
Chapter 5
Evaluation and Validation

During the design procedure, we have to check repeatedly whether or not the
system under design is likely to perform its function and to satisfy all relevant
design objectives. This is the purpose of validations and evaluations which must be
performed during the design process. This chapter starts with a presentation of tech-
niques for the evaluation of (partial) designs with respect to objectives. In particular,
we consider (worst case) execution time, quality of results, thermal behavior, and
dependability as objectives. We provide an introduction into fundamental techniques
for computing the worst case execution time. Examples of energy models will
be presented in order to demonstrate the need for an adjustment of the level of
model details to the particular application at hand. Thermal modeling is reduced
to the problem of equivalent electrical modeling. With respect to dependability, an
introduction to statistical models of reliability as well as an introduction to fault
trees are included. As a means for relating results for the different objectives against
each other, we introduce the concept of Pareto optimality. This chapter closes with
hints regarding validation techniques, including simulation, rapid prototyping, and
formal verification.

5.1 Introduction

5.1.1 Scope

Specification, hardware platforms, and system software provide us with the basic
ingredients which we need for designing embedded systems. During the design
process, we must validate and evaluate designs rather frequently. These activities
can be defined as follows:

The original version of this chapter was revised: Caption for the second part of Fig. 5.25 has been
updated. A correction to this chapter is available at https://doi.org/10.1007/978-3-030-60910-8_9

© The Author(s) 2021, corrected publication 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_5

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_9
https://doi.org/10.1007/978-3-030-60910-8_5

240 5 Evaluation and Validation

evaluation & validation

design

system software

design repositoryspecification

kn
ow

le
dg

e

optimization

(RTOS, ...)

HW-components

ap
pl

ic
at

io
n

test
mapping
application

Fig. 5.1 Context of the current chapter

Definition 5.1 Evaluation is the process of computing quantitative information of
some key characteristics (or “objectives”) of a certain (possibly partial) design.

Definition 5.2 Validation is the process of checking whether or not a certain
(possibly partial) design is appropriate for its purpose, meets all constraints, and
will perform as expected.

Definition 5.3 Validation with mathematical rigor is called (formal) verification.

Validation and evaluation are required at various phases during the design
procedure (see Fig. 5.1). Validation and design should be intertwined and not be
considered as two completely independent activities. Validation and evaluation,
even though different from each other, are very much linked. Due to their impact,
we will describe validation and evaluation before we talk about design steps.

5.1.2 Multi-Objective Optimization

Design evaluations will, in general, lead to a characterization of the design by
several criteria, such as execution time, energy consumption, quality of results,
thermal behavior, and dependability. Merging all these criteria into a single objective
function (e.g., by using a weighted average) is usually not advisable, as this would
hide some of the essential characteristics of designs. Rather, it is recommended to
return to the designer a set of designs among which the designer can then select an
appropriate design. Such a set should, however, only contain “reasonable” designs.
Finding such sets of designs is the purpose of multi-objective optimization
techniques.

In order to perform multi-objective optimization, we do consider an m-dimen-
sional space X of possible solutions of the optimization problem. These dimensions
could, for example, reflect the number of processors, the sizes of memories, as well
as the number and types of buses. For this space X, we define an n-dimensional

5.1 Introduction 241

function

f (x) = (f1(x), . . . , fn(x)) where x ∈ X

which evaluates designs with respect to several criteria or objectives (e.g., cost and
performance). Let F be the n-dimensional space of values of these objectives (the
so-called objective space). Suppose that, for each of the objectives, some total order
< and the corresponding ≤ order are defined. In the following, we assume that the
goal is tominimize our objectives.

Definition 5.4 Vector u = (u1, . . . , un) ∈ F dominates vector v = (v1, . . . , vn) ∈
F iff u is “better” than v with respect to at least one objective and not worse than v

with respect to all other objectives:

∀ i ∈ {1, . . . n} : ui ≤ vi ∧ (5.1)

∃ j ∈ {1, .., n} : uj < vj (5.2)

Definition 5.5 Vector u ∈ F is called indifferent with respect to vector v ∈ F iff
neither u dominates v nor v dominates u.

Definition 5.6 A design x ∈ X is called Pareto optimal with respect to X iff there
is no design y ∈ X such that u = f (x) is dominated by v = f (y).

The previous definition defines Pareto optimality in the solution space. The next
definition serves the same purpose in the objective space.

Definition 5.7 Let S ⊆ F be a subset of vectors in the objective space. v ∈ F is
called a non-dominated solution with respect to S iff v is not dominated by any
element ∈ S. v is called Pareto optimal iff v is non-dominated with respect to all
solutions F .

Figure 5.2 highlights the different areas in an objective space with objectives O1
and O2, relative to design point (1).

The upper right area corresponds to designs that would be dominated by design
(1), since they would be “worse” with respect to both objectives. Designs in the
lower left rectangle would dominate design (1), since they would be “better” with
respect to both objectives. Designs in the upper left and the lower right area are
indifferent: they are “better” with respect to one objective and “worse” with respect
to the other. Figure 5.2 (right) shows a set of Pareto points, i.e., the so-called Pareto
front.

Definition 5.8 Design space exploration (DSE) based on Pareto points is the
process of finding and returning a set of Pareto optimal solutions to the designer,
enabling the designer to select the most appropriate implementation.

In order to visualize objectives in multiple dimensions, so-called radar charts,
spider charts, or Kiviat diagrams can be used [579]. They are extensions of the type
of diagram which we have used in Fig. 2.74 to multiple dimensions.

242 5 Evaluation and Validation

O1

(e.g. energy)

2 (e.g. memory space)O

min

min

(1)

designs)
(superior

dominating (1)

(inferior designs)
indifferent

dominated by (1)

indifferent

min O1

(e.g. energy)

2 (e.g. memory space)O

+

+

+

+

dominated
design points

min

Fig. 5.2 Pareto optimality: left, Pareto point; right, Pareto front

1/quality of results

worst case execution time

1/battery lifetime
maximum
temperature

security
vulnerabilities

failure rate

cost average response time

Fig. 5.3 Kiviat diagram: top (red), mid-range (green, dashed), and entry-level (blue) models

Example 5.1 As shown in Fig. 5.3, we can compare several designs (e.g., of mobile
phones) according to objectives similar to the ones presented in the next subsection.

Minimization of all objectives is assumed. The top model minimizes most
objectives, except for costs. For the entry level model, it is the other way around. ∇

5.1.3 Relevant Objectives

For servers and PCs, the average performance plays a dominating role. For
embedded and cyber-physical systems, multiple objectives need to be considered.
The following list explains if and where this objective is discussed in this book:

5.2 Performance Evaluation 243

1. Average performance: Some comments on this objective will be made in
Sect. 5.2. This objective is frequently computed from simulations, which will
be introduced in Sect. 5.7.

2. Worst case performance/real-time behavior: Some fundamental techniques
for computing the worst case execution time (WCET) will be presented in
Sect. 5.2.2. This will be complemented by an introduction to real-time calculus
in Sect. 5.2.3.

3. Quality metrics: Quality metrics will be presented in Sect. 5.3. In addition,
transformations between number systems are discussed in Sect. 7.1.5.

4. Energy/power consumption: A brief overview of techniques for evaluating this
objective will be presented in Sect. 5.4.

5. Thermal models: An introduction to this topic will be presented in Sect. 5.5.
6. Dependability: Dependability is the topic of Sect. 5.6, with subsections on

safety, security, and reliability.
7. Electromagnetic compatibility: This objective will not be considered here.
8. Testability: Costs for testing systems can be very large, sometimes larger even

than production costs. Hence, testability should be considered as well, preferably
already during the design. Testability will be discussed in Chap. 8.

9. Cost: Cost in terms of silicon area or real money will not be considered here.
10. Weight, robustness, usability, extendability, and environmental friendliness:

These objectives will also not be considered.

There are more objectives than the ones listed above. For example, we could use
standards for the evaluation of software quality, like standards ISO/IEC 25022 [258],
ISO/IEC 25023 [259], and ISO/EIC 25024 [257]. The next section presents some
approaches for performance evaluation, focusing on the worst case performance.

5.2 Performance Evaluation

Performance evaluation aims at predicting the performance of systems. This is a
major challenge (especially for cyber-physical systems) since we might need worst
case information, rather than just average case information. Such information is
necessary in order to guarantee real-time constraints.

5.2.1 Early Phases

Two different classes of techniques have been proposed for obtaining performance
information already during early design phases:

• Estimated cost and performance values: Quite a number of estimators have
been developed for this purpose. Examples include the work by Jha and Dutt

244 5 Evaluation and Validation

Fig. 5.4 WCET-related
terms

ESTEST

WCETBCET

WCETBCET

execution times

t

Distribution of

[274] for hardware and Jain et al. [266] and Franke [167] for software. Generating
sufficiently precise estimates requires considerable efforts.

• Accurate cost and performance values: We can also use the real binary soft-
ware code on a close-to-real hardware platform. This is only possible if interfaces
to compilers exist. This method can be more precise than the previous one but
may be significantly (and sometimes prohibitively) more time-consuming.

In order to obtain sufficiently precise information, communication needs to be
considered as well. Unfortunately, it is typically difficult to compute communication
cost already during early design phases.

Formal performance evaluation techniques have been proposed by many
researchers. For embedded systems, the work of Thiele et al., Henia and Ernst et al.,
and Wilhelm et al. is particularly relevant (see, e.g., [210, 536] and [587]). These
techniques require some knowledge of architectures. They are less appropriate for
early design phases, but some of them can be used without knowing all details about
target architectures. These approaches model real, physical time.

5.2.2 WCET Estimation

Scheduling of tasks requires knowledge about the duration of task executions,
especially if meeting time constraints has to be guaranteed, as in real-time (RT)
systems. The worst case execution time (WCET) is the basis for most scheduling
algorithms. Some definitions related to the WCET are shown in Fig. 5.4.

Definition 5.9 The worst case execution time (WCET) is the largest execution
time of a program for any input and any initial execution state.

Unfortunately, the WCET is extremely difficult to compute. In general, it is
undecidable whether or not the WCET is finite. This is obvious from the fact
that it is undecidable whether or not a program terminates. Hence, the WCET
can only be computed for certain programs/tasks. For example, for programs
without recursion, without while loops, and with loops having statically known
iteration counts, decidability is not an issue. But even with such restrictions, it is
usually practically impossible to compute the WCET exactly. The effect of modern
processor architectures’ pipelines with their different kinds of hazards and memory
hierarchies with limited predictability of hit rates is difficult to precisely predict

5.2 Performance Evaluation 245

at design time. Computing the WCET for systems containing interrupts, virtual
memory, and multiple processors is an even greater challenge. As a result, we must
be happy if we are able to compute good upper bounds on the WCET.

Such upper bounds are usually called estimated worst case execution times, or
WCETEST . Such bounds should have at least two properties:

1. The bounds should be safe (WCETEST ≥ WCET).
2. The bounds should be tight (WCETEST -WCET
 WCET).

Note that the term “estimated” does not mean that the resulting times are unsafe.
Sometimes, architectural features which reduce the average execution time but

cannot guarantee to reduce WCETEST are completely omitted from the real-time
designs (see p. 154). Computing tight upper bounds on the execution time may still
be difficult. The architectural features described above also present problems for the
computation of WCETEST . The computation of such bounds is extremely difficult
for multi-cores. In fact, potential conflicts might even cause multi-cores to have
larger worst case bounds than the corresponding single cores.

Definition 5.10 The best-case execution time (BCET) is the smallest execution
time of a program, considering all feasible inputs and initial states. The BCETEST

is a safe and tight lower bound on the execution time.

Computing tight bounds from a program written in a high-level language such
as C without any knowledge of the generated assembly code and the underlying
architectural platform is impossible. Therefore, a safe analysis must start from real
machine code. Any other approach would lead to unsafe results.

We will study WCET estimation more closely, using a description of the tool aiT
by R. Wilhelm [587]. The architecture of aiT is shown in Fig. 5.5.

Consistent with our remark about the problems with high-level code, aiT starts
from an executable object file comprising the code to be analyzed. From this code, a
control flow graph (CFG) is extracted. Next, loop transformations are applied. These
include transformations between loops and recursive function calls as well as virtual
loop unrolling. This unrolling is called “virtual” since it is performed internally,
without actually modifying the code to be executed. Results are represented in
the CRL (control flow representation language) format. The next phase employs
different static analyses. Static analyses read the AIP-file comprising designer’s
annotations. These annotations contain information which is difficult or impossible
to extract automatically from the program (e.g., bounds of complex loops). Static
analyses include value analysis, cache analysis, and pipeline analyses.

A value analysis computes enclosing intervals for possible values in registers
and local variables. The resulting information can be used for control flow analysis
and for data cache analysis. Frequently, values such as addresses are precisely
known (especially for “clean” code), and this helps in predicting accesses to
memories.

246 5 Evaluation and Validation

Loop transformation

CFG builder

visualization
WCET

Cache/pipeline analyzer

AnalysesStatic Path Analyses

ILP-generator

LP-solver

Evaluation

PER file

AIP file

CRL file

Value Analyzer

Loop bounds

Executable program

Fig. 5.5 Architecture of the aiT timing analysis tool

The next step is cache and pipeline analysis. We will present a few details about
the cache analysis. Suppose using an n-way set associative cache (see Fig. 5.6).1

We consider that part of the cache (the row) corresponding to a certain index
(shown in bold and blue in Fig. 5.6). We assume that eviction from the row is
controlled by the least recently used (LRU) strategy.2 This means that among all
references for a particular index, the last n referenced memory blocks are stored in
the row. We assume that the necessary LRU management hardware is available for
each index and that each index is handled independently of other indexes. Under
this assumption, all evictions for a particular index are completely independent
of decisions for other indexes. This independence is extremely important, since it
allows us to consider each of the indexes independently.

Let us now consider a row and a particular index. Suppose that we have
information about potential entries for each of the cache ways (columns). What
will happen in case of an access to a particular index? First of all, let us consider
the case of an access to a variable e known to be in the cache. After that access, that
variable is known to be the youngest (see Fig. 5.7). Entries on the left are assumed
to be younger than the ones on the right.

Now, assume that we have an access to some variable (say c) which is not yet in
the cache. This access will remove the oldest entry from the cache (see Fig. 5.8).

1We assume that students are familiar with concepts of caches.
2Unfortunately, this strategy is typically not available for processors.

5.2 Performance Evaluation 247

cache

address

Tag Index Offset
LRU-based eviction

set associative
4-way

= = = =

row shown in bold

Fig. 5.6 Set associative cache (for n = 4)

{e} {a} {d} {f}{e}{a} {d} {f}

Fig. 5.7 Access to variable e makes it the youngest

}d{ }f{}e{ }a{ {c} {e} {a} {d}

Fig. 5.8 Access to variable c causes eviction of f

Furthermore, consider control flow joins. What do we know about the content of
the partial cache after the join?

We must distinguish between may- and must-information and the corresponding
analysis. Must-analysis reveals the entries which must be in the cache. This
information is useful for computing the WCET. May-analysis identifies the entries
which may be in the cache. This information is typically used to conclude that
certain information will definitely not be in the cache. This knowledge is then
exploited during the computation of the BCET.

As an example of must- and may-analysis, we consider must information at
control flow joins. Figure 5.9 shows the corresponding situation. In Fig. 5.9,
memory object c is assumed to be the youngest object for one path to the join and
a is assumed to be the youngest object for the other path. The age of the other
entries is defined accordingly. What do we know about the “worst” case after the
join? A certain entry is guaranteed to be in the cache only if it is guaranteed to
be in the cache for both paths. This means that the intersection of the memory
objects defines the result of the must-analysis after the join. As a worst case, we
must assume the maximum of the ages along the two paths. Figure 5.9 shows the
result. This analysis uses sets of entries for each cache way.

Now, consider may-analysis for control flow joins. Figure 5.10 depicts the
situation. Some object being in the cache on either of the two paths to the join may
be in the cache after the join. Hence, the set of objects which may be in the cache

248 5 Evaluation and Validation

{a} {} {c,f} {d}

Intersection+maximum age
{c} {e} {a} {d}

{} {} {a,c} {d}

Fig. 5.9 Must-analysis at program joins for LRU caches

{d}{a}

{d}{a,c}

}c{ }e{ }a{ }d{
Union+minimum age

{} {c,f}

{e} {f}

Fig. 5.10 May-analysis at program joins for LRU caches

after the join consists of the union of the objects that were in the cache before the
join. As a best case, we use the minimum of the ages before the join. Figure 5.10
shows the result.

Static analyses also comprise pipeline analysis. Pipeline analysis has to compute
safe bounds on the number of cycles required to execute code in the machine
pipeline. Details of pipeline analysis are explained by Hahn et al. [196] and Thesing
[534]. The result of static analyses consists of bounds on the execution times for
each of the basic blocks of a program. Results are written to the PER-file shown in
Fig. 5.5.

aiT’s next phase exploits these bounds to derive WCETEST values for the
entire program, using an integer linear programming (ILP) model (see p. 393),
comprising two types of information:

• The objective function: In our application of ILP modeling, this function
represents the overall execution time. This time is calculated as

WCETEST =
∑

basic blocks

ei ∗ fi (5.3)

where ei is the worst case execution time of basic block i (as computed during
static analysis) and fi its worst case execution count. Only some of these counts
can be determined automatically, and additional designer-provided information,
e.g., about loop bounds, may be required.

• Linear constraints: These reflect the structure of the control flow graph.

5.2 Performance Evaluation 249

x4

start

x2
x0

_main

_L5
x16

x18
_L6

_L2: 20

_L6: 13
_L5: 20
_L4: 2
_L3: 2

_L1: 27
_main: 21 cycles

_L2 _L1 _L3

_L4
x8

x6
x7

x10
x9

exit

x5

x3
x20

x19 x11

x14

x1

Fig. 5.11 Sample program: left: extended control flow graph; right: WCETEST of basic blocks

Example 5.2 Let us consider the simple code shown next:

int main() { int i,j=0;
_Pragma("loopbound min 100 max 100") /* hint for bound analysis */

for (i=0; i <100; i++) {
if (i<50) j+=i;
else j+=(i*13) % 42;

}
return j;

}

Figure 5.11 (left) shows the control flow graph (CFG) corresponding to this small
program. This graph is extended by additional start and exit nodes. Node _L1 reflects
the for-testing, _L3 the if-testing, _L4 and _L5 the two cases of the if-statement,
and _L6 its join operation. Variables x0 to x20 denote the number of executions
of the blocks and the number of transitions between blocks. For example, we are
transitioning from node main into node _L1 x6 times and are executing the target
node x7 times. We assume that the analysis of the WCET for each of the basic
blocks has resulted in the list shown on the right of Fig. 5.11. The following is a
partial list of the ILP constraints:

01: 21 x2 + 27 x7 + 2 x11 + 2 x14 + 20 x16 + 13 x18 + 20 x19; /*objective*/
02: x7 - x8 - x6 = 0; /* Constraint for flow entering CFG node _L1 */
03: x7 - x9 - x10 = 0; /* Constraint for flow leaving CFG node _L1 */
04: x7 - 101 x9 >= 0; /* Constraint for lower loop bound of _L1 */
05: x7 - 101 x9 <= 0; ... /* Constraint for upper loop bound of _L1 */
06: x0 - x4 = 0; /* CFG Start Constraint */
07: x2 - x4 = 0; /* Constraint for flow entering function _main */
08: x2 - x6 = 0; /* Constraint for flow leaving CFG node _main */
09: ...

250 5 Evaluation and Validation

Line 01 contains the cost function. All other lines model constraints reflecting the
structure of the graph. Consider, for example, node _L1. Constraints for this node
are shown in lines 02 and 03. The number of times that we are branching into the
node (x6+x8) is equal to its number of executions (x7). The number of times that
we are leaving from the node (x9+x10) is also equal to its number of executions.
Lines 04 and 05 reflect the number of loop iterations. This number is taken from
the pragma in the code. Line 06 describes the fact that node start is executed exactly
as many times as we are branching into the code. The other lines are reflecting the
structure in a similar way. ∇

The ILP problem can be solved with some standard ILP solver. Maximizing the
objective function yields a safe upper bound on the WCET.

This technique for modeling execution time is called implicit path enumeration
(IPET) [343], since the problem of enumerating the potentially large number of
execution paths is avoided.

aiT visualizes the results as annotated control flow graphs. The designer could
optimize the system under design by exploiting these graphs. Due to the pre-
sented approach, aiT has limitations: preemption by other processes, interrupts,
input/output, and direct memory transfers (DMA) are not supported.

Only few approaches exist for the WCET analysis of multi-cores [264, 265, 286].
New probabilistic approaches [2] aim at complementing available methods. They
are usually based on extreme value theory [123].

5.2.3 Real-Time Calculus

WCET estimates allow us to predict the execution of some algorithm for a single
input event. However, the overall goal is more comprehensive. Overall, we should
make sure that our hardware platform is capable of processing streams of events
in a timely manner (which may be important for some parts of the Internet of
Things).

This can be checked with Thiele’s real-time calculus (RTC). This calculus
(RTC) is based on the description of the rate of incoming events.3 This description
also includes fluctuations of this rate. Toward this end, the timing characteristics of
a sequence (or stream) of events are represented by a tuple of arrival curves:

α u(�), α l(�) ∈ R ≥ 0,� ∈ R ≥ 0

These curves represent the maximal resp. the minimal number of events arriving
within a time interval of length �. There are at most α u(�) and at least α l(�)

3Our presentation of the real-time calculus is based on Thiele’s presentation in the book edited
by Zurawski [536]. Resulting considerations at the system level have been called modular
performance analysis (MPA).

5.2 Performance Evaluation 251

Fig. 5.12 Arrival curves: left: periodic stream; right: periodic stream with jitter J

events arriving within the time interval (t, t+�) for all t ≥ 0. Figure 5.12 shows the
number of possibly arriving events for some possible models of arriving events. For
example, in the case of periodic event streams with period T , there is a maximum
of a single event happening in time interval (0, T).4 Similarly, there is an upper
bound of two events within time interval (T , 2T). Now, let us consider the lower
bound for time interval (0, T). There is possibly not a single event in this interval.
Hence, the bound is zero. For time interval (T , 2T), there has to be at least one
event. Therefore, the bound is one. So, for � = 0.5T , there will be at least zero
and at most one incoming event (see Fig. 5.12 (left)). In the case of periodic event
streams with jitter J , these curves are shifted by this amount (see Fig. 5.12 (right)).
The upper bound is shifted to the left; the lower bound is shifted to the right. The
jitter is assumed not to be accumulating.

We are using bars on top of symbols (like α) for all entities referring to incoming
events.

Available computational and communication service capacity can be described
by service functions:

β u(�), β l(�) ∈ R ≥ 0,� ∈ R ≥ 0

These functions allow us to model situations in which the available service capacity
is fluctuating. Figure 5.13 shows the communication capacity of some time division
multiple access (TDMA) bus (see p. 176). Allocation is done periodically with a
period of T . Bus arbitration allocates this bus during a time window s time units
long. During this window, the bus achieves a bandwidth of b. The upper bound is
obtained if the bus is allocated exactly at the time we are starting our observation.
The transferred amount is then increasing linearly. The lower bound is obtained if
the bus was just deallocated when we started our observation of length �. Then we
must wait T − s time units until the bus gets allocated again.

Separate methods are required to determine α and β for streams of (“external”)
events arriving at the system to be modeled. Their computation is not part of RTC. In
contrast, bounds for events generated within the system are derived by the calculus
(see below).

4We leave out the subtle discussion of discontinuities at � = n ∗ T .

252 5 Evaluation and Validation

Fig. 5.13 Service functions for a TDMA bus

Up till now, there is no information about the workload required by each
of the incoming events. This workload is represented by additional functions
γ u(e), γ l(e) ∈ R ≥ 0 for each sequence e of incoming events. This information
can be derived from bounds on the execution time of code required for each of the
events. Figure 5.14 shows an example of such functions. This example is based on
the assumption that between three and four time units are required for processing
a single event. Accordingly, the workload for a single event varies between three
and four time units, the work load for two events varies between six and eight time
units, etc. The dashed lines are not part of the function, since it is defined only for
an integer number of events. The work load resulting from an incoming stream of
events can now be easily computed. Upper and lower bounds are characterized by
the functions

αu(�) = γ u(αu(�)) and (5.4)

α l(�) = γ l(α l(�)) (5.5)

There should be enough computational or communication capacity to handle
this workload. The number of events which can be processed with the available
computational capacity can be computed as

β u(�) = (γ l)−1(β u(�)) and (5.6)

β l(�) = (γ u)−1(β l(�)) (5.7)

Equations (5.6) and (5.7) use the inverse of functions γ u and γ l to convert bounds
on the available capacity (measured in real time units) into bounds measured in
terms of the number of events that can be processed.

Based on this information, it is possible to derive the properties of outgoing
streams of events from incoming streams of events. Suppose the incoming stream
is characterized by bounds [α l, α u]. We can then compute characteristics of the
outgoing streams such as the corresponding bounds [α l′ , α u′] of the outgoing
stream of events and the remaining service capacity, available for other tasks. This
remaining capacity is derived by transforming service curves [β l, β u] into service
curves [β l′ , β u′] (see Fig. 5.15). This remaining service capacity can be employed
for lower-priority tasks to be executed on the same processor.

5.2 Performance Evaluation 253

Fig. 5.14 Workload
characterization (WCETEST

may be used instead of
WCET)

Fig. 5.15 Transformation of event stream and service capacities by real-time components

According to Thiele et al., outgoing streams and remaining service capacities are
bounded by the following functions [536]:

αu′ = [(αu⊗ β u)� β l] ∧ β u (5.8)

α l′ = [(α l � β u)⊗ β l] ∧ β l (5.9)

β u′ = (β u − α l)� 0 (5.10)

β l′ = (β l − αu)⊗ 0 (5.11)

Operators used in these equations are defined as follows:

(f ⊗ g)(t) = inf 0≤u≤t {f (t − u) + g(u)} (5.12)

(f ⊗ g)(t) = sup0≤u≤t {f (t − u) + g(u)} (5.13)

(f � g)(t) = supu≥0{f (t + u) − g(u)} (5.14)

(f � g)(t) = inf u≥0{f (t + u) − g(u)} (5.15)

∧ denotes the minimum operator.

254 5 Evaluation and Validation

In essence, these equations characterize outgoing streams and capacities. These
equations have been adopted from communications theory. Proofs regarding these
equations are provided by Network Calculus [327]. The easiest way of using these
equations is to download a MATLAB® toolbox [561].

The same theory also allows to compute the delay caused by the real-time
components as well as the size of the buffer required to temporarily store incom-
ing/outgoing events. This way, performance and other characteristics of the system
can be computed from information about the components.

A second performance analysis method has been proposed by Henia and Ernst
et al. In this so-called SymTA/S approach [210], the different curves in Thiele’s
approach are replaced by standard models of event streams such as periodic event
streams, periodic event streams with random jitter, and periodic event streams with
bursts. SymTA/S explicitly supports the combination and integration of different
kinds of analysis techniques known from real-time research.

5.3 Quality Metrics

5.3.1 Approximate Computing

Sometimes, computing the best possible output of some algorithm requires a
significant amount of resources (in terms of computing time, energy, thermal
headroom, etc.). For some applications, the best possible output is not actually
needed, since minor degradations will possibly not even be recognized by users.
This can be exploited in a resource-constrained environment in order to trade off
the quality of the output against needed resources. A certain deviation of the actual
output from the best possible output is accepted, for example, for lossy audio, video,
and image encoding. This leads us to consider approximate computing.

Definition 5.11 Computing which tolerates a certain deviation of generated output
of some algorithm from the best possible result is called approximate computing
[397].

With approximate computing, it is necessary to consider the quality of the
generated output as one of the objectives. Unfortunately, it is not easy to evaluate
the quality of some generated result, and several metrics can be used.

5.3.2 Simple Criteria of Quality

Some simple metrics can be applied whenever the true (or the best possible) output
is known. Suppose that x1, . . . , xn are n samples of some signal x in discrete time.

5.3 Quality Metrics 255

Furthermore, suppose that instead of the real (or the best possible) values x1, . . . , xn

we measure or compute approximate values y1, . . . , yn.
Then, our first metric, the mean-squared error (MSE), is defined as follows:

Definition 5.12 The mean-squared error (MSE) is defined as

MSE(x, y) = 1

n

n∑

i=1

(xi − yi)
2 (5.16)

The second metric is the root-mean-squared error.

Definition 5.13 The root-mean-squared error (RMSE) is defined as

RMSE(x, y) =
√√√√1

n

n∑

i=1

(xi − yi)2 (5.17)

RMSE has the same dimension as the difference between the actual and the real
value, but it should not be confused with the “average error” which is defined next:

Definition 5.14 The mean absolute error (MAE) is defined as

MAE(x, y) = 1

n

n∑

i=1

|xi − yi | (5.18)

For identical deviations of the measured signal y from real values x, the MAE is
equal to the RMSE. However, the RMSE emphasizes large deviations between real
and measured values (so-called outliers).

The signal-to-noise ratio (SNR) was already defined on p. 142. Next, we define
the peak signal-to-noise ratio, which is similar to the SNR. Let x be a signal, xmax

its maximum, and y its noisy approximation.

Definition 5.15 The peak signal-to-noise ratio (PSNR) is defined as

PSNR(x, y) = 10 log10

(
x2
max

MSE(x, y)

)
(5.19)

= 20 log10

(
xmax

RMSE(x, y)

)
(5.20)

The PSNR, just like the SNR, is measured in decibels (dB).

The above values are easy to compute, but they are agnostic of the impression
which humans might have of certain errors [315]. It is known that certain deviations
between real and computed signal values are hardly noticed by humans. This is the
foundation of lossy coding techniques such as MP3, JPEG, or digital TV standards.
None of the metrics presented so far reflects the impression of deviations by humans.

256 5 Evaluation and Validation

Next, we will present the universal image quality index (UIQI) [562]. This index
tries to capture changes in the structure of images, since the human eye is very
sensitive to it. We will present the computation of this index for gray-scale images.
Several values need to be computed [315]:

μx = 1

n

n∑

i=1

xi (5.21)

μy = 1

n

n∑

i=1

yi (5.22)

�(x, y) = 2μxμy

μ2
x + μ2

y

(5.23)

Equations (5.21) and (5.22) compute the average brightness of each of the images,
and these averages are used to compute �(x, y). For images of the same average
brightness, �(x, y) will be equal to 1. Otherwise, this value will be less than 1.

Furthermore, we consider variances. Equations (5.24) and (5.25) compute the
contrast of each of the images, and these averages are used to compute c(x, y):

σx =
√√√√ 1

(n − 1)

n∑

i=1

(xi − μx)2 (5.24)

σy =
√√√√ 1

(n − 1)

n∑

i=1

(yi − μy)2 (5.25)

c(x, y) = 2σxσy

σ 2
x + σ 2

y

(5.26)

For images of the same average contrast, c(x, y) will be equal to 1. Otherwise, this
value will be less than 1. Equation (5.27) computes the cross-correlation of the two
images:

σx,y = 1

n − 1

n∑

i=1

(xi − μx)(yi − μy) (5.27)

s(x, y) = σx,y

σxσy

(5.28)

Positive values of s(x, y) as computed from Eq. (5.28) correspond to a good
correlation of the two images; negative values correspond to an inverse correlation.

An overall quality index is then computed by Eq. (5.29):

5.3 Quality Metrics 257

Q(x, y) = 2μxμy

μ2
x + μ2

y

∗ 2σxσy

σ 2
x + σ 2

y

∗ σx,y

σxσy

(5.29)

Q = 1 for identical images, and Q will be negative for inversely correlated images.
It does not make sense to consider the correlation of images globally, since some

inverse correlation in a particular block will already provide a negative impression
about the image. Hence, Eq. (5.29) is computed only for blocks of pixels. The global
UIQI value takes the values of Q for the different blocks into account.

The structural similarity index measure (SSIM) [563] is an extension of the UIQI
objective.

Kühn compared the different metrics and found that none of these is really
superior to others [315]. He recommends that several of these metrics should be
computed and a careful comparison should be performed in practice. An overview
over some useful objectives is also provided by Mittal [397].

In digital communications, the bit error ratio (BER) is an important metric.

Definition 5.16 The bit error ratio (BER) is ratio of the number of bit errors
divided by total number of communicated bits.

5.3.3 Criteria for Data Analysis

Sensors are typically not ideal in sense that some readouts deviate from the real
values. Furthermore, it may be necessary to fuse data generated by various sensors.
Hence, it is necessary to use data analysis techniques, e.g., machine learning (see
p. 15). Generated results will not always be correct as well, either because sensor
readouts were already compromised or due to imperfect data analysis techniques. In
a way, we are dealing with approximate computing even though this term was not
used in this context.

For data analysis, classification of objects is a very frequent goal. Let X be a
set of objects which we would like to classify. Suppose that we restrict ourselves to
binary classification.

Example 5.3 For example, consider the case of searching for amber at a beach.
Unfortunately, white phosphorus as a leftover from bombs found, e.g., at the Baltic
ocean, looks very much like amber but starts to suddenly burn at 1300 ◦C when
it dries. Classifying some found objects as either amber or phosphorus is thus a
very delicate task (and hence, inexperienced people should not touch such objects
anyway). ∇

In this context, four cases are possible:

• True positives (TP): we classify some object as amber, and it is actually valuable
amber.

258 5 Evaluation and Validation

• False positive (FP): we classify some object as amber, and it is actually
dangerous.

• True negative (TN): we classify some object as dangerous and it is actually
dangerous.

• False negative (FN): we classify some object as dangerous, and it is actually
valuable amber.

Absolute numbers have to be related to each other. Hence, the following metrics
have been defined:

Definition 5.17 The precision p is defined as the fraction

p = T P

T P + FP
(5.30)

In the case of searching for amber, we aim at a precision of 1, since we do not
want to get burnt.

Definition 5.18 The recall r (or sensitivity) is defined as the fraction

r = T P

T P + FN
(5.31)

In order to obtain a good precision, we will have to accept some false negatives
(e.g., amber classified as phosphorus).

Definition 5.19 The accuracy acc is defined as the fraction

acc = T P + T N

T P + FP + T N + FN
(5.32)

In the case of searching for amber, we might tolerate a non-optimal accuracy, due
to the importance of keeping false positives as close to zero as possible, and, hence,
we might have several false negatives.

Definition 5.20 The specificity is defined as the fraction

specificity = T N

T N + FP
(5.33)

Definition 5.21 The F1 score or F-measure is defined as the harmonic mean of
precision and recall:

F1 = 2
p ∗ r

p + r
(5.34)

In a more general context, the quality of service (QoS) is another well-known
metric. Frequently, it is related to the quality of communication channels, where bit
error rates, latency, and bandwidth are indicators of quality.

5.4 Energy and Power Models 259

In an even wider sense, we may also consider not just those technical parameters
but also the overall experience for the user. This is captured in the quality of
experience (QoE) metric, which refers to the overall user experience including all
aspects which might be considered by a user. There is a number of metrics which
can be used to estimate the overall quality of experience [400].

5.4 Energy and Power Models

5.4.1 General Properties

Energy models and power models are essential for evaluating the corresponding
objectives. Such models are needed for optimizations aiming at a reduction of power
and energy consumptions. They are also required for optimizations trying to reduce
operating temperatures and to improve reliability. Power estimation is used in power
management algorithms (see p. 373).

Energy and power models are closely related, as can be seen from Eq. (3.13).
Energy can be computed as the integral of power over time. Once the energy
consumption is known, we can compute the average power consumption. In general,
we can use:

1. Measurements on real hardware: measurements can be very precise, but they
apply only to the hardware at hands. Measuring voltages is typically rather easy
and does not require complex procedures.

Measuring currents can be done with a current clamp or a shunt resistor.

• Current clamps have to enclose one of the wires of the power supply cable.
They measure the magnetic field caused by the current flowing through the
cable. The advantage of this approach is that no power wires have to be broken
and power will remain connected unchanged to the device being analyzed. The
disadvantage is that current clamps do not allow precise measurements.

• Using an ammeter typically results in a better precision. However, an
insertion of the ammeter directly into the power line has some disadvantages.
For example, the system is unpowered if we remove the ammeter. Also, long
cables might add noise. Therefore, it is typically preferable if we include a
shunt resistor. A typical circuit containing a shunt is shown in Fig. 5.16 (left).

The advantage of using a shunt resistor over using a simple ammeter is that
the shunt can be integrated into the power wires. Due to the shunt resistor,
currents flowing into the device under test will cause a voltage drop across
the shunt, and this voltage can be measured and used to compute the current
from Ohm’s law. Finding the right resistance of the shunt is an issue. If the
resistance is too large, the device under test will be powered with a voltage
lower than the original voltage and might even fail to work. If the resistance
is too small, the voltage across the shunt will be too small to be reliably

260 5 Evaluation and Validation

Device to
be tested

Shunt

supply
Power

be tested
Device to Power

supply

Shunt

V V

Fig. 5.16 Measuring current: left, two-wire connection; right, feedback into voltage regulator

measured and will be subject to a substantial amount of noise. Selecting the
right resistance depends on the current flowing into the device under test. If
this current varies substantially, it may even be necessary to employ several
shunt resistors and switch between them, depending on the current actually
flowing. The problem regarding the voltage drop can be partially avoided
when regulated power supplies are used and the regulator feedback input
can be connected to the voltage actually powering the device (see Fig. 5.16
(right)). The power supply would then try to keep the voltage at the device
at its nominal level. However, the voltage across the shunt is affected by the
current flowing back into the voltage regulator input.

Unfortunately, there will not be a separate power pin or wire for every
component within the device and we can compute only a lumped sum of
currents drawn by the device. We may have to stimulate the device in a
particular way in order to get information about the consumption of the
different components.

• Models can be used even when real hardware is not available, but they
can be very imprecise. Models have to be validated; otherwise they would
remain very questionable. Two validation methods can be found for many of
the available power and energy models: either models are validated against
more detailed models at a lower level of abstraction, or they are compared
with measurement for real devices, resulting in a hybrid model. Validation
against measurements requires a method for selecting model parameters.
Frequently, linear models are selected, and parameters are selected with using
the least square method (minimizing the MSE as per Eq. (5.16)). Curve fitting
with this method is typically available in mathematical tool boxes such as
MATLAB®. More recently, using machine learning for this purpose became
more preferable. For example, Falkenberg et al. [161] used machine learning
for modeling the power consumption of transmitters in mobile phones.

There is no one-approach-fits-all solution for energy consumption modeling.
Instead, the usual approach is to combine ideas for modeling to fit the needs at hand.
Therefore, we will present representative examples of power models and hope that
the reader will identify the combination of methods which fits his/her constraints
best.

5.4 Energy and Power Models 261

5.4.2 Energy Model for Memories

As described in the section on memory hardware (see p. 168), the energy con-
sumption of caches and other memories can be computed with CACTI [408, 589].
CACTI assumes an abstract layout of the memory, extracts capacitances from the
layout, and computes access times, cycle times, area, leakage, and dynamic power
consumption from this information. CACTI has been validated against models of
the same memories at a more detailed level, employing SPICE [519] as the solver
at that level. Currently (in 2020), the most recent version of CACTI (version 6.5)
is available from http://www.hpl.hp.com/research/cacti/.5 Recent enhancements
include detailed modeling of the interconnect and modeling of non-uniformmemory
accesses. Models of transmitters and sense amplifiers have been included. Also,
used architectural and technological parameters can be specified.

5.4.3 Energy Model for Instructions

One of the first power models was proposed by Tiwari [542]. The model includes so-
called base costs and inter-instruction costs. Base costs of an instruction correspond
to the energy consumed per instruction execution if an infinite sequence of instances
of that instruction is executed. Base costs have been computed by running programs
consisting of 120 identical instructions and a branch back to the beginning of this
sequence. Programs are designed such that no stall cycles appear. This may require
the adding of no-operation instructions and some simple calculations to eliminate
their contribution to the energy consumption.

Inter-instruction costs model the additional energy consumed by the processor
if instructions change. This additional energy is required, for example, due to
switching functional units on and off. Inter-instruction costs reflect the impact of
the initial circuit state on the overall energy consumption of an instruction. These
costs can be computed by running programs containing an alternating sequence of
instructions pairs.

Base costs and inter-instruction costs are computed for a program not generating
any cache misses. The effect of cache misses has to be added to these two costs.
This requires the knowledge of the cache miss ratio and the memory access
energy. The memory energy depends on the addresses accessed. No attempt is
made to statically predict memory addresses. Hence, this contribution can only be
determined dynamically, during the execution of the program.

The model has been applied to two real systems, an Intel 486 DX2 and a Fujitsu
SPARClite 934. Measurements of the currents have been used to calibrate the model.

5It is recommended to use this URL, since there are several tools with the same name. Currently, a
modifiable C++-version is available. Previously available web interfaces do not exist any longer.

http://www.hpl.hp.com/research/cacti/

262 5 Evaluation and Validation

5.4.4 Energy Model for Functional Processor Units

The Wattch power estimation tool [70] estimates the power consumption of micro-
processor systems at the architectural level. Wattch uses the SimpleScalar simulator
to simulate processors. SimpleScalar can be configured to model the processor
at hand as closely as possible. The number of pipeline stages and functional
units is typically correctly modeled, whereas some more specialized features are
possibly not. Wattch is based on detailed information on the energy consumption
of the different components which we could find in a microprocessor. While
running, SimpleScalar keeps track of invoked functional units. Wattch exploits this
information in order to compute an overall energy consumption.

Wattch requires much more information about the architecture than Tiwari’s
instruction-set level approach. For example, Wattch includes its own detailed model
of the energy consumption in memories. Also, clocking is taken explicitly into
account, including conditional clocking if clock gating is used. In the original paper
[70], results have been validated for three different processors.

5.4.5 Energy Model for Processor and Memory

The level of details of the model by Steinke et al. [510] lies between that of Tiwari
and that of Wattch. For instructions and for data, the model considers the sum of the
energies consumed in the CPU and the memory:

Etotal = Ecpu_instr + Ecpu_data + Emem_instr + Emem_data (5.35)

Each of the four terms is then computed from detailed equations. The following
notation is used in these equations: m is the number of instructions considered, w(b)

returns the number of ones in its argument (either code or data), h(b1, b2) returns
the Hamming distance between its two arguments, dir denotes the direction of data
transfer, and αi and βi (i ∈ {1..10}) are constants computed from curve fitting of
measured energies. Using this notation, Ecpu_data can be computed as follows:

Ecpu_data =
m∑

i=1

{α5 ∗ w(DAddri) + β5 ∗ h(DAddri−1,DAddri)

+α6,dir ∗ w(Datai) + β6,dir ∗ h(Datai−1,Datai)} (5.36)

where Datai is the data value used in instruction i, and DAddri is its address.
Furthermore, consider Emem_data , a term which is relevant only when the data is

actually loaded from the main memory:

5.4 Energy and Power Models 263

Emem_data =
m∑

i=1

{BaseMem(DataMem, dir,Word_width)

+α9 ∗ w(DAddri) + β9 ∗ h(DAddri−1,DAddri) (5.37)

+α10,dir ∗ w(Datai) + β10,dir ∗ h(Datai−1,Datai)}

where BaseMem is the base cost for accessing a memory object of a particular
width in direction dir .

Emem_instr can be computed as follows:

Emem_instr =
m∑

i=1

{BaseMem(InstrMem,Word_widthi)

+α7 ∗ w(IAddri) + β7 ∗ h(IAddri−1, IAddri) (5.38)

+α8 ∗ w(IDatai) + β8 ∗ h(IDatai−1, IDatai)}

where BaseMem is the base cost for accessing a memory word of a particular width
from the instruction memory, IAddri is the address of the instruction, and IDatai

is instruction i itself.
Ecpu_instr can be computed from the following equation:

Ecpu_instr =
m∑

i=1

{BaseCPU(Opcodei) + FUChange(Instri−1, Instri)

+α4 ∗ w(IAddri) + β4 ∗ h(IAddri−1, IAddri)

+
s∑

j=1

(α1 ∗ w(Immi,j) + β1 ∗ h(Immi−1,j , Immi,j)) (5.39)

+
t∑

k=1

(α2 ∗ w(Regi,k) + β2 ∗ h(Regi−1,k, Regi,k))

+
t∑

k=1

(α3 ∗ w(RegV ali,k) + β3 ∗ h(RegV ali−1,k, RegV ali,k))}

where BaseCPU is the base cost for Opcodei , FUChange(..) reflects the costs
caused by the transition from instruction i − 1 to i, Imm reflects the impact of up
to s immediate values per instruction, Reg reflects the register numbers of up to t

registers per instruction, and RegV al reflects up to t register values per instruction.
To determine constants, dedicated code sequences have to be designed in order

to attribute energy consumption to particular terms of the equations.

264 5 Evaluation and Validation

Example 5.4 The following code sequence allows measuring the energy required
for executing a load word instruction:

start: lw R1, address /* load word */
lw R1, address /* load word */
... /* lw instruction repeated 50-100 times */
bra start /* back to the start */

The impact of the branch back to the beginning on the energy consumption can be
neglected. The impact of different addresses, register numbers, and register content
can be studied by varying these values. For example, we can initially set all these
values to zero and then incrementally study the impact of additional ones. ∇

In our own experiments, constants were determined by running a linear regres-
sion method on the data. A significant impact of the number of ones in the data was
found, which would have been unnoticed for Tiwari’s model.

5.4.6 Energy Model for an Application

The Odroid-XU3 [202] platform (see Fig. 5.17) comprises current sensors. The
sensors enable precise measurement of the consumed power during the execution
of applications, measuring the consumption of ARM® big cores, little cores, GPU,
and DRAM individually. This possibility is exploited by several researchers. For
example, Neugebauer et al. [416] have integrated Odroid-XU3 processors into their
design space exploration for one application. Hence, design space exploration is
based on a realistic analysis of the consumed energy. This approach eliminates
the use of models of unknown precision. The overall approach for design space
exploration enabled by the XU3 is shown in Fig. 5.18.

Fig. 5.17 Odroid-XU3

5.4 Energy and Power Models 265

Energy Meter

Energy Meter

Fitness Evaluation

Fitness Evaluation

Algorithm
Genetic

Odroid-XU3

A7 A15

RAMT628
Mali

Mali
T628 RAM

A15A7

Odroid-XU3

Master PC

Fig. 5.18 Evolutionary algorithm, fitness estimation based on real measurements

The design space exploration is based on a genetic algorithm. The evaluation of
a particular solution is based on real execution of the code on an XU3. The resulting
optimized algorithm has been used by Neugebauer et al. [417] within the cyber-
physical system PAMONO which is capable of detecting bio-viruses online. It is
based on the physical so-called Plasmon effect of visualization of small objects.
Unfortunately, the Odroid-XU3 has been discontinued and replaced by the XU4 not
including current sensors.

5.4.7 Energy Model for Multiple Applications with Hardware
Multithreading

Kerrison and Eder analyzed the energy consumption of the XMOS XS1-L multi-
threaded processor design for real-time applications [290]. One of the particular
features of that processor is its hardware-supported multithreading: it performs fast
context switching between four threads in hardware. One of the research questions
was: how much does the hardware context switching between threads cost? Due
to the availability of real hardware, this question could be answered with real
measurements. The power consumed by the XMOS XS1-L was measured with
a shunt resistor inserted into its power cable, and the resistor was connected to
an INA219 power measurement chip (see http://www.ti.com/product/ina219). The
software running on the processor was controlled from a second processor. It turned
out that the best energy efficiency was reached when all four hardware threads
are used. However, hardware multithreading leads to many charging/discharging
operations and a corresponding energy consumption. The interesting experimental
results include an analysis of the impact of executed instructions on the energy
consumption, as shown in Fig. 5.19 for the case of 8 bit data.

Figure 5.20 displays the corresponding information for the case of 16 bit data.
The two dimensions of the diagrams encode the applications which are run in

the odd and even threads, respectively. In these figures, a change in the number of
operands is indicated by dashed lines. Instructions with three or more operands are

http://www.ti.com/product/ina219

266 5 Evaluation and Validation

ze
xt

ru
s

se
xt

ru
s

an
dn

ot
2r

ze
xt

2r
se

xt
2r

cl
z

l2
r

no
t

2r
bi

tr
ev

l2
r

by
te

re
v

l2
r

mk
ms

k
ru

s
mk

ms
k

2r
ne

g
2r

eq
2r

us
eq

3r
sh

r
2r

us
ls

s
3r

ls
u

3r
sh

l
3r

sh
r

3r
ad

d
2r

us
an

d
3r

or
3r

sh
l

2r
us

ad
d

3r
as

hr
l3

r
as

hr
l2

ru
s

su
b

2r
us

xo
r

l3
r

cr
c3

2
l3

r
su

b
3r

cr
c8

l4
r

ma
cc

s
l4

r
ma

cc
u

l4
r

la
dd

l5
r

ls
ub

l5
r

lm
ul

l6
r

zext rus
sext rus

andnot 2r
zext 2r
sext 2r
clz l2r
not 2r

bitrev l2r
byterev l2r

mkmsk rus
mkmsk 2r

neg 2r
eq 2rus
eq 3r

shr 2rus
lss 3r
lsu 3r
shl 3r
shr 3r
add 2rus
and 3r
or 3r

shl 2rus
add 3r

ashr l3r
ashr l2rus
sub 2rus
xor l3r

crc32 l3r
sub 3r

crc8 l4r
maccs l4r
maccu l4r
ladd l5r
lsub l5r
lmul l6r

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

Power (mW)

Fig. 5.19 Power analysis for multithreading for 8 bit data, top, power consumption as a function
of instructions on 8 bit data executed in the even threads (vertical axis) and in the odd threads
(horizontal axis) ©Kerrison, Eder; bottom, color encoding of temperatures

shown at the top and at the right end of each diagram. Obviously, the consumed
energy increases with the number of operands. Figure 5.20 demonstrates that
processing 16 bit data requires more energy than processing 8 bit data. Kerrison
et al. use these results in order to optimize embedded software.

5.4 Energy and Power Models 267

ze
xt

ru
s

se
xt

ru
s

ze
xt

2r
se

xt
2r

an
dn

ot
2r

mk
ms

k
ru

s
cl

z
l2

r
no

t
2r

bi
tr

ev
l2

r
mk

ms
k

2r
by

te
re

v
l2

r
ne

g
2r

eq
2r

us
eq

3r
ls

s
3r

sh
r

2r
us

ls
u

3r
ad

d
2r

us
sh

l
2r

us
sh

l
3r

sh
r

3r
su

b
2r

us
an

d
3r

or
3r

as
hr

l2
ru

s
as

hr
l3

r
ad

d
3r

su
b

3r
cr

c3
2

l3
r

xo
r

l3
r

cr
c8

l4
r

ma
cc

s
l4

r
ma

cc
u

l4
r

la
dd

l5
r

ls
ub

l5
r

lm
ul

l6
r

zext rus
sext rus
zext 2r
sext 2r

andnot 2r
mkmsk rus

clz l2r
not 2r

bitrev l2r
mkmsk 2r

byterev l2r
neg 2r
eq 2rus
eq 3r

lss 3r
shr 2rus
lsu 3r
add 2rus
shl 2rus
shl 3r
shr 3r
sub 2rus
and 3r
or 3r

ashr l2rus
ashr l3r
add 3r
sub 3r

crc32 l3r
xor l3r

crc8 l4r
maccs l4r
maccu l4r
ladd l5r
lsub l5r
lmul l6r

Fig. 5.20 Power analysis for multithreading for 16 bit data, power consumption as a function
of instructions on 16 bit data executed in the even threads (vertical axis) and in the odd threads
(horizontal axis); temperature encoding as in Fig. 5.19 (bottom) ©Kerrison, Eder

5.4.8 Energy Model for an Android Mobile Phone

Zhang et al. [612] describe a power model construction technique for an HTC
Android phone, called PowerBooter. Their technique uses the following equation:

E = (βuh ∗ f reqh + βul ∗ f reql) ∗ util + βCPU ∗ CPUon

+βbr ∗ brightness + βGon ∗ GPS_on + βGsl ∗ GPS_sl

+βWiF i_l ∗ WiF il + βWiF i_h ∗ WiF ih + β3G_idle ∗ 3Gidle

+β3G_FACH ∗ 3GFACH + β3G_DCH ∗ 3GDCH (5.40)

268 5 Evaluation and Validation

where

β.. : constants to be determined

f reqi : CPU frequencies

util : CPU utilization

CPUon : refers to processor utilization
brightness : takes illumination into account

GPS.. : relates to GPS usage

WiF il : amount of time, Wi-Fi is in low-speed mode

WiF ih : amount of time, Wi-Fi is in high-speed mode

3G3G_idle : amount of time, 3G is idle

3GFACH : amount of time, a shared 3G channel is used

3GDCH : amount of time, a dedicated 3G channel is used

Obviously, PowerBooter is abstracting much more from the details of the hardware
implementation. Note that PowerBooter also includes communication, which was not
taken into account in our previous models. Parameters are determined, as before,
by measuring currents in dedicated setups and using some curve fitting method.
Measurements are based on aMonsoon power monitor (see http://www.msoon.com/
LabEquipment/PowerMonitor/).

The model construction technique allows, in combination with a battery model,
a prediction of battery lifetime. The resulting information is made available to a
tool called PowerTutor. PowerTutor is intended to provide some help for adjusting
applications to different hardware platforms and as an aid for application developers
to exploit power-saving techniques in their application without digging deep into the
peculiarities of the available hardware.

Another model for the energy consumption in mobile phones was presented by
Dusza et al. [144]. Several commercial tools also provide power and/or energy
estimation.

All of the energy consumption models considered so far were designed to
model an average case power or energy consumption, where term “average case”
might still need some clarification. Computed models might apply only for certain
inputs or for certain initial states. Average case results are valuable for predicting
temperatures and battery lifetime for certain time intervals.

5.4.9 Worst Case Energy Consumption

In certain contexts, the worst case power consumption or worst case energy
consumption is of interest.

http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/

5.5 Thermal Models 269

Definition 5.22 The worst case energy consumption (WCEC) of an embedded
system is defined as the largest energy consumption, computed as the maximum of
the energy consumption for all inputs and initial states.

Definition 5.23 The worst case power consumption (WCPC) of an embedded
system is defined as the largest power consumption, computed as the maximum of
the power consumption for all inputs and initial states.

The WCPC is relevant in the context of the dimensioning of the interconnect
and the power supply. The WCEC is relevant in the context of the design of battery
systems. We need to guarantee that the chosen battery system meets the WCEC
requirements. A safe upper bound on the WCEC can be computed as follows:

WCEC ≤
∫ WCET

0
WCPC dt = WCET ∗ WCPC

Techniques for tighter WCEC estimation have been proposed, for example, by
Jayaseelan et al. [271], by Pallister et al. [443], and by Wägemann et al. [559].
Similar to the computation of worst case execution times, these tighter bounds may
still be an overestimation, and the actual worst case power and energy consumption
are still unknown.

5.5 Thermal Models

The quest for higher performances of embedded systems increased the chances of
components becoming hot. Temperatures of the various components of embedded
systems can have a serious impact on their usability, e.g., on sensor readouts. In the
worst case, overheated components cause damages to other systems. For example,
they may cause fire hazards. Hot components might also have other consequences,
even in the absence of immediate failures. For example, the system life might be
shortened, sometimes by large factors (see Black’s equation on p. 283). Also, it may
be necessary to power down parts of silicon chips in order to avoid overheating. This
has been called the dark silicon problem [153].

The thermal behavior of embedded systems is closely linked to the transforma-
tion of electrical energy into heat. Therefore, thermal models are usually linked to
energy models. Thermal models are based on the laws of physics.6

6We will denote temperatures by θ in order to avoid confusion with periods denotes by T .

270 5 Evaluation and Validation

Fig. 5.21 Plate of
thickness L

L
A

Table 5.1 Approximate thermal characteristics of materials for air, copper, and silicon

κ: thermal conductivity cp: specific heat cv : volumetric heat capacity

Material (W/(Km)) (J/(K g)) (J/(Km3))

Air (25C) 0.025 [583] 1.012 [578] 1.21 * 103 [578]

Copper 401 [583] 0.385 [568, 578] 3.45 * 106 [578]

Silicon (≈26C) 148 [148] 0.705 [148, 568] 1.64 * 106 [148]a

aCalculated using Eq. (5.56)

5.5.1 Steady-State Behavior

Consider a homogeneous plate made of a particular material and of area A and
thickness L (see Fig. 5.21). Suppose that there is a temperature difference of �θ

between the opposite sides. We assume that heat will be propagating independently
of the direction (isotropy), and we assume being in the steady state (no transients).
Furthermore, the sides of area are supposed to be much larger than the thickness of
the plate, and we can ignore effects at the boundary of the plate. Then, the thermal
power which gets transferred across the plate is equal to

Pth = κ
�θ ∗ A

L
where: (5.41)

Pth: thermal power transferred; κ:thermal conductivity; A: area; �θ : temperature
difference; L: thickness

Equation (5.41) is also known as Fourier’s law.

Definition 5.24 Due to Eq. (5.41), we can define thermal conductivity κ as the
amount of the thermal power Pth transferred through a plate made of some material
of unit area and unit thickness when the temperatures at the opposite side differ by
one temperature unit (typically Kelvin).

Frequently, λ is used instead of κ . κ depends on the material and environmental
conditions. Values for some common materials for common conditions are included
in Table 5.1. Refer to the cited sources for more information on the dependency on
environmental conditions.

Definition 5.25 Thermal conductance [169] is defined as the amount of thermal
energy which passes through a plate per unit of time if the temperatures at the two
ends differ by one unit of temperature (typically Kelvin).

From Eq. (5.41), we have

5.5 Thermal Models 271

Fig. 5.22 Thermal model of
microprocessor with fan

Pth

�θ
= κ ∗ A

L
(5.42)

The reciprocal of this value is called thermal resistance Rth:

Rth = �θ

Pth

= L

κ ∗ A
(5.43)

Lemma 5.1 Thermal resistances add up like electrical resistances. This allows us
to map thermal modeling to electrical modeling.

Example 5.5 Figure 5.22 shows a microprocessor generating a thermal power Pth

together with the thermal resistance Rth,die of the die (chip) and the thermal
resistance Rth,f an of the fan.

Adding resistances results in the following equations

Rth = Rth,die + Rth,f an (5.44)

�θ = Rth ∗ Pth (5.45)

Let us assume the following:

Rth,die = 0.4W/K (5.46)

Rth,f an = 0.3W/K (5.47)

Pth = 10W (5.48)

Then, we compute:

�θ = 7K (5.49)

�θf an = 3K (5.50)

Consumed power and thermal resistances are related to the estimation of the thermal
design power. ∇
Definition 5.26 ([584]) “The thermal design power (TDP), sometimes called ther-
mal design point, is the maximum amount of heat generated by a computer chip
or component (often the CPU or GPU) that the cooling system in a computer is

272 5 Evaluation and Validation

designed to dissipate in typical operation. Rather than specifying CPU’s real power
dissipation, TDP serves as the nominal value for designing CPU cooling systems.”

We could try to derive the TDP from the WCPC. In practice, however, published
TDP values are typically smaller. Hence, temperature sensors are required in order
to obtain a safe operation.

5.5.2 Transient State Behavior

So far, we have just considered the steady state. In general, transients and thermal
capacitance (heat capacity) have to be considered.

Definition 5.27 The thermal capacitance (heat capacity) of some object is
defined as the amount of thermal energy Eth which can be stored per difference
�θ in temperatures:

Cth = Eth

�θ
(5.51)

Primarily, Cth depends on the amount and type of matter contained in the object:

Cth = cp ∗ m (5.52)

where cp is the specific heat and m the mass. We can also interpret Eq. (5.52) as the
definition of the specific heat:

Definition 5.28 The specific heat cp of some object made of some material of mass
m is defined as

cp = Cth

m
(5.53)

cp depends on the type of matter used. cp is temperature-dependent, but can be
considered constant for small temperature ranges.

In our context, it is frequently more convenient to consider the heat capacity per
volume instead of per unit of mass.

Definition 5.29 The volumetric heat capacity cv is defined as

cv = Cth

V
(5.54)

whereV is the volume of the object.

cv and cp are related by the mass density:

Definition 5.30 The mass density or volume density ρ is defined as

5.5 Thermal Models 273

ρ = m

V
(5.55)

InsertingV = m/ρ into the definition of cv , we have

cv = Cth

V
= Cth ∗ ρ

m
= cp ∗ ρ (5.56)

This allows us to convert between tables published for cp and cv (see, e.g.,
Table 5.1). Due to the correspondence to electrical circuits, we can also compute
the transient behavior.

Example 5.6 We extend our microprocessor example as shown in Fig. 5.23 (left).
The resulting transient for the temperature across the die and the fan is shown in

Fig. 5.23 (right). The system approaches the stable state like a network of resistors
and capacitors. ∇

Overall, it is feasible to model thermal behavior by using an equivalent electrical
model. Equivalences are shown in Table 5.2.

Fig. 5.23 Microprocessor with fan: left, thermal model; right, transient

Table 5.2 Equivalences between electrical and thermal models

Electrical model Thermal model

Current I Thermal flow, “power flow” Pth = Q̇

Total charge Q = ∫
I dt Thermal energy Eth = ∫

Pth dt

Potential φ Temperature θ

Voltage = potential difference V = �φ Temperature difference �θ

Resistancea R = ρel
L
A

Thermal resistance Rth = 1
κ

L
A

Ohm’s law V = R ∗ I � temperature at Rth �θ = Rth ∗ Pth

Capacitance C Thermal capacitance Cth

Charge on capacitor Q = C ∗ V Energy at capacitance Eth = Cth ∗ �T

Capacitance of objectb C = ρqV Capacitance of object Cth = cvV
aρel is the specific electrical resistance or volume resistivity
bρq is the volume charge density

274 5 Evaluation and Validation

Heat sink

Die

Capacitance
Node

Block 1 Block 2

Block 3

Heat Spreader

Ambient temperature

convectionR

R

R

hs

sp

Thermal

Thermal
Resistance

Fig. 5.24 HotSpot model of a chip mounted on a heat spreader and a heat sink

Well-known techniques for solving electrical network equations (see, e.g., Chen
et al. [96]) apply. However, there is no component corresponding to inductances
on the thermal side. This equivalence between thermal and electrical models is
exploited in tools such as HotSpot [500]. Figure 5.24 shows a HotSpotmodel of a chip
mounted on a heat spreader which in turn is mounted on a heat sink [499]. Skadron
et al. [499] emphasize the fact that large temperature gradients can exist within a
chip, a heat spreader, or a heat sink. Hence, it is important not to assume a uniform
temperature for these parts. In Fig. 5.24, the chip is assumed to comprise three
micro-architectural components with each component forming one thermal zone.

The heat spreader and the heat sink are modeled as five zones each. One zone of
the heat spreader is located beneath the chip, and four zones are located on the sides.
Zones on the sides possess a trapezoid-like shape and are indicated by dotted lines.
The same partitioning has been done for the heat sink. Zones in the center cannot
be shown in Fig. 5.24; they are hidden. Otherwise, each of the zones is shown as
a node in the equivalent network in Fig. 5.24. The ambient temperature is assumed
to be homogeneous. Rconvection is the thermal resistance to the environment. It is
connected to the five zones of the heat sink. Rhs is thermal resistance between the
heat spreader and the heat sink. The heat sink is also modeled as five zones. The one
in the center is connected to the chip via Rsp. The heat source is actually not shown.
For each of the zones, there is one thermal capacitance. Each of them models the
difference in temperatures if compared to the environment. Accordingly, it is always

5.6 Dependability and Risk Analysis 275

considered to be connected to the ground. Furthermore, for each of the zones, there
is a pair of thermal resistors connecting adjacent zones.

In their experiments, Skadron at al. have used the Wattch (see p. 262) power
simulator as heat source. Microarchitectural simulators such as SimpleScalar can be
used to drive Wattch. HotSpot contains mechanisms to create a system of partial
differential equations for models such as the one in Fig. 5.24. These equation
systems are then solved using a Runge-Kutta equation solver.

Skadron et al. found that it is necessary to consider different thermal zones.
Furthermore, they found that power consumption has an impact on the temperature,
but in order to really check whether thermal constraints are met, one needs to model
temperature explicitly. Several power-saving optimizations had only a small impact
on crucial temperatures. For example, register files tend to get hot. Saving power on
memory references is of little help in this context and might even have a negative
impact.

Example 5.7 As an example of the results of thermal modeling, we consider
an MPSoC of STMicroelectronics, comprising 64 P2012 cores [506]. Thermal
modeling of this MPSoC has been performed with the 3D-ICE [24] tool. Relative
temperatures for this MPSoC are shown in Fig. 5.25.7 High temperatures are shown
in red and low temperatures in blue.

The MPSoC contains four clusters, each including 16 cores. Each of the corners
of the layout corresponds to one cluster. The 16 processors are located at the center
of the clusters. Memories are located below and above the processors. Simulation
confirms that the processors are hotter than the memories. The higher utilization
of Fig. 5.25 (bottom) leads to higher temperatures. Detailed modeling of the layout
avoided temperature overestimation. ∇

Validation of thermal models requires precise temperature measurements [394].

5.6 Dependability and Risk Analysis

Next, we are going to look at dependability and possible risks.

5.6.1 Aspects of Dependability

Embedded and cyber-physical systems (like other products) can cause damages to
properties and lives. The fact that such systems are potentially safety-critical was
already included in Table 1.2 on p. 18. Hence, in general, we have to take this fact
into account. It is not possible to reduce the risk of damages to zero. The best that we

7Images are included with permission of David Atienza (EPFL). Images were obtained as part of
the cooperation between EPFL and STMicroelectronics in the FP7 EU Project titled: “PRO3D:
Programming for Future 3D Architectures with Many Cores”.

276 5 Evaluation and Validation

Fig. 5.25 Thermal simulation results for MPSoC: 50% utilization

can do is to make the probability of damages small, hopefully orders of magnitude
smaller than other risks. Dependability comprises various aspects, most importantly
safety and data security. These, in turn, contain aspects such as reliability and
confidentiality. Designs must be evaluated with respect to these aspects.

5.6.2 Security Analysis

Security of embedded and cyber-physical systems was not seen as a serious issue
when these systems were not electronically accessible from the outside. This has
changed for systems which can be accessed through communication channels,
and the two are now much more related, since security holes can cause physical
malfunctions resulting in accidents.

Security analysis needs to consider attacker models mentioned already in
Sect. 3.8. This analysis needs to find out if attacks are feasible even without having
physical access to the embedded system. If the system can be physically accessed,
physical attacks must be considered as well.

5.6 Dependability and Risk Analysis 277

Fig. 5.25 (continued): 100% utilization

Furthermore, relationships between encryption and decryption protocols and
achievable data rates must be analyzed, since it could easily happen that resource-
constrained embedded devices do not provide the expected encryption and decryp-
tion rates.

5.6.3 Safety Analysis

Damages should also be avoided, as much as possible, by designing safe systems.
In practice, at best we can expect to design a system such that the probability of
damages is orders of magnitude less than the probability of damages from other
risks.

Typically, the minimum requirement for manufacturing safety-related products
is to be ISO 9001 compliant. This standard defines requirements for quality
management systems in general. Requirements as per this standard include the
following principles [254]: customer focus, leadership, engagement of people,
process approach, improvement, evidence-based decision-making, and relationship
management. The first four principles are more or less self-explaining. The improve-
ment principle requires work to proceed in plan, do, check, and act (PDCA) cycles.
The goal of planning includes establishing objectives and addressing risks and

278 5 Evaluation and Validation

opportunities. The goal of the do phase is to implement the plan. This should be
followed by checking the results and taking actions to improve if necessary.

For the design of safety-related systems, more specific guidelines have been
developed and published as the IEC 61508 international standard [527]. Part 1 [232]
of this standard defines standard techniques for technical systems in general. Part
2 [233] specifies requirements for electrical/electronic/programmable electronic
safety-related systems. Software requirements are listed in part 3 [234]. Parts 4 to
6 contain less formal further recommendations. These standards assume that it is
not feasible to design technical systems which always provide the expected service.
Emphasis is placed on documented design procedures capable of tracing underlying
reasons for incorrect decisions.

In standard IEC 61508, a distinction is made between four different levels of
risks, called safety integrity levels (SIL). For continuously operating devices, the
standard specifies failure rates per hour of 10−5 to 10−6 for SIL-1, 10−6 to 10−7 for
SIL-2, 10−7 to 10−8 for SIL-3, and 10−8 to 10−9 for SIL-4 [581]. SIL-4 is difficult
to achieve and typically requires redundant execution. Problems arise from the
current trend toward mixed-criticality, which means that subsystems of different
SIL-levels are implemented, for example, on the same multi-core processor. Proper
shielding of the different levels of criticality is difficult.

Standard IEC 61508 is expected to apply to several industries. There are specific
extensions for specific industries. These consider, for example, the amount of time
which is available for human interventions, the possibility of transitioning into a fail-
safe mode, and the impact of malfunctions. For example, there is very little time to
react if something goes wrong in a car. However, cars can usually be stopped and
parked in a “fail-safe” mode and a safe place (with the exception of some tunnels,
etc.). In contrast, there is usually some more time available in an airplane, but some
safety-critical systems in an airplane cannot simply be turned off.

MISRA-C defines rules to be followed when using the C programming language
for safety-critical systems [396].

ISO 26262 [252] is a standard more tailored for the automotive industry.
Standards IEC 62279 and CENELEC 50128 take the special situation for rail-

based transportation into account [60].
For avionics, systems should comply with the Airworthiness Certification Spec-

ifications FAR-CS 25.1309 “Equipment, Systems and Installations” and with AC-
AMC 25.1309 “System design and analysis” [549]. This is extended for hardware by
standard DO-254 and for software by standard DO-178B (“Software Considerations
in Airborne Systems and Equipment Certification”) [163, 474], in Europe also called
ED-12B. DO-178C is a follow-up standard for DO-178B.

IEC 61511 [236] has been defined for applications in manufacturing, and IEC
61513 [235] is a special standard for nuclear power plants.

Allowed failures may be in the order of 1 failure per 109 hours of operation
or even significantly less for highly safety-critical systems like nuclear power
plants. This may be several orders of magnitude less than the failure rates of
chips. Hence, Kopetz [303] stressed that the system as a whole must be more
dependable than any of its parts and that safety requirements cannot come in as
an afterthought but must be considered right from the beginning. Obviously, fault-

5.6 Dependability and Risk Analysis 279

tolerance mechanisms must be used. Due to the low acceptable failure rate, systems
are not 100% testable. Instead, safety must be shown by a combination of testing
and reasoning. Abstraction must be used to make the system explainable using a
hierarchical set of behavioral models. Design faults and human faults must be taken
into account.

In order to address these challenges, Kopetz proposed the following 12 design
principles:

1. Safety considerations may have to be used as the important part of the specifica-
tion, driving the entire design process.

2. Precise specifications of design hypotheses must be made right at the beginning.
These include expected failures and their probability.

3. Fault-containment regions (FCRs) must be considered. Faults in one FCR should
not affect other FCRs.

4. A consistent notion of time and state must be established. Otherwise, it will be
impossible to differentiate between original and follow-up errors.

5. Well-defined interfaces must hide the internals of components.
6. It must be ensured that components fail independently.
7. Components should consider themselves to be correct unless two or more other

components pretend the contrary to be true (principle of self-confidence).
8. Fault-tolerance mechanisms must be designed such that they do not create any

additional difficulty in explaining the behavior of the system. Fault-tolerance
mechanisms should be decoupled from the regular function.

9. The system must be designed for diagnosis. For example, it has to be possible to
identify existing (but masked) errors.

10. The man-machine interface must be intuitive and forgiving. Safety should be
maintained despite mistakes made by humans.

11. Every anomaly should be recorded. These anomalies may be unobservable at
the regular interface level. This recording should involve internal effects, since
otherwise they may be masked by fault-tolerance mechanisms.

12. Provide a never-give-up strategy. Embedded systems may have to provide
uninterrupted service. The generation of pop-up windows or going off line is
unacceptable.

Definition 5.31 As system is resilient if internal or external changes of the
assumptions made at design time will change the overall user experience only in
a limited way.

A system which is self-repairing would provide some level of resiliency.
Resiliency is beyond the scope of this book.

5.6.4 Reliability Analysis

The design of dependable systems also requires an analysis of the reliability
(the likelihood of initially correctly designed systems not to malfunction due to

280 5 Evaluation and Validation

some internal fault). This task is expected to become more important and more
difficult in the future, since decreasing feature sizes of semiconductors will be
resulting in a reduced reliability of semiconductor devices (see, e.g., http://
variability.org). Transient as well as permanent faults are expected to become more
frequent. Shrinking feature sizes will also cause an increased variability among
device parameters. Therefore, dependability analysis and fault-tolerant designs are
becoming extremely important [179, 406]. Faults within semiconductors might lead
to failures of the system. The terms faults, failures, and the related terms error and
service were defined by Laprie et al. [29, 323].

Definition 5.32 “The service delivered by a system (in its role as a provider) is its
behavior as it is perceived by its user(s); . . . The delivered service is a sequence
of the provider’s external states. . . .Correct service is delivered when the service
implements the system function.”

Definition 5.33 “A service failure, often abbreviated here to failure, is an event
that occurs when the delivered service of a system deviates from the correct service.
. . . A service failure is a transition from correct service to incorrect service.”

Definition 5.34 An error exists if one of the system’s states is incorrect and may
lead to its subsequent service failure.

Definition 5.35 “The adjudged or hypothesized cause of an error is called a fault.
Faults can be internal or external of a system.”

Some faults will not cause a system failure.
As an example, we might consider a transient fault flipping a bit in memory.

After this bit flip, the memory cell will be in error. A failure will occur if the system
service is affected by this error.

In line with these definitions, we will talk about failure rates when we consider
systems that do not provide the expected system function. We will talk about faults
whenever we consider the underlying reasons that might cause failures. There are
a large number of possible reasons for faults, some of them resulting from reduced
feature sizes of semiconductors. Errors will not be considered in the remaining part
of this book.

Reaching a level of dependability corresponding to SIL-4 is only feasible if
design evaluation also comprises the analysis of the reliability, the expected lifetime,
and related objectives. Such an analysis is usually based on the probability of
failures.

More precisely, we consider the probability densities of failures. Let x be the time
until the first failure. x is a random variable. Let f (x) be the probability density of
this random variable.

As an example, we are frequently using the exponential probability density
f (x) = λe−λx . For this density function, failures are becoming less and less likely
over time (after some time, it is likely that the system is not working anymore and
a system which is not working cannot fail). This density function is frequently used
since it has a constant failure rate and, hence, describes in an appropriate way cases

http://variability.org
http://variability.org

5.6 Dependability and Risk Analysis 281

Fig. 5.26 Exponential distribution: left, density function; right, probability distribution

for which the failure rate is constant. We might even use this density function when
the actual failure rate is unknown since a constant failure rate may be a good starting
point. Moreover, this density function has nice mathematical properties. Figure 5.26
(left) shows this density function.

The probability distribution is frequently more interesting than the density. This
distribution represents the probability of a system not working at time t . It can be
obtained by integrating the density function until time t .

F(t) = Pr(x ≤ t) (5.57)

F(t) =
∫ t

0
f (x)dx (5.58)

For example, for the exponential distribution, we obtain:

F(t) =
∫ t

0
λe−λxdx = −[e−λx]t0 = 1 − e−λt (5.59)

Figure 5.26 (right) contains the corresponding function. As time advances, this
probability approaches 1. This means that, as time progresses, it becomes more
likely that the system will have failed.

Definition 5.36 The reliability R(t) of a system is the probability of the time until
the first failure being larger than t :

R(t) = Pr(x > t), t ≥ 0 (5.60)

R(t) =
∫ ∞

t

f (x)dx (5.61)

F(t) + R(t) =
∫ t

0
f (x)dx +

∫ ∞

t

f (x)dx = 1 (5.62)

R(t) = 1 − F(t) (5.63)

f (x) = −dR(t)

dt
(5.64)

For the exponential distribution, we have R(t) = e−λt (see Fig. 5.27).

282 5 Evaluation and Validation

Fig. 5.27 Reliability for
exponential distribution

The probability for the system to be functional after time t = 1/λ is about 37%.

Definition 5.37 The failure rate λ(t) is the probability of a system failing between
time t and time t + �t .

λ(t) = lim
�t→0

Pr(t < x ≤ t + �t |x > t)

�t
(5.65)

Pr(t < x ≤ t + �t |x > t) is the conditional probability for the system failing
within this time interval provided that it was working at time t . For conditional
probabilities, there is the general equation Pr(A|B) = Pr(AB)/P r(B), where
Pr(AB) is the probability of A and B happening. Pr(AB) is equal to F(t + �t) −
F(t) in our case. Pr(B) is the probability of the system working at time t , which is
R(t) in our notation. Therefore, Eq. (5.65) leads to:

λ(t) = lim
�t→0

F(t + �t) − F(t)

�tR(t)
= f (t)

R(t)
(5.66)

For example, for the exponential distribution, we obtain:8

λ(t) = f (t)

R(t)
= λe−λt

e−λt
= λ (5.67)

Failure rates are frequently measured as multiples (or fractions) of 1 FIT, where
“FIT” stands for Failure unIT and is also known as Failures In Time. 1 FIT
corresponds to 1 failure per 109 hours.

However, failure rates of real systems are frequently not constant. For many
systems, we have a “bath tub curve”-like behavior (see Fig. 5.28).

For this behavior, we are starting with an initially larger failure rate. This higher
rate is a result of an imperfect production process or “infant mortality.” The rate
during the normal operating life is then essentially constant. At the end of the useful
product life, the rate is then increasing again, due to wear-out.

8This result motivates denoting the failure rate and the constant of the exponential distribution with
the same symbol.

5.6 Dependability and Risk Analysis 283

Fig. 5.28 Bath tub curve-
like failure rates

Definition 5.38 The mean time to failure (MTTF) is the average time until the
next failure, provided that the system was initially working. This average can be
computed as the expected value of random variable x:

MTTF = E{x} =
∫ ∞

0
xf (x)dx (5.68)

For example, for the exponential distribution, we obtain:

MTTF =
∫ ∞

0
xλe−λxdx (5.69)

This integral can be computed using the product rule (
∫

uv′ = uv − ∫
u′v where

in our case we have u = x and v′ = λe−λx). Therefore, Eq. (5.69) leads to the
following equation:

MTTF = −[xe−λx]∞0 +
∫ ∞

0
e−λxdx (5.70)

= −1

λ
[e−λx]∞0 = −1

λ
[0 − 1] = 1

λ
(5.71)

This means that, for the exponential distribution, the expected time until the next
failure is the reciprocal value of the failure rate.

There is the following empirical relationship between MTTF and operating
temperatures:

Lemma 5.2 (Black’s equation [49, 55])

MTTF = A

jn
e

e
Ea
kθ (5.72)

where

A : constant

je : current density

n : constant (1..7), controversial, 2 according to Black

284 5 Evaluation and Validation

not available

available

MTBFMTTF

MTTR

MTBF

t

Fig. 5.29 Illustration of MTTF, MTTR, and MTBF

Ea : activation energy (e.g., ≈ 0.6 eV)

k : Boltzmann constant (≈ 8.617 * 10−5 eV/K)

θ : temperature

Regardless of discussions about the correct value of n, this equation shows that
the temperature has an exponential impact on the MTTF. Furthermore, current
densities are also important: the larger the current densities, the shorter the lifetime
of the product.

Definition 5.39 The mean time to repair (MTTR) is the average time to repair a
system, provided that the system is initially not working. This time is the expected
value of the random variable denoting the time to repair.

Definition 5.40 The mean time between failures (MTBF) is the average time
between two failures.

MTBF is the sum of MTTF and MTTR:

MTBF = MTTF + MTTR (5.73)

Figure 5.29 shows a simplistic view of this equation: it is not reflecting the fact
that we are dealing with probabilistic events, and actual MTBF, MTTF, and MTTR
values may vary randomly. For many systems, repairs are not considered. Also, if
they are considered, the MTTR should be much smaller than the MTTF. Therefore,
the terms MTBF and MTTF are frequently mixed up. For example, the lifetime
of a hard disk may be quoted as a certain MTBF, even though it will never be
repaired. Quoting this number as the MTTF would be more correct. Still, the MTTF
provides only very rough information about dependability, especially if there are
large variations in the failure rates over time.

Definition 5.41 The availability is the probability of a system being in an opera-
tional state.

The availability varies over time (just consider the bath tub curve!). Therefore,
we can model availability by a time-dependent function A(t). However, we are
frequently only considering the availability A for large time intervals. Hence, we
define

5.6 Dependability and Risk Analysis 285

Fig. 5.30 Failure rates of TriQuint’s gallium arsenide devices (courtesy of TriQuint, Inc., Hills-
boro), ©TriQuint

A = lim
t→∞ A(t) = MTTF

MTBF
(5.74)

For example, assume that we have a system which is repeatedly available for 999
days and then needs 1 day for repair. Such a system would have an availability of
A = 0.999.

Allowed failure rates can be in the order of 1 FIT. This may be several orders
of magnitude less than the failure rates of chips. This means that systems must
be more reliable than their components! Obviously, the required level of reliability
makes fault-tolerance techniques a must!

Obtaining actual failure rates is difficult. Figure 5.30 shows one of the few
published results [546]. This figure contains failure rates for different gallium
arsenide (GaAs) devices with the hottest transistor operating at a temperature of
150 ◦C.

This example is used here to demonstrate that there exist devices for which the
assumptions of constant failure rates or a bath tub-like behavior are oversimpli-
fying.9 As a result, citing a single MTTF number may be misleading. The actual
distribution of failures over time should be used instead. In the particular case of
this example, failure rates are less than 100 FIT for the first 20 years (175,300 h) of
product lifetime, despite the high temperature. FIT numbers are actually very much
temperature dependent, and temperatures up to 275 ◦C and known temperature
dependences have been used at TriQuint to compute failure rates for periods larger
than the time available for testing. TriQuint claims that their GaAs devices are more

9Therefore, the so-called log-normal distribution is sometimes considered.

286 5 Evaluation and Validation

AND

_>1

&

&

OS hazard

TCP/IP port open + OS bug
.....

User receives mail

No firewall used

User clicks on attachment

PC connected to internet

Attachment has virus

OR

.....

Fig. 5.31 Fault tree

reliable than average silicon devices. Reports on FIT testing are also available for
Xilinx FPGAs (see, e.g., [600]).

5.6.5 Fault Tree Analysis, Failure Mode, and Effect Analysis

It is frequently not possible to experimentally verify failure rates of complete
systems. Requested failure rates are too small, and failures may be unacceptable.
We cannot fly 105 airplanes 104 hours each in an attempt to check if we reach a
failure rate of less than 10−9 (SIL-4)! The only way out of this dilemma is to use
a combination of checking failure rates of components and formally deriving from
this guarantees for a reliable operation of the system. Design- and user-generated
failures also must be taken into account. It is state of the art to use decision diagrams
to compute the reliability of a system from that of its components [260].

Damages are resulting from hazards (chances for a failure). For each possible
damage caused by a failure, there is a severity (the cost) and a probability. Risk can
be defined as the product of the two. Information concerning the damages resulting
from component failures can be derived with at least two techniques [143, 459]:

• Fault tree analysis (FTA): FTA is a top-down method of analyzing risks. The
analysis starts with a possible damage and then tries to come up with possible
scenarios that lead to that damage. FTA is based on modeling a Boolean function
reflecting the operational state of the system (operational or not operational).
FTA typically includes symbols for AND- and OR-gates, representing conditions
for possible damages. OR-gates are used if a single event could result in a
hazard. AND-gates are used when several events or conditions are required
for that hazard to exist. Figure 5.31 shows an example.10 FTA is based on a
structural model of the system, i.e., it reflects the partitioning of the system into
components.

10Consistent with the ANSI/IEEE standard 91, we use the symbols &, =1 and ≥1 to denote AND-,
XOR-, and OR-gates, respectively.

5.7 Simulation 287

Table 5.3 FMEA table

Component Failure Consequences Probability Critical?

.

Processor Metal migration No service 10−7/h Yes

.

The simple AND- and OR-gates cannot model all situations. For example,
their modeling power is exceeded if shared resources of some limited amount
(like energy or storage locations) exist. Markov models [67] may have to be used
to cover such cases. Markov models are based on the notion of states, rather than
on the structure of the system.

• Failure mode and effect analysis (FMEA): FMEA starts at the components
and tries to estimate their reliability. Using this information, the reliability of the
system is computed from the reliability of its parts (corresponding to a bottom-
up analysis). The first step is to create a table containing components, possible
failures, probability of failures, and consequences on the system behavior. Risks
for the system as a whole are then computed from the table. Table 5.3 shows an
example.

Tools supporting both approaches are available. Both approaches may be used
in “safety cases”. In such cases, an independent authority has to be convinced
that certain technical equipment is indeed safe. One of the commonly requested
properties of technical systems is that no single failing component should potentially
cause a catastrophe.

The design of safe and dependable systems is a topic on its own. This book can
only provide a few hints into this direction. There is an abundant amount of recent
publications on the impact of reliability issues on system design. Examples include
publications by Huang [223], Zhuo [613], and Pan [445]. For more information
about dependability, consult books [181, 323, 339, 418, 513] on those areas.

5.7 Simulation

In this chapter, we have so far placed an emphasis on design evaluation. Starting
with this section, we are now also considering validation. Simulation is a very
common technique for evaluating and validating designs. Simulation consists of
executing a design model on appropriate computing hardware, typically on general-
purpose digital computers. Obviously, this requires models to be executable. All the
executable models and languages introduced in Chap. 2 can be used in simulations,
and they can be used at various levels as described starting at p. 115. The level at
which designs are simulated is always a compromise between simulation speed and
accuracy. The faster the simulation, the less accuracy is available.

288 5 Evaluation and Validation

So far, we have used the term behavior in the sense of the functional behavior
of systems (their input/output behavior). There are also simulations of some
non-functional behaviors of designs, including the thermal behavior and the elec-
tromagnetic compatibility (EMC) with other electronic equipment. Due to the
integration with physics, there is a large range of physical effects which may have
to be included in the simulation model. As a result, it is impossible to cover all
relevant approaches for simulating cyber-physical systems in this book. Law [325]
provides an overview of approaches and topics in simulations on digital systems. A
large amount of additional information on the simulation of systems (in particular
of heterogeneous, cyber-physical systems) is available (see, e.g., [126, 362, 442]).
Some simulators specialize on specific application areas. Due to the large number
of physical effects, it is impossible to provide a complete list of references.

For cyber-physical systems, simulations have serious limitations:

• Simulations are typically a lot slower than the actual design. Hence, if we
interface the simulator with the actual environment, we can have quite a number
of violations of timing constraints.

• Simulations in the physical environment may even be dangerous (who would
want to drive a car with unstable control software?).

• For many applications, there may be huge amounts of data, and it may be
impossible to simulate enough data in the available time. Multimedia applications
are notoriously known for this. For example, simulating the compression of some
video stream takes an enormous amount of time.

• Most actual systems are too complex to allow simulating all possible cases
(inputs). Hence, simulations can help us to find errors in our designs. They cannot
guarantee absence of errors, since simulations cannot exhaustively be done for all
possible combinations of inputs and internal states.

Due to these limitations, there is an increased emphasis on validation by formal
verification (see p. 290). Nevertheless, sophisticated simulation techniques continue
to play a key role for validation (see, e.g., Braun et al. [66]). Academic solutions
like gem5 (see http://gem5.org), SimpleScalar, and OpenModelica as well as
commercial solutions like the Synopsys® Virtualizer™ (see http://synopsys.com)
are available. There are several tools for the simulation of networks (as required for
the Internet of Things), including OMNET++ (see https://omnetpp.org/).

5.8 Rapid Prototyping and Emulation

Simulations are based on models, which are approximations of real systems. In
general, there will be some difference between the real system and the model. We
can reduce the gap by implementing some parts of our system under design (SUD)
more precisely than in a simulator (e.g., in a real, physical component).

http://gem5.org
http://synopsys.com
https://omnetpp.org/

5.8 Rapid Prototyping and Emulation 289

Definition 5.42 Adopting a definition phrased by McGregor [383], we define
emulation as the process of executing a model of the SUD where at least one
component is not represented by simulation on some kind of host computer.

According to McGregor, “Bridging the credibility gap is not the only reason
for a growing interest in emulation — the above definition of an emulation model
remains valid when turned around — an emulation model is one where part of the
real system is replaced by a model. Using emulation models to test control systems
under realistic conditions, by replacing the . . . (real system) . . . with a model, is
proving to be of considerable interest to those responsible for commissioning, or
the installation and start-up of automated systems of many kinds.”

In order to further improve credibility, we can continue replacing simulated
components by real components. These components do not have to be the final
components. They can be approximations of the real system itself but should exceed
the precision of simulations.

Note that it is now common to discuss the “emulation” of one computer on
another computer by means of software. There is a lack of a precise definition of
the use of the term in this context. However, it can be considered consistent with our
definition, since the emulated computer is not just simulated. Rather, a speed faster
than simulation speed is expected.

Definition 5.43 Fast prototyping is the process of executing a model of the SUD
where no component is represented by simulation on some kind of host computer.
Rather, all components are represented by realistic components. Some of these
components should not yet be the finally used components (otherwise, this would
be the real system).

There are many cases in which the designs should be tried out in realistic
environments before final versions are manufactured. Control systems in cars are
an excellent example for this. Such systems should be used by drivers in different
environments before mass production is started. Accordingly, the automotive
industry designs prototypes. These prototypes should essentially behave like the
final systems, but they may be larger, have more power consuming, and have other
properties which test drivers can accept. The term “prototype” can be associated
with the entire system, comprising electrical and mechanical components. However,
the distinction between rapid prototyping and emulation is also blurring. Rapid
prototyping is by itself a wide area which cannot be comprehensively covered in
this book.

Prototypes and emulators can be built, for example, using FPGAs. Racks
containing FPGAs can be stored in the trunk while test drivers exercise the car. This
approach is not limited to the automotive industry. There are several other fields in
which prototypes are built from FPGAs. Commercially available emulators consist
of a large number of FPGAs. They come with the required mapping tools which map
specifications to these emulators. Using these emulators, experiments with systems
which behave “almost” like the final systems can be run. However, catching errors

290 5 Evaluation and Validation

by prototyping and emulation is already a problem for non-distributed systems. For
distributed systems, the situation is even more difficult (see, e.g., Tsai [547]).

5.9 Formal Verification

Formal verification11 is concerned with formally proving a system correct, using
the language of mathematics. First of all, a formal model is required to make formal
verification applicable. This step can hardly be automated and may require some
effort. Once the model is available, we can try to prove certain properties.

Formal verification techniques can be classified by the type of logic employed:

• Propositional logic: In this case, models consist of Boolean expressions. Tools
are called Boolean checkers, tautology checkers, or equivalence checkers.
They can be used to verify that two representations of Boolean functions (or sets
of Boolean functions) are equivalent. Since propositional logic is decidable, it is
also decidable whether or not the two representations are equivalent (there will
be no cases of doubt). For example, one representation might correspond to gates
of an actual circuit and the other to its specification. Proving the equivalence then
proves the effect of all design transformations (e.g., optimizations for power or
delay) to be correct. Boolean checkers can cope with designs which are too large
to allow simulation-based exhaustive validation. The key reason for the power
of Boolean checkers is the use of binary decision diagrams (BDDs) [571]. The
complexity of equivalence checks of Boolean functions represented with BDDs
is linear in the number of BDD nodes. The number of BDD nodes can potentially
grow exponentially with the number of variables, but, in practice, many relevant
functions can be represented with compact BDDs.12 In contrast, the equivalence
check for functions represented by sums of products is NP-hard. BDD-based
equivalence checkers have therefore replaced simulators for this application and
handle circuits with millions of transistors.

• First-order logic (FOL): FOL adds ∃ and ∀ quantifiers to propositional logic.
Some automation for verifying FOL models is feasible. However, since FOL is
undecidable, there may be cases of doubt. Popular techniques include the Hoare
calculus. Typically, operations on integers are also supported.

• Higher-order logic (HOL): Higher-order logic is based on lambda calculus and
allows functions to be manipulated like other objects [423]. For higher-order
logic, proofs can hardly ever be automated and typically must be done manually
with some proof support.

11This initial text on formal verification was based on a guest lecture given by Tiziana Margaria at
TU Dortmund.
12Multiplication is a prominent exception [284].

5.10 Problems 291

Propositional logic can be used to verify stateless logic networks but cannot
directly model finite state machines. For short input sequences, it may be sufficient
to cut the feedback loop in FSMs and to effectively deal with several copies of
these FSMs, each copy representing the effect of one input pattern. However, this
method does not work for longer input sequences. Such sequences can be handled
withmodel checking.

For model checking, we have two inputs to the verification tool:

1. The model to be verified
2. Properties to be verified

States can be quantified with ∃ and ∀; numbers cannot. Verification tools can
prove or disprove the properties. In the latter case, they can provide a counterexam-
ple. Model checking is easier to automate than FOL. It has been implemented for
the first time in 1987, using BDDs. It was possible to locate several errors in the
specification of the future bus protocol [104]. UPPAAL is a very popular tool for
model checking.13

This technique could be used, for example, to prove properties of the railway
model of Fig. 2.52 (see p. 82). It should be possible to convert the Petri net into a
state chart and then confirm that the number of trains commuting between Cologne
and Paris is indeed constant, confirming our discussion of Petri net place invariants
on p. 81.

5.10 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

5.1 Let us consider an example demonstrating the concept of Pareto optimality.
In this example, we study the results generated by task concurrency management
(TCM) tools designed at the IMEC research center (Interuniversitair Micro-
Electronica Centrum). TCM tools aim at establishing efficient mappings from
applications to processors. Different multiprocessor systems are evaluated and
represented as sets of Pareto optimal designs. Wong et al. [595] describe different
options for the design of an MPEG-4-player. The authors assume that a combination
of StrongARM processors and specialized accelerators should be used. Four designs
meet the timing constraint of 30 ms (see Table 5.4). These different designs are
shown in Fig. 5.32. For combinations 1 and 4, the authors report that only one
mapping of tasks to processors meets the timing constraints. For combinations 2 and
3, different time budgets lead to different task to processor mappings and different
energy consumptions.

13See http://www.uppaal.org for the academic and http://www.uppaal.com for the commercial
version.

http://www.uppaal.org
http://www.uppaal.com

292 5 Evaluation and Validation

Table 5.4 Processor
configurations

Processor combination 1 2 3 4

Number of high-speed processors 6 5 4 3

Number of low-speed processors 0 3 5 7

Total number of processors 6 8 9 10

Pareto-optimal design points

1234
5

6

12
3

456

Configuration 2

Configuration 3

Time [ms]

E
ne

rg
y

[m
J]

400

490
480
470
460
450
440
430
420
410

92 038272625242
390

Fig. 5.32 Pareto points for multiprocessor systems 2 and 3

{a}}e{ }f{

{g}{d} {c,f}{}

{d}

Fig. 5.33 Abstract cache states

Which area in the objective space is dominated by at least one design of
configuration 3? Is there any design belonging to configuration 2 which is not
dominated by at least one design of configuration 3? Which area in the objective
space dominates at least one design of configuration 3?

5.2 Which conditions must be met by computations of WCETEST ?

5.3 Let us consider cache states at a control flow join. Figure 5.33 shows abstract
cache states before the join.

Now let us look at abstract cache states after the join. Which state would a must-
analysis derive? Which state would a may-analysis derive?

5.4 Consider an incoming “bursty” event stream. The stream is periodic with a
period of T . At the beginning of each period, two events arrive with a separation
of d time units. Develop arrival curves for this stream! Resulting graphs should
display times from 0 up to 3∗T .

5.5 Suppose that you are working with a processor having a maximum performance
of b.

5.10 Problems 293

1. What do the service curves look like if the performance can deteriorate to b′, due
to cache conflicts?

2. How do the service curves change if some timer is interrupting the executed
program every 100ms and if servicing the interrupt takes 10ms? Assume that
there are no cache conflicts.

3. How do the service curves look like if you consider cache conflicts like in (1.)
and interrupts like in (2.)?

Resulting graphs should display times from 0 up to 300ms.

5.6 Suppose that we try to collect amber. However, there is the risk of also
collecting white phosphorus. Suppose that we collect 50 objects. We keep all of
them in water to avoid fire hazards. We classify 30 objects as amber and 20 as
white phosphorus. However, two of the objects classified as amber are actually
pieces of white phosphorus and 8 objects classified as white phosphorus are actually
consisting of amber. Compute the precision, recall, accuracy, and specificity for this
classification!

5.7 Suppose that you try to compute the power consumption of your mobile phone
using a shunt resistor. The following values are relevant for the computation of the
power consumption at some time t : resistor, 0.47
; power supply voltage, 5.1V;
and voltage across shunt, 0.23V. What is the power consumption of your mobile at
this time t?

5.8 Consider a copper plate of area A=10 cm2 and length 5mm. Howmuch thermal
power is transferred if the difference between the temperatures at the two ends of
the plate is 10 ◦C?

5.9 Consider a hard disk drive for which we assume that half of the drives have
failed after 5000 h of operation. Let us assume that failures follow an exponential
distribution. Compute the corresponding value of λ!

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	5 Evaluation and Validation
	5.1 Introduction
	5.1.1 Scope
	5.1.2 Multi-Objective Optimization
	5.1.3 Relevant Objectives

	5.2 Performance Evaluation
	5.2.1 Early Phases
	5.2.2 WCET Estimation
	5.2.3 Real-Time Calculus

	5.3 Quality Metrics
	5.3.1 Approximate Computing
	5.3.2 Simple Criteria of Quality
	5.3.3 Criteria for Data Analysis

	5.4 Energy and Power Models
	5.4.1 General Properties
	5.4.2 Energy Model for Memories
	5.4.3 Energy Model for Instructions
	5.4.4 Energy Model for Functional Processor Units
	5.4.5 Energy Model for Processor and Memory
	5.4.6 Energy Model for an Application
	5.4.7 Energy Model for Multiple Applications with Hardware Multithreading
	5.4.8 Energy Model for an Android Mobile Phone
	5.4.9 Worst Case Energy Consumption

	5.5 Thermal Models
	5.5.1 Steady-State Behavior
	5.5.2 Transient State Behavior

	5.6 Dependability and Risk Analysis
	5.6.1 Aspects of Dependability
	5.6.2 Security Analysis
	5.6.3 Safety Analysis
	5.6.4 Reliability Analysis
	5.6.5 Fault Tree Analysis, Failure Mode, and Effect Analysis

	5.7 Simulation
	5.8 Rapid Prototyping and Emulation
	5.9 Formal Verification
	5.10 Problems

