible to improve over the results of these two algorithms.

For example, Kim et al. [294] present more complex algorithms generating better
results. A mapping for KPNs aiming at makespan minimization has been published
by Castrillon et al. [86].

6.5.3 Static Scheduling with Integer Linear Programming

Integer linear programming can also be applied to the case of heterogeneous
processors. One approach has been published by Maculan et al. [361]. Most
importantly, processor-dependent execution times are taken care of. However, the
presented equations require some refinement before they can be fed into an ILP
solver and applications have not been included. Also, it is possible to adapt
techniques published in the context of high-level synthesis [44, 314].

In most of the publications, optimizations aim at optimizing a single objective.
In general, more objectives should be considered. For example, Fard et al. [162]
present an algorithm taking four different objectives into account.
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6.5.4 Static Scheduling with Evolutionary Algorithms

Integer programming based approaches potentially suffer from long execution
times. In many cases, the use of evolutionary algorithms allows a better optimization
while still keeping execution times reasonably short. We will demonstrate this by
means of the distributed operation layer (DOL) tools from ETH Ziirich [537]. These
tools incorporate

¢ Automatic selection of computation templates: Processor types can be com-
pletely heterogeneous. Standard processors, micro-controllers, DSP processors,
FPGA:s, etc. are all possible options.

¢ Automatic selection of communication techniques: Various interconnection
schemes like central buses, hierarchical buses, rings, etc. are feasible.

¢ Automatic selection of scheduling and arbitration: DOL design space explo-
ration tools automatically choose between rate monotonic scheduling, EDF, and
TDMA- and priority-based schemes.

The input to DOL consists of a set of tasks together with use cases. The output
describes the execution platform, the mapping of tasks to processors together with
task schedules. This output is expected to meet constraints (like memory size and
timing constraints) and to minimize objectives (like size, energy, etc.). Applications
are represented by the so-called problem graphs, which in essence are special
task graphs. Figure 6.32 shows a simple DOL problem graph. This graph models
computations (see nodes 1, 2, 3, 4) and communication (see nodes 5, 6, 7).

In addition, possible execution platforms are represented by the so-called
architecture graphs. Figure 6.33 shows a simple hardware platform together with
its architecture graph. Again, communication is modeled explicitly.

The problem graph and the architecture graph are connected in the specification
graph. Figure 6.34 shows a DOL specification graph. Specification graphs consist of
a problem graph and an architecture graph. Edges between the two subgraphs rep-
resent feasible implementations. For example, computation 1 can be implemented
only on the RISC processor and computation 3 on the RISC processor or on HWM1.
Communication 5 can be implemented on the shared bus or locally on the processor
if computations 1 and 3 are both mapped to the processor.

Fig. 6.32 DOL problem G (V. E)
graph p pPp
P

communication
nodes_

~—
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Fig. 6.33 DOL architecture graph

Fig. 6.34 DOL specification
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Fig. 6.35 DOL
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Implementations are represented by a triple:

* An allocation A: A is a subset of the architecture graph, representing hardware
components allocated (selected) for a particular design.

* A binding b: A selected subset of the edges between specification and architec-
ture identifies a relation between the two. Selected edges are called bindings.

* A schedule S: S assigns start times to each node t; in the problem graph.

Example 6.19 Figure 6.35 shows how the specification of Fig. 6.34 can be turned
into an implementation. HWM2 and the PTP bus are not used and not included in the
set A. A subset b of the edges have been selected for mapping. Nodes 1, 2, 3, and 5
have indeed all been mapped to the RISC processor, turning communication 5 into
local communication. Node 4 is mapped to HWM1 and communicates via shared
bus. Schedule S specifies that computation 1 starts at time 0, communication 5 and
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computation 2 start at time 1, computation 3 and communication 6 start at time 21,
communication 7 starts at time 29, and finally computation 4 starts at time 30. V

In DOL, implementations are generated with evolutionary algorithms. With such
algorithms, solutions are represented as strings in chromosomes of “individuals”
[31, 32, 107]. Using evolutionary algorithms, new sets of solutions can be derived
from existing sets of solutions. The derivation is based on evolutionary operators
such as mutation, selection, and recombination. The selection of new sets of
solutions is based on fitness values. Evolutionary algorithms are capable of solving
complex optimization problems not tractable by other types of algorithms. Finding
appropriate ways of encoding solutions in chromosomes is not easy. On the one
hand, the decoding should not require too much run-time. On the other hand,
we must deal with the situation after the evolutionary transformations. These
transformations could generate infeasible solutions, except for some carefully
designed encodings.

In DOL, chromosomes encode allocations and bindings. In order to evaluate the
fitness of a certain solution, allocations and bindings must be decoded from the
individuals (see Fig. 6.36). In DOL, schedules are not encoded in the chromosomes.
Rather, they are derived from the allocation and binding. This way, overloading
evolutionary algorithms with scheduling decisions is avoided. Once the schedule
has been computed, the fitness of solutions can be evaluated.

The overall architecture of DOL is shown in Fig. 6.37.

individual
Evolutionary algorithm %‘ e Ty e
1. selection = \1/
2. recombination ‘ binding ‘ %‘ decode binding ‘
3. mutation

I

chromosome = encoded ‘ scheduling
allocation + binding

user constraints

design point
(implementation)
fitness %l fitness evaluation }%
Fig. 6.36 Decoding of solutions from chromosomes of individuals
system architecture
performance values
task graph,
MOSES [-Usecases, 5 pypq exploration SPEA2
flows & cycle
resources
selection of

“good” architectures

Fig. 6.37 DOL tool
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Fig. 6.38 Pareto front of solutions for a design problem, ©ETHZ

Initially, the task graph, use cases, and available resources are defined. This can
be done with a specialized editor called MOSES. This initial information is evaluated
in the evaluation framework EXPO. Performance values computed by EXPO are then
sent to SPEA2, an evolutionary algorithm-based optimization framework. SPEA2
selects good candidate architectures. These are sent back to EXPO for an evaluation.
Evaluation results are then communicated again to SPEA2 for another round of
evolutionary optimizations. This kind of ping-pong game between EXPO and SPEA2
continues until good solutions have been found. The selection of solutions is based
on the principle of Pareto optimality. A set of Pareto optimal designs is returned to
the designer, who can then analyze the trade-off between the different objectives.

Example 6.20 Figure 6.38 shows the resulting visualization of the Pareto front.
Trade-offs between the performance for two applications and the savings in cost
can be seen. v

Holzkamp designed a variant of DOL which focuses on memory optimiza-
tions [220]. Evolutionary algorithms have become a standard technique for more
advanced scheduling problems, beyond the problems solved by HEFT or CPOP.

The functionality of the SystemCodesigner [285] is somewhat similar to that
of DOL. However, it differs in the way specifications are described (they can be
represented in SystemC) and in the way the optimizations are performed. The
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mapping of applications is modeled as an ILP model. A first solution is generated
using an ILP optimizer. This solution is then improved by switching to evolutionary
algorithms.!!

Daedalus [422] incorporates automatic parallelization. For this purpose, sequen-
tial applications are mapped to Kahn process networks. Design space exploration is
then performed using Kahn process networks as an intermediate representation.

Other approaches start from a given task graph and map to a fixed architecture.
For example, Ruggiero maps applications to cell processors [475]. The HOPES
system is able to map to various processors [195], using models of computation
supported by the Ptolemy tools. Some tools take additional objectives into account.
For example, Xu considers the optimization of the dependable lifetime of the
resulting system [605]. Simunic incorporates thermal analysis into her work and
tries to avoid too hot areas on the MPSoC [492]. Further work includes that
of Popovici et al. [457]. This work uses several levels of modeling, employing
Simulink and SystemC as languages.

Auto-parallelizing approaches for fixed architectures include work at the Univer-
sity of Edinburgh [168]. MAPS tools [88] combine automatic parallelization with
a limited DSE. Cordes [110] worked on the automatic parallelization for multi-
cores, using high-level cost models. Neugebauer et al. [417] designed an approach
to parallelization and used it for the optimization of an innovative sensor for bio-
viruses. The combination of sensing and information processing demonstrates the
value of cyber-physical systems.

6.5.5 Dynamic and Hybrid Scheduling

For dynamic scheduling, processor allocation is performed at run-time rather than
at design time. Dynamic scheduling has a number of advantages [493]:

* Adaptability to the available resources: Dynamic scheduling is able to take
changing resource availabilities like energy, memory space, and communication
bandwidth into account.

* Ability to enable unforseeable upgrades: Changing application requirements
are easier to integrate when scheduling is dynamic.

* Resilience to defects: Defective resources like failed processors can be taken
into account by dynamic scheduling.

¢ Use of non-real-time platforms: Dynamic scheduling is the standard for non-
real-time computing. Hence, techniques for non-real-time computing can be
applied, which helps to reduce development efforts.

However, there are also disadvantages:

* Lacking real-time guarantees: In a fully dynamically scheduled system, it is
difficult if not impossible to give real-time guarantees.

1 A more recent version uses a satisfiability (SAT) solver for the same purpose.
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* Run-time overhead: Dynamic scheduling requires run-time for taking schedul-
ing decisions. Therefore, complex scheduling techniques must be avoided.

e Limited knowledge: At run-time, there is typically limited knowledge concern-
ing the task system and its parameters.

There are two approaches for dynamic scheduling: on-the-fly mapping and hybrid
mapping using previously analyzed (DSE) results.

Singh et al. [493] provide an overview of 25 different approaches for on-the-fly
mapping. This type of mapping is closest to mapping in non-real-time systems.

Hybrid mapping techniques using previously analyzed (DSE) results try to
avoid some of the disadvantages listed above by making results from design time
analysis available at run-time. For example, we could pre-compute schedules for
likely run-time scenarios and then select at run-time the schedule for the current
scenario. Singh et al. distinguish between multiple mappings pre-computed for a
single application, multiple mappings pre-computed for a multiple applications,
and reliability-aware analysis.'> The authors provide an overview of 21 differ-
ent approaches for performing design-time analysis and run-time mapping in a
sequence.

One could go one step further by integrating scheduling with the application. For
example, Kotthaus [307] has designed an approach to mathematical optimization.
In this approach, the number of evaluations of an objective function is not fixed, but
depends also on the progress of parallel function evaluations on a multi-core system.
Similar integration would also be possible for other applications.

6.6 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

6.1 Suppose that we have a set of four jobs. Release times r;, deadlines D;, and
execution times C; are as follows:

b J12}’1=10, D1=18, C1=4
e Jr: =0, D,=28, Cr=12
e J3:r3=06, D3=17, C3=3
o J4:ry=3, D4=13, C4=6

12We merge Singh’s hybrid mappings with these three classes.
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Fig. 6.39 Precedences

Generate a graphical representation of schedules for this job set, using earliest
deadline first (EDF) and least laxity (LL) scheduling algorithms! For LL scheduling,
indicate laxities for all jobs at all context switch times. Will any job miss its
deadline?

6.2 Suppose that we have a task set of six tasks 71 to 7g. Their execution times and
their deadlines are as follows:

* 71 D1=15, C1=3
e 1. Dy=13, Cp=5
e 13: D3=14, C3=4
o 14 Dy=16, C4=2
e 15: D3=20, C3=4
o 16 Dy=22, C4=3

Precedences are as shown in Fig. 6.39. Tasks t; and 7, are available immediately.
Generate a graphical representation of schedules for this task set, using the latest
deadline first (LDF) algorithm!

6.3 Suppose that we have a system comprising two tasks. Task 1 has a period of
5 and an execution time of 2. The second task has a period of 7 and an execution
time of 4. Let the deadlines be equal to the periods. Assume that we are using rate
monotonic scheduling (RMS). Could any of the two tasks miss its deadline, due to a
too high processor utilization? Compute this utilization, and compare it to a bound
which would guarantee schedulability! Generate a graphical representation of the
resulting schedule! Suppose that tasks will always run to their completion, even if
they missed their deadline.

6.4 Consider the same task set as in the previous assignment. Use earliest deadline
first (EDF) for scheduling. Can any of the tasks miss its deadline? If not, why not?
Generate a graphical representation of the resulting schedule! Suppose that tasks
will always run to their completion.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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