Chapter 4)
System Software e

In order to cope with the complexity of applications of embedded systems, reuse
of components is a key technique. As pointed out by Sangiovanni-Vincentelli
[476], software and hardware components must be reused in the platform-based
design methodology (see p. 296). These components comprise knowledge from
earlier design efforts and constitute intellectual property (IP). Standard software
components that can be reused include system software components such as
embedded operating systems (OSs) and middleware. The last term denotes software
that provides an intermediate layer between the OS and application software. This
chapter starts with a description of general requirements for embedded operating
systems. This includes real-time capabilities as well as adaptation techniques to
provide just the required functionality. Mutually exclusive access to resources
can result in priority inversion, which is a serious problem for real-time systems.
Priority inversion can be circumvented with resource access protocols. We will
present three such protocols: the priority inheritance, priority ceiling, and stack
resource protocols. A separate section covers the ERIKA real-time system kernel.
Furthermore, we will explain how Linux can be adapted to systems with tight
resource constraints. Finally, we will provide pointers for additional reusable
software components, like hardware abstraction layers (HALs), communication
software, and real-time data bases. Our description of embedded operating systems
and of middleware in this chapter is consistent with the overall design flow (see also
Fig.4.1).

© The Author(s) 2021 203
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_4

204 4 System Software

specification design repository design
se I r
3 B application test
_é % HW-components mapping
C
© (optimization W
system software . o

v» (RTOS, ..) evaluation & validation

Fig. 4.1 Simplified design information flow

4.1 Embedded Operating Systems

4.1.1 General Requirements

Except for very simple systems, I/O, scheduling, and context switching require the
support of an operating system suited for embedded applications. Switching from
the execution of one code object such that some other code object is executed is
called context switching. Context switching multiplexes processors such that each
code object seems to have its own processor. For code objects, we distinguish
between processes and threads. First of all, we define the term “process”:

Definition 4.1 (Adopted from Tanenbaum [525]) A process is an executed
program (or a part of a program) including memory content.

Courses on operating systems provide additional information about this term (e.g.,
in German [472]). In this chapter, we will be using this term in the sense of an entity
within the operating system (and not in the sense of processes in SDL, VHDL,
process networks, or semiconductor fabrication).

For systems with virtual addressing!, we can distinguish between different
address spaces. For such systems, we have to distinguish between executions of
code objects within separate or within the same address spaces. If they are executed
within separate address spaces, we will call them processes. If they are executed
within the same address space, we will call them threads (or lightweight processes).

Definition 4.2 A thread is an executed program using the same address space as
other programs.

For processes, there is some form of memory protection, since processes cannot
corrupt other process memory areas. However, context switches have to change
address translation information. Hence, they come with some overhead. For threads,
this protection does not exist. In fact, threads sharing an address space will typically
communicate via shared memory. Context switching for threads is typically faster

I'See Appendix C.

4.1 Embedded Operating Systems 205

than for processes. We do not need to distinguish between threads and processes if
there is just one address space. More information about the just touched standard
topics in system software can be found in textbooks on operating systems, such as
the book by Tanenbaum [525]. Operating systems have to provide communication
and synchronization methods for threads and processes.

The following are essential features of embedded operating systems:

* Due to the large variety of embedded systems, there is also a large variety
of requirements for the functionality of embedded OSs. Due to efficiency
requirements, it is not possible to work with OSs which provide the union of
all functionalities. For most applications, the OS must be small. Hence, we need
operating systems which can be flexibly tailored toward the application at hand.
Configurability is therefore one of the main characteristics of embedded OSs.
There are various techniques of implementing configurability, including:?

— Object orientation, used for a derivation of proper subclasses: for example,
we could have a general scheduler class. From this class we could derive
schedulers having particular features. However, object-oriented approaches
typically come with an additional overhead. For example, dynamic binding
of methods does create run-time overhead. Ideas for reducing this overhead
exist (see, e.g., https://github.com/lefticus/cppbestpractices/blob/master/08-
Considering_Performance.md). Nevertheless, remaining overhead and poten-
tial timing unpredictability may be unacceptable for performance-critical
system software.

— Aspect-oriented programming [352]: with this approach, orthogonal aspects
of software can be described independently and then can be added automat-
ically to all relevant parts of the program code. For example, some code for
profiling can be described in a single module. It can then be automatically
added to or dropped from all relevant parts of the source code. The CIAO
family of operating systems has been designed in this way [350].

— Conditional compilation: in this case, we are using some macro preproces-
sor, and we are taking advantage of #if and #ifdef preprocessor commands.

— Advanced compile-time evaluation: configurations could be performed by
defining constant values of variables before compiling the OS. The compiler
could then propagate the knowledge of these values as much as possible.
Advanced compiler optimizations may also be useful in this context. For
example, if a particular function parameter is always constant, this parameter
can be dropped from the parameter list. Partial evaluation [275] provides a
framework for such compiler optimizations. In a sophisticated form, dynamic
data might be replaced by static data [26]. A survey of operating system
specialization was published by McNamee et al. [387].

— Linker-based removal of unused functions: at link-time, there may be more
information about used and unused functions than during earlier phases. For

2This list is sorted by the position of the technique in the development process or tool chain.

https://github.com/lefticus/cppbestpractices/blob/master/08-Considering_Performance.md
https://github.com/lefticus/cppbestpractices/blob/master/08-Considering_Performance.md

206 4 System Software

example, the linker can figure out, which library functions are used. Unused
library functions can be accordingly dropped and specializations can take
place [91].

These techniques are frequently combined with a rule-based selection of files

to be included in the operating system. Tailoring the OS can be made easy
through a graphical user interface hiding the techniques employed for achieving
this configurability. For example, VxWorks [590] from Wind River is configured
via a graphical user interface.

Verification is a potential problem of systems with a large number of derived
tailored OSs. Each and every derived OS must be tested thoroughly. Takada
mentions this as a potential problem for eCos (an open-source RTOS; see
http://ecos.sourceware.org and Massa [381]), comprising 100-200 configuration
points [523]. For Linux, this problem is even larger [526]. Software product line
engineering [456] can contribute toward solving this problem.

* There is a large variety of peripheral devices employed in embedded systems.
Many embedded systems do not have a hard disk, a keyboard, a screen, or
a mouse. There is effectively no device that needs to be supported by all
variants of the OS, except maybe the system timer. Frequently, applications
are designed to handle particular devices. In such cases, devices are not shared
between applications, and hence there is no need to manage the devices by the
OS. Due to the large variety of devices, it would also be difficult to provide all
required device drivers together with the OS. Hence, it makes sense to decouple
OS and drivers by using special processes instead of integrating their drivers into
the kernel of the OS. Due to the limited speed of many embedded peripheral
devices, there is also no need for an integration into the OS in order to meet
performance requirements. This may lead to a different stack of software layers.
For PCs, some drivers, such as disk drivers, network drivers, or audio drivers, are
implicitly assumed to be present. They are implemented at a very low level of the
stack. The application software and middleware are implemented on top of the
application programming interface, which is standard for all applications. For an
embedded OS, device drivers are implemented on top of the kernel. Applications
and middleware may be implemented on top of appropriate drivers, not on top of
a standardized API of the OS (see Fig. 4.2). Drivers may even be included in the
application itself.

* Protection mechanisms are sometimes not necessary, since embedded systems
are sometimes designed for a single purpose (they are not supposed to support

application software application software
middleware middleware |
device driver | device driver OS kernel
OS kernel device driver [device driver |

Fig. 4.2 Device drivers implemented on top of (left) or below (right) the OS kernel

http://ecos.sourceware.org

4.1 Embedded Operating Systems 207

the so-called multiprogramming). Untested programs have traditionally hardly
ever been loaded. After the software has been tested, it could be assumed to be
reliable. This also applies to input/output. In contrast to desktop applications,
it is possibly not always necessary to implement I/O instructions as privileged
instructions and processes can sometimes be allowed to do their own I/O.
This matches nicely with the previous item and reduces the overhead of I/O
operations.

Example 4.1 Let switch correspond to the (memory-mapped) I/O address of
some switch which needs to be checked by some program. We can simply use a

load register,switch

instruction to query the switch. There is no need to go through an OS service
call, which would create overhead for saving and restoring the context (registers,
etc.). \Y

However, there is a trend toward more dynamic embedded systems. Also,
safety and security requirements might make protection necessary. Special
memory protection units (MPUs) have been proposed for this (see Fiorin [164]
for an example). For systems with a mix of critical and non-critical applications
(mixed-criticality systems), configurable memory protection [351] may be a
goal.

* Interrupts can be connected to any thread or process. Using OS service calls,
we can request the OS to start or stop them if certain interrupts happen. We could
even store the start address of a thread or process in the interrupt vector address
table, but this technique is very dangerous, since the OS would be unaware of the
thread or process actually running. Also composability may suffer from this: if
a specific thread is directly connected to some interrupt, then it may be difficult
to add another thread which also needs to be started by some event. Application-
specific device drivers (if used) might also establish links between interrupts and
threads and processes. Techniques for establishing safe links have been studied
by Hofer et al. [218].

e Many embedded systems are real-time (RT) systems, and, hence, the OS used in
these systems must be a real-time operating system (RTOS).

Additional information about embedded operating systems can be found in a
book chapter written by Bertolotti [51]. This chapter comprises information about
the architecture of embedded operating systems, the POSIX standard, open-source
real-time operating systems, and virtualization.

4.1.2 Real-Time Operating Systems

Definition 4.3 (A) “real-time operating system is an operating system that sup-
ports the construction of real-time systems” [523].

208 4 System Software

What is needed from an OS to be an RTOS? There are four key requirements:>

¢ The timing behavior of the OS must be predictable. For each service of the
OS, an upper bound on the execution time must be guaranteed. In practice, there
are various levels of predictability. For example, there may be sets of OS service
calls for which an upper bound is known and for which there is not a significant
variation of the execution time. Calls like “get me the time of the day” may
fall into this class. For other calls, there may be a huge variation. Calls like
“get me 4MB of free memory” may fall into this second class. In particular,
the scheduling policy of any RTOS must be deterministic.

There may also be times during which interrupts must be disabled to avoid
interferences between components of the OS. Less importantly, they can also
be disabled to avoid interferences between processes. The periods during which
interrupts are disabled must be quite short in order to avoid unpredictable delays
in the processing of critical events.

For RTOSs implementing file systems still using hard disks, it may be
necessary to implement contiguous files (files stored in contiguous disk areas)
to avoid unpredictable disk head movements.

e The OS must manage the scheduling of threads and processes. Scheduling
can be defined as mapping from sets of threads or processes to intervals of
execution time (including the mapping to start times as a special case) and to
processors (in case of multiprocessor systems). Also, the OS possibly has to be
aware of deadlines so that the OS can apply appropriate scheduling techniques.
There are, however, cases in which scheduling is done completely off-line and the
OS only needs to provide services to start threads or processes at specific times
or priority levels. Scheduling algorithms will be discussed in detail in Chap. 6.

¢ Some systems require the OS to manage time. This management is mandatory
if internal processing is linked to an absolute time in the physical environment.
Physical time is described by real numbers. In computers, discrete time standards
are typically used instead. The precise requirements may vary:

1. In some systems, synchronization with global time standards is necessary.
In this case, global clock synchronization is performed. Two standards are
available for this:

— Universal Time Coordinated (UTC): UTC is defined by astronomical
standards. Due to variations regarding the movement of the Earth, this
standard has to be adjusted from time to time. Several seconds have been
added during the transition from 1 year to the next. The adjustments
can be problematic, since incorrectly implemented software could get the
impression that the next year starts twice during the same night.

— International atomic time (in French: temps atomic internationale or
TAI). This standard is free of any artificial artifacts.

3This section includes information from Hiroaki Takada’s tutorial [523].

4.1 Embedded Operating Systems 209

Some connection to the environment is used to obtain accurate time informa-
tion. External synchronization is typically based on wireless communication
standards such as the Global Positioning System (GPS) [413], mobile net-
works, or special atomic time services typically based on long wavelength
stations [580], such as DCF77 in Germany.

2. If embedded systems are used in a network, it is frequently sufficient to syn-
chronize time information within the network. Local clock synchronization
can be used for this. In this case, connected embedded systems try to agree on
a consistent view of the current time.

3. There may be cases in which provision for precise local delays is all that is
needed.

For several applications, precise time services with a high resolution must be
provided. They are required, for example, in order to distinguish between original
and subsequent errors. For example, they can help to identify the power plant(s)
that are responsible for blackouts (see [427]). The precision of time services
depends on how they are supported by a particular execution platform. They are
very imprecise (with precisions in the millisecond range) if they are implemented
through processes at the application level and very precise (with precisions in
the microsecond range) if they are supported by communication hardware. More
information about time services and clock synchronization is contained in a book
by Kopetz [303].

e The OS must be fast. An operating system meeting all the requirements
mentioned so far would be useless if it were very slow. Therefore, the OS must
obviously be fast.

Each RTOS includes a so-called real-time OS kernel. This kernel manages the
resources which are found in every real-time system, including the processor, the
memory, and the system timer. Major functions in the kernel include the process
and thread management, interprocess synchronization and communication, time
management, and memory management.

While some RTOSs are designed for general embedded applications, others focus
on a specific area. For example, OSEK/VDX-compatible operating systems focus on
automotive control. Operating systems for a selected area can provide a dedicated
service for that particular area and can be more compact than operating systems for
several application areas.

Similarly, while some RTOSs provide a standard API, others come with their
own, proprietary API. For example, some RTOSs are compliant with the stan-
dardized POSIX RT-extension [201] for Unix, with the OSEK ISO 17356-3:2005
standard or with the ITRON specification developed in Japan (see http://www.ertl.
jp/ITRONY/). Many RT-kernel types of OSs have their own API. ITRON, mentioned
in this context, is a mature RTOS which employs link-time configuration.

http://www.ertl.jp/ITRON/
http://www.ertl.jp/ITRON/

210 4 System Software

Fig. 4.3 Hybrid OSs real-time | real-time- non-real-time | non-real-time
process 1 | process 2 process 1 process 2

device driver |device driver Standard OS
real-time kernel

Available RTOSs can further be classified into the following categories [194]:

¢ Fast proprietary kernels: According to Gupta, “for complex systems, these
kernels are inadequate, because they are designed to be fast, rather than to be
predictable in every respect”. Examples include QNX, PDOS, VCOS, VTRX32,
and VxWorks.

¢ Real-time extensions to standard OSs: In order to take advantage of com-
fortable mainstream operating systems, hybrid systems have been developed.
For such systems, there is an RT-kernel running all RT-processes. The standard
operating system is then executed as one of these processes (see Fig. 4.3).

This approach has some advantages: for example, the system can be equipped
with a standard OS API and can have graphical user interfaces (GUIs) and
file systems. Enhancements to standard OSs become quickly available in the
embedded world as well. Also, problems with the standard OS and its non-RT-
processes do not negatively affect the RT-processes. The standard OS can even
crash and this would not affect the RT-processes. On the down side, and this is
already visible from Fig. 4.3, there may be problems with device drivers, since
the standard OS will have its own device drivers. In order to avoid interference
between the drivers for RT-processes and those for the other processes, it may
be necessary to partition devices into those handled by RT-processes and those
handled by the standard OS. Also, RT-processes cannot use the services of
the standard OS. So all the nice features like file-system access and GUIs are
normally not available to those processes, even though some attempts may be
made to bridge the gap between the two types of processes without losing the RT
capability. RT-Linux is an example of such hybrid OSs.

According to Gupta [194], trying to use a version of a standard OS is “not the
correct approach because too many basic and inappropriate underlying assump-
tions still exist such as optimizing for the average case (rather than the worst
case), ...ignoring most if not all semantic information, and independent CPU
scheduling and resource allocation.” Indeed, dependencies between processes
are not very frequent for most applications of standard operating systems and
are therefore frequently ignored by such systems. This situation is different for
embedded systems, since dependencies between processes are quite common
and they should be taken into account. Unfortunately, this is not always done
if extensions to standard operating systems are used. Furthermore, resource
allocation and scheduling are rarely combined for standard operating systems.
However, integrated resource allocation and scheduling algorithms are required
in order to guarantee meeting timing constraints.

4.1 Embedded Operating Systems 211

e There is a number of research systems which aim at avoiding the above
limitations. These include Melody [569] and (according to Gupta [194]) MARS,
Spring, MARUTI, Arts, Hartos, and DARK.

Takada [523] mentions low overhead memory protection, temporal protection of
computing resources (targeting at preventing processes from computing for longer
periods of time than initially planned), RTOSs for on-chip multiprocessors (espe-
cially for heterogeneous multiprocessors and multi-threaded processors), support
for continuous media, and quality of service control as research issues.

Due to the potential growth in the Internet of Things (IoT) system market,
vendors of standard OSs are offering variations of their products and obtain market
shares from traditional vendors such as Wind River Systems [591]. Due to the
increasing connectedness, Linux and its derivative Android® are becoming popular.
Advantages and limitations of using Linux in embedded systems will be described
in Sect. 4.4.

4.1.3 Virtual Machines

In certain environments, it may be useful to emulate several processors on a
single real processor. This is possible with virtual machines executed on the bare
hardware. On top of such a virtual machine, several operating systems can be
executed. Obviously, this allows several operating systems to be run on a single
processor. For embedded systems, this approach has to be used with care since the
temporal behavior of such an approach may be problematic and timing predictability
may be lost. Nevertheless, sometimes this approach may be useful. For example, we
may need to integrate several legacy applications using different operating systems
on a single hardware processor. A full coverage of virtual machines is beyond the
scope of this book. Interested readers should refer to books by Smith et al. [502]
and Craig [114]. PikeOS is an example of a virtualization concept dedicated toward
embedded systems [520]. PikeOS allows the system’s resources (e.g., memory,
I/O devices, CPU-time) to be divided into separate subsets. PikeOS comes with a
small micro-kernel. Several operating systems, application programming interfaces
(APIs), and run-time environments (RTEs) can be implemented on top of this kernel
(see Fig.4.4).

Fig. 4.4 PikeOS

Application 1 Application 2 Application 3
virtualization (©@SYSGO) i i i

0OS 1 API 1 RTE 1

‘ PikeOS ‘

‘ Hardware ‘

212 4 System Software
4.2 Resource Access Protocols

In this section, we will be using the term job.

Definition 4.4 A particular execution of a (possibly repeatedly executed) task is
called a job.

Compared to processes and threads used in operating systems, jobs can be seen as
a more abstract view of required computations. During the design procedure, jobs
will have to be mapped to entities handled by the operating system. A more precise
definition will be provided in Definition 6.1.

4.2.1 Priority Inversion

There are cases in which jobs must be granted exclusive access to resources such as
global shared variables or devices in order to avoid non-deterministic or otherwise
unwanted program behavior. Such exclusive access is very important for embedded
systems, e.g., for implementing shared memory-based communication or exclusive
access to some special hardware device. Program sections during which such
exclusive access is required are called critical sections. Critical sections should be
short. Operating systems typically provide primitives for requesting and releasing
exclusive access to resources, also called mutex primitives. Jobs not being granted
exclusive access must wait until the resource is released. Accordingly, the release
operation has to check for waiting processes and resume the job of highest priority.

In this book, we will call the request operation or lock operation P(S) and the
release or unlock operation V(S), where S corresponds to the particular resource
requested. P(S) and V(S) are so-called semaphore operations. Semaphores allow up
to n (with n being a parameter) threads or processes to use a particular resource
protected by S concurrently. S is a data structure maintaining a count on how
many resources are still available. P(S) checks the count and blocks the caller if
all resources are in use. Otherwise, the count is modified and the caller is allowed
to continue. V(S) increments the number of available resources and makes sure that
a blocked caller (if it exists) is unblocked. The names P(S) and V(S) are derived
from the Dutch language. We will use these operations only in the form of binary
semaphores with n = 1, i.e., we will allow only a single caller to use the resource.

For embedded systems, dependencies between processes are the rule, rather
than an exception. Also, the effective job priority of real-time applications is
more important than for non-real applications. Mutually exclusive access can lead
to priority inversion, an effect which changes the effective priority of processes.
Priority inversion exists on non-embedded systems as well. However, due to the
reasons just listed, the priority inversion problem can be considered a more serious
problem in embedded systems.

4.2 Resource Access Protocols 213

Fig. 4.5 Blocking of a job by A
Lo N
a lower-priority job P(S) \OY V(S)
J1 4 3‘\‘0
I ——. [1
A T P(S) V(S)
T \ \ \ T !
to t1 t2 t3 [4

[] normal execution] critical section

Fig. 4.6 Priority inversion P(S) [sleep] resume
with potentially large delay f -7 2
J |) ! ‘
Jy | [|
< ——— = — - - == = >
J3 1—!: blocking ’—“
P(S) V(S) t

1 normal execution [critical section

A first case of the consequences resulting from the combination of “mutual
exclusion” with “no preemption” can be seen in Fig. 4.5.

Bold upward pointing arrows indicate the times at which jobs are released
or “ready”. At time o, job J, enters a critical section after requesting exclusive
access to some resource via an operation P. At time ¢1, job J; becomes ready and
preempts Jo. At time fp, J; fails getting exclusive access to the resource in use by
J> and becomes blocked. Job J, resumes and after some time releases the resource.
The release operation checks for pending jobs of higher priority and preempts J5.
During the time J; has been blocked, a lower-priority job has effectively blocked a
higher-priority job. The necessity of providing exclusive access to some resources
is the main reason for this effect. Fortunately, in the particular case of Fig. 4.5, the
duration of the blocking cannot exceed the length of the critical section of J. This
situation is problematic but difficult to avoid.

In more general cases, the situation can be even worse. This can be seen, for
example, from Fig. 4.6.

We assume that jobs Ji, J2, and J3 are given. J; has the highest priority, J> has
a medium priority, and J3 has the lowest priority. Furthermore, we assume that J;
and J3 require exclusive use of some resource via operation P(S). Now, let J3 be
in its critical section when it is preempted by J>. When J; preempts J» and tries
to use the same resource that J3 is having exclusive access of, it blocks and lets J,
continue. As long as J> is continuing, J3 cannot release the resource. Hence, J> is
effectively blocking J; even though the priority of J; is higher than that of J;. In
this example, the blocking of J; continues as long as J, executes. J; is blocked by a
job of lower priority, which is not in its critical section. This effect is called priority

214 4 System Software

inversion.* In fact, priority inversion happens even though J is unrelated to J; and
J3. The duration of the priority inversion situation is not bounded by the length of
any critical section. This example and other examples can be simulated with the levi
simulation software [497].

A prominent case of priority inversion happened in the Mars Pathfinder, where
exclusive use of a shared memory area led to priority inversion on Mars [276].

4.2.2 Priority Inheritance

One way of dealing with priority inversion is to use the priority inheritance
protocol (PIP). This protocol is a standard protocol available in many real-time
operating systems. It works as follows:

* Jobs are scheduled according to their active priorities. Jobs with the same
priorities are scheduled on a first-come, first-served basis.

* When a job J; executes P(S) and exclusive access is already granted to some
other job J>, then J; will become blocked. If the priority of J; is lower than that
of Ji, J» inherits the priority of J;. Hence, J> resumes execution. In general,
every job inherits the highest priority of jobs blocked by it.

* When a job J, executes V(S), its priority is decreased to the highest priority of
the jobs blocked by it. If no other job is blocked by Ja, its priority is reset to the
original value. The highest priority job so far blocked on S is resumed.

* Priority inheritance is transitive: if J, blocks J, and Jy blocks J;, then J, inherits
the priority of J.

This way, high-priority jobs being blocked by low-priority jobs propagate
their priority to the low-priority jobs such that the low-priority jobs can release
semaphores as soon as possible.

In the example of Fig. 4.6, J3; would inherit the priority of J; when J; executes
P(S). This would avoid the problem mentioned since J, could not preempt J3 (see
Fig.4.7).

Figure 4.8 shows an example of nested critical sections [81]. Note that the
priority of job J3 is not reset to its original value at time fy. Instead, its priority
is decreased to the highest priority of the jobs blocked by it, in this case it remains
at priority p; of Jj.

Transitiveness of priority inheritance is shown in Fig. 4.9 [81].

At time 19, Jp is blocked by J> which in turn is blocked by J3. Therefore, J3
inherits the priority pp of Jj.

Priority inheritance is also used by Ada: during a rendezvous, the priority of two
threads is set to their maximum. Priority inheritance also solved the Mars Pathfinder

4Some authors do already consider the case of Fig. 4.5 as a case of priority inversion. This was also
done in earlier versions of this book.

4.2 Resource Access Protocols 215

Fig. 4.7 Priority inheritance P(S) [sleep] resumedV
| |

for the example of Fig. 4.6 (S)

[
P(S) V(S) t
[1 normal execution [critical section

Fig. 4.8 Nested critical T P(a) V(a)
sections Jy
P(b) V(b)
Jy 1 [1
P(a) P(b) V(b) V(a)
J alb b bl al
3 Priority priority does not change
P1 | of I
P2 [
P3

to t

H(a) V(a)
J a
P(a) P(b) V(b) V(a)
Jy a b a
T i
Js b [b] 0

b
lk+———J blocked by .J; & J; blocked by J3

Priority of J-
P iority of J3

P2 ,7
pP3

) t

J3 inherits priority from/J;

Fig. 4.9 Transitiveness of priority inheritance

problem: the VxWorks operating system used in the pathfinder implements a flag
for the calls to mutex primitives. This flag allows priority inheritance to be set to
“on.” When the software was shipped, it was set to “off.” The problem on Mars
was corrected by using the debugging facilities of VxWorks to change the flag to
“on,” while the Pathfinder was already on Mars [276]. Priority inheritance can be
simulated with the levi simulation software [497].

While priority inheritance solves some problems, it does not solve others. For
example, there may be a large number of jobs having a high priority. There may
also be deadlocks. The possible existence of deadlocks can be shown by means of
an example [81]. Suppose that we have two jobs J; and J;:

* For job J; we assume a code sequence of the form ...; P(a); P(b); V(b); V(a); ...;
* For job J> we assume a code sequence of the form ...; P(b); P(a); V(a); V(b); ...;.

216 4 System Software

Fig. 4.10 Priority A P(a) P(b)

inheritance deadlock J 1 ﬁa—\

A P(b) P(a)
/0 f 1y Iy 1y !

A possible execution sequence for these two jobs is shown in Fig. 4.10.

We assume that the priority of Jj is higher than that of J,. Hence, J; preempts
Jo at time #; and runs until it calls P(b), while b is held by J,. Hence, J, resumes.
However, it runs into a deadlock when it calls P(a). Such a deadlock would also exist
if we were not using any resource access protocol.

4.2.3 Priority Ceiling Protocol

Deadlocks can be avoided with the priority ceiling protocol [485] (PCP). PCP
requires jobs to be known at design time. With PCP, a job is not allowed to enter
a critical section if there are already locked semaphores which could block it
eventually. Hence, once a job enters a critical section, it cannot be blocked by lower-
priority jobs until its completion. This is achieved by assigning a priority ceiling.
Each semaphore S is assigned a priority ceiling C(S). It is the static priority of the
highest-priority job that can lock S.
PCP works as follows:

* Letus assume that some job J is running and wants to lock semaphore S. Then, J
can lock S only if the priority of J exceeds the priority ceiling C(S’) of semaphore
S’ where S’ is the semaphore with the highest-priority ceiling among all the
semaphores which are currently locked by jobs other than J. If such a semaphore
exists, then J is said to be blocked by S’ and the job currently holding S’. When
J gets blocked by S, the job currently holding S’ inherits the priority of J.

* When some job J leaves a critical section guarded by S, it unlocks S and the
highest-priority job, if any, which is blocked by S is awakened. The priority of J
is set to the highest priority among all the jobs which are still blocked by some
semaphore which J is still holding. If J is not blocking any other job, then the
priority of J is set to its normal priority.

Figure 4.11 shows an example [59]. In this example, semaphores a, b, and ¢ are
used. The highest priority of a and b is pj, and the highest priority of c is p;.

At time 1>, J> wants to lock c, but c is already locked. Furthermore, the priority
of J> does not exceed the ceiling of c. Nevertheless, the attempt to lock c results in
an increase of the priority of J3 to p>.

4.2 Resource Access Protocols 217

Ji a b
P(c) V(c)
A P(o) P(b) V(b) V(c)

B[Tec c | b b c

Priority
Py]

of
Py %
P3

1 t2 t3 14 t5 ig i7 g tg t

Fig. 4.11 Locking with the priority ceiling protocol

At time fs, J; tries to lock a. a is not yet locked, but J3 has locked b and the
current priority of J; does not exceed the ceiling for b. So, J; gets blocked. This is
the key property of PCP: this blocking avoids potential later deadlocks. J3 inherits
the priority of Ji, reflecting that Jj is waiting for the semaphore b to be released by
J3.

At time t, J3 unlocks b. Jj is the highest-priority job so far blocked by b and
now awakened. The priority of J3 drops to p». Ji locks and unlocks a and b and
runs to completion. At time #7, J5 is still blocked by c, and for all jobs with priority
P2, J3 is the only one that can be resumed. At time 7g, J3 unlocks ¢ and its priority
drops to p3. J> is no longer blocked, it preempts J3 and locks c. J3 is only resumed
after J, has run to completion.

Let us consider a second example, to be used later for comparison with an
extended PCP. Figure 4.12 shows this second example [59]. The highest priority of
all semaphores is the priority of Jj. At time #;, there is a request by J3 for semaphore
¢, but the priority of J3 is lower than the ceiling for the already locked semaphore a,
and Jy inherits the priority of J3. At time 73, there is a request for b, but the priority
of J; is again lower than for the ceiling of the already locked semaphore a, and Jy4
inherits the priority of J,. At time 75, there is a request for a, but the priority of Jj is
not exceeding the ceiling for a, and J4 inherits the priority of J;. When Jy4 releases
a, no semaphore is blocked and its priority drops to its normal priority. At this time,
J1 has the highest priority and executes until it terminates. Remaining executions
are determined by the regular priorities.

It can be proven that PCP prevents deadlocks (see [81], Theorem 7.3). There are
certain variants of PCP with different times at which the priority is changed. The
Distributed Priority Ceiling Protocol (DPCP) [466] and the Multiprocessor Priority
Ceiling Protocol (MPCP) [465] are extensions of PCP for multiprocessors.

218 4 System Software

A~~~

Fig. 4.12 Second PCP CERCHCRCEGIC)
example H‘ zo > >

s s
o =
J4 [[]al [a] [a] [a]

1‘1 t2 t3 t4 t5

4.2.4 Stack Resource Policy

In contrast to PCP, the stack resource policy (SRP) supports dynamic priority
scheduling, i.e., SRP can be used with dynamic priorities as computed by EDF
scheduling (see Sect.6.2.1 on p. 306). For SRP, we have to distinguish between
jobs and tasks. Tasks may be describing repeating computations. Each computation
is a job in the sense the term has been used so far. The notion of tasks captures
features that apply to a set of jobs, e.g., the same code which needs to be executed
periodically. Accordingly, for each task t; there is a corresponding set of jobs.
See also Definition 6.1 on p. 297. SRP does not just consider each job of a task
separately but defines properties which apply to tasks globally. Furthermore, SRP
supports multi-unit resources, for example, memory buffers. The following values
are defined:

e The preemption level /; of a task r; provides information about which tasks
can be preempted by jobs of 7;. A task 7; can preempt some other task 7; only if
l; > ;. We require that, if task 7; arrives after t; and 7; has a higher priority, then
7; must have a higher preemption level than ;. For sporadic EDF scheduling (see
p. 316), this means that the preemption levels are ordered inversely with respect
to the relative deadlines. The larger the deadline, the easier it is to preempt the
job. [; is a static value.

* The resource ceiling of a resource is the highest preemption level of the tasks that
could be blocked by issuing their maximum request for units of this resource. The
resource ceiling is a dynamic value which depends on the number of currently
available resource units.

* The system ceiling is the highest resource ceiling of all the resources which are
currently blocked. This value is dynamic and changes with resource accesses.

SRP blocks the job at the time it attempts to preempt, instead of the time at which
it tries to lock: a job can preempt another job if it has the highest priority and its
preemption level is higher than the system ceiling. A job is not allowed to start until

4.3 ERIKA 219

Fig. 4.13 SRP example

D e 2=

Pb) —*>

sz
o >
J3 [e[|
= s
o >
J4 a []
t1 t2 L3 t4 ts

the resources currently available are sufficient to meet the maximum requirement of
every job that could preempt it.

Figure 4.13 demonstrates the difference between PCP and SRP by means of the
example shown in Fig.4.12 [59]. For SRP, at time #; there is no preemption since
the preemption level is not higher than the ceiling. The same happens at #4. Overall,
SRP has significantly less preemptions than PCP. This property has made SRP a
popular protocol.

SRP is called stack resource policy, since jobs cannot be blocked by jobs with a
lower /; and can resume only when the job completes. Hence, jobs on the same level
l; can share stack space. With many jobs at the same level, a substantial amount of
space can be saved.

SRP is also free of deadlocks (see Baker [34]). For more details about SRP,
refer also to Buttazzo [81]. PIP, PCP, and SRP protocols have been designed for
single processors. A first overview of resource access protocols for multiprocessors
was published by Rajkumar et al. [466]. At the time of writing this book, there is
not yet a standard resource access protocol for multi-cores (see Baruah et al. [41],
Chapter 23).

4.3 ERIKA

Several embedded systems (such as automotive systems and home appliances)
require the entire application to be hosted on small micro-controllers.> For that
reason, the operating system services provided by the firmware on such systems
must be limited to a minimal set of features allowing multi-threaded execution of
periodic and aperiodic jobs, with support for shared resources to avoid the priority
inversion phenomenon.

5This section was contributed by G. Buttazzo and P. Gai (Pisa).

220 4 System Software

Such requirements have been formalized in the 1990s by the OSEK/VDX
Consortium [18], which defined the minimal services of a multi-threaded real-time
operating system allowing implementations of 1-10 kilobytes of code footprint
on 8§ bit micro-controllers. The OSEK/VDX API has been recently extended by
the AUTOSAR Consortium [28] which provided enhancements to support time
protection, scheduling tables for time triggered systems, and memory protection to
protect the execution of different applications hosted on the same micro-controller.
This section briefly describes the main features and requirements of such systems,
considering as a reference implementation the open-source ERIKA Enterprise real-
time kernel [157].

The first feature that distinguishes an OSEK kernel from other operating systems
is that all kernel objects are statically defined at compile time. In particular, most of
these systems do not support dynamic memory allocation and dynamic creation of
jobs. To help the user in configuring the system, the OSEK/VDX standard provides a
configuration language, named OIL, to specify the objects that must be instantiated
in the application. When the application is compiled, the OIL compiler generates the
operating system data structures, allocating the exact amount of memory needed.
This approach allows allocating only the data really needed by the application, to
be put in flash memory (which is less expensive than RAM memory on most micro-
controllers).

The second feature distinguishing an OSEK/VDX system is the support for
stack sharing. The reason for providing stack sharing is that RAM memory is
very expensive on small micro-controllers. The possibility of implementing a stack
sharing system is related to how the code is written.

In traditional real-time systems, we consider the repetitive execution of code. A
job corresponds to a single execution of the code. The code to be executed repeatedly
is called a task. In particular, tasks may be periodically causing the execution of a
job. The typical implementation of such a periodic task is structured according to
the following scheme:

task(x) {
int local;
initialization();
for (5;) {
do_instance();
end_instance();
}
3

Such a scheme is characterized by a forever loop containing an instance (job) of
the periodic task that terminates with a blocking primitive (end_instance()), which
has the effect of blocking the task until the next activation. When following such
a programming scheme (called extended task in OSEK/VDX), the task is always
present in the stack, even during waiting times. In this case, the stack cannot be
shared, and a separate stack space must be allocated for each task.

4.3 ERIKA 221

The OSEK/VDX standard also provides support for basic tasks, which are
special tasks that are implemented in a way more similar to functions, according
to the following scheme:

int local;
task x() {
do_instance();

3
System_initialization() {
initialization();

}

With respect to extended tasks, in basic tasks, the persistent state that must be
maintained between different instances is not stored in the stack, but in global
variables. Also, the initialization part is moved to system initialization, because
tasks are not dynamically created, but they exist since the beginning. Finally, no
synchronization primitive is needed to block the task until its next period, because
the task is activated every time a new instance starts. Also, the task cannot call
any blocking primitive; therefore it can either be preempted by higher-priority tasks
or execute until completion. In this way, the task behaves like a function, which
allocates a frame on the stack, runs, and then cleans the frame. For this reason, the
task does not occupy stack space between two executions, allowing the stack to be
shared among all tasks in the system. ERIKA Enterprise supports stack sharing,
allowing all basic tasks in the system to share a single stack, so reducing the overall
RAM memory used for this purpose.

Concerning task management, OSEK/VDX kernels provide support for fixed
priority scheduling with Immediate Priority Ceiling to avoid the priority inversion
problem. The usage of Immediate Priority Ceiling is supported through the speci-
fication of the resource usage of each task in the OIL configuration file. The OIL
compiler computes the resource ceiling of each task based on the resource usage
declared by each task in the OIL file.

OSEK/VDX systems also support non-preemptive scheduling and preemption
thresholds to limit the overall stack usage. The main idea is that limiting the
preemption between tasks reduces the number of tasks allocated on the system stack
at the same time, further reducing the overall amount of required RAM. Note that
reducing preemptions may degrade the schedulability of the tasks set; hence the
degree of preemption must be traded off with the system schedulability and the
overall RAM memory used in the system.

Another requirement for operating systems designed for small micro-controllers
is scalability, which means supporting reduced versions of the API for smaller
footprint implementations. In mass production systems, in fact, the footprint
significantly impacts on the overall cost. In this context, scalability is provided
through the concept of conformance classes, which define specific subsets of the
operating system API. Conformance classes are also accompanied by an upgrade
path between them, with the final objective of supporting partial implementation

222 4 System Software

of the standard with reduced footprint. The conformance classes supported by the
OSEK/VDX standard (and by ERIKA Enterprise) are:

e BCCI: this is the smallest conformance class, supporting a minimum of eight
tasks with different priority and one shared resource.

e BCC2: compared to BCC1, this conformance class adds the possibility to have
more than one task at the same priority. Each task can have pending activations,
that is, the operating system records the number of instances that have been
activated but not yet executed.

e ECCI: compared to BCCI, this conformance class adds the possibility to have
extended tasks that can wait for an event to appear.

e ECC?2: this conformance class adds both multiple activations and extended tasks.

ERIKA Enterprise further extends these conformance classes by providing the
following two conformance classes:

* EDF: this conformance class does not use a fixed priority scheduler but an
Earliest Deadline First (EDF) Scheduler (see Sect.6.2.1) optimized for the
implementation on small micro-controllers.

* FRSH: this conformance class extends the EDF scheduler class by providing a
resource reservation scheduler based on the IRIS scheduling algorithm [380].

Another interesting feature of OSEK/VDX systems is that the system provides
an API for controlling interrupts. This is a major difference when compared to
POSIX-like systems, where interrupts are an exclusive domain of the operating
system and are not exported to the operating system API. The rationale for this
is that on small micro-controllers users often want to directly control interrupt
priorities; hence it is important to provide a standard way to deal with interrupt
disabling/enabling. Moreover, the OSEK/VDX standard specifies two types of
Interrupt Service Routines (ISR):

» Category 1: simpler and faster, does not implement a call to the scheduler at the
end of the ISR

» Category 2: this ISR can call some primitives that change the scheduling
behavior. The end of the ISR is a rescheduling point. ISR1 has always a higher
priority of ISR2.

An important feature of OSEK/VDX kernels is the possibility to fine-tune the
footprint by removing error-checking code from the production versions, as well as
to define hooks that will be called by the system when specific events occur. These
features allow for a fine-tuning of the application footprint that will be larger (and
safer) when debugging and smaller in production when most bugs will be found and
removed from the code.

To support a better debugging experience, the OSEK/VDX standard defines a
textual language, named ORTI, which describes where the various objects of the
operating system are allocated. The ORTI file is typically generated by the OIL
compiler and is used by debuggers to print detailed information about operating

4.4 Embedded Linux 223

system objects defined in the system (e.g., the debugger could print the list of the
tasks in an application with their current status).

All the features defined by the OSEK/VDX standard have been implemented
in the open-source ERIKA Enterprise kernel [157], for a set of embedded micro-
controllers, with a final footprint ranging between 1 and 5 kilobytes of object code.
ERIKA Enterprise also implements additional features, like the EDF scheduler,
providing an open and free-of-charge operating system that can be used to learn,
test, and implement real applications for industrial and educational purposes.

4.4 Embedded Linux

Increasing requirements to the functionality of embedded systems, such as Internet
connectivity (in particular for the Internet of Things) or sophisticated graphics
displays, demand that a large amount of software is added to a typical embedded
system’s simple operating system. It has been shown that it is possible to add
some of this functionality to small embedded real-time operating systems, e.g., by
integrating a small Internet protocol (IP) network stack [142]. However, integrating
a number of different additional software components is a complex task and may
lead to functional as well as security deficiencies.

A different approach, enabled by the exponential growth of semiconductor
densities according to Moore’s law, is the adaptation of a well-tested code base
with the required functionality to run in an embedded context. Here, Linux® has
become the OS of choice for a large number of complex embedded applications
following this approach, such as Internet routers, GPS satellite navigation systems,
network-attached storage devices, smart television sets, and mobile phones. These
applications benefit from easy portability—Linux has been ported to more than
30 processor architectures, including the popular embedded ARM, MIPS, and
PowerPC architectures—as well as the system’s open-source nature, which avoids
the licensing costs arising for commercial embedded operating systems.

Adapting Linux to typical embedded environments poses a number of challenges
due to its original design as a server and desktop OS. Below, we detail solutions
available in Linux to tackle the most common problems that arise in its use in
embedded systems.

4.4.1 Embedded Linux Structure and Size

Strictly speaking, the term “Linux” denotes only the kernel of a Linux-based operat-
ing system. To create a complete, working operating system, a number of additional

OThis section on Embedded Linux was contributed by M. Engel (NTNU Trondheim).

224 4 System Software

| Applications |

| System Libraries (e.g. libc) |

| System Call Interface |
T]
Kernel 1/0 Related Process Related

Modules [File Systems | || |__Scheduler |
Belee | Networking | [_Memory Mgmt. |
Drivers [Device Support | || | IPC |

| |
| Architecture-Dependent Code |

| Hardware |

Fig. 4.14 Structure of typical Linux-based system

components are required that run on top of the Linux kernel. A configuration for a
typical Linux system, including system-level user mode components, is shown in
Fig.4.14. On top of the Linux kernel reside a number of—commonly dynamically
linked—Tlibraries, which form the basis for system-level tools and applications.
Device drivers in Linux are usually implemented as loadable kernel modules;
however, restricted user mode access to hardware is also possible.

The open-source nature of Linux allows to tailor the kernel and other system
components to the requirements of a given application and platform. This, in turn,
results in a small system which enables the use of Linux in systems with restricted
memory sizes.

One of the essential components of a Unix-like system is the C library, which
provides basic functionality for file I/O, process synchronization and communi-
cation, string handling, arithmetic operations, and memory management. The libc
variant commonly used in Linux-based systems is GNU libc (glibc). However, glibc
was designed with server and desktop systems in mind and, thus, provides much
more functionality than typically required in embedded applications. Linux-based
Android® systems replace glibc with Bionic, a libc version derived from BSD
Unix. Bionic is specifically designed to support systems running at lower clock
speeds, e.g., by providing a tailored version of the Pthreads multithreading library
to efficiently support Android’s Dalvik Java VM. Bionic’s size is estimated to be
about half the size of a typical glibc version.”

Several significantly smaller implementations of libc exist, such as newlib, musl,
uClibe, PDCLib, and dietlibc. Each of these is optimized for a specific use case; e.g.,

"The glibc-shared library size includes internationalization support.

4.4 Embedded Linux 225

libc version musl| uClibc| dietlibc glibc
Static library size 426kB| 500kB| 120kB| 2.0 MB
Shared library size 527kB| 560kB| 185kB| 7.9 MB
Minimal static C program size 1.8 kB 5kB| 0.2kB| 662kB
Minimal static “Hello, World” size 13 kB 70 kB 6kB| 662kB

Fig. 4.15 Size comparison of different Linux libc configurations

musl is optimized for static linking, uClibc was originally designed for MMU-less®
Linux systems (see below), whereas newlib is a cross-platform libc also available for
anumber of other OS platforms. Sizes of the related shared library binary files range
from 185 kB (dietlibc) to 560 kB (uClibc), whereas the glibc binary is 7.9 MB in size
(all numbers taken from x 86 binaries) according to a comprehensive comparison of
different libc implementation features and sizes, compiled by Eta Labs.? Figure 4.15
gives an overview of the sizes of various libc variants and programs built using the
different libraries.

In addition to the C library, the functionality, size, and number of utility programs
bundled with the OS can be adapted according to application requirements. These
utilities are required in a Linux system to control system startup, operation,
and monitoring; examples are tools to mount file systems, to configure network
interfaces, or to copy files. As is the case for glibc, a typical Linux system includes
a set of tools appropriate for a large number of use cases, most of which are not
required on an embedded system.

An alternative to a traditional set of diverse tools is BusyBox, a software that
provides a number of simplified essential Unix utilities in a single executable
file. It was specifically created for embedded operating systems with very limited
resources. BusyBox reduces the overhead introduced by the executable file format
and allows code to be shared between multiple applications without requiring a
library. A comparison of BusyBox with alternative approaches to provide a small
user mode tool set can be found in [531].

4.4.2 Real-Time Properties

Achieving real-time guarantees in a system based on a general-purpose operating
system kernel is one of the most complex challenges in adapting an OS to run
in an embedded context. As shown above in Fig.4.3, one common approach is
to run the Linux kernel and all Linux user mode processes as a dedicated task
of an underlying RTOS, only to be activated when no real-time task needs to
run. In Linux, competing approaches exist that follow this design pattern. RTAI

8See Appendix C for an introduction to MMUs.
° Available online at http://www.etalabs.net/compare_libcs.html.

http://www.etalabs.net/compare_libcs.html

226 4 System Software

(real-time application interface) [138] is based on the Adeos hypervisor,'® which
is implemented as a Linux kernel extension. Adeos enables multiple prioritized
domains (one of which is the Linux kernel itself) to exist simultaneously on the
same hardware. On top of this, RTAI provides a service API, for example, to
control interrupts and system timers. Xenomai [182] was co-developed with RTAI
for several years but became an independent project in 2005. It is based on its own
abstract “nucleus” RTOS core, which provides real-time scheduling, timer, memory
allocation, and virtual file handling services. Both projects differ in their aims and
implementations. However, they share the support for the Real-Time Driver Model
(RTDM), a method to unify interfaces for developing device drivers and related
applications in real-time Linux systems. The third approach using an underlying
real-time kernel is RTLinux [608], developed as a project at the New Mexico
Institute of Mining and Technology and then commercialized at the company
FSMLabs, which was acquired by Wind River in 2007. The related product was
discontinued in 2011. The use of RTLinux in products was controversial, since its
initiators vigorously defended their intellectual property, for which they obtained a
software patent [607]. The decision to patent the RTLinux methods was not well
received by the Linux developer community, leading to spin-offs resulting in the
abovementioned RTAI and Xenomai projects.

A more recent approach to add real-time capabilities to Linux, integrated into the
kernel as of version 3.14 (2014), is SCHED_DEADLINE, a CPU scheduling policy
based on the Earliest Deadline First (EDF) and Constant Bandwidth Server (CBS)
[3] algorithms and supporting resource reservations. The SCHED_DEADLINE policy
is designed to co-exist with other Linux scheduling policies. However, it takes
precedence before all other policies to guarantee real-time properties.

Each task 1; scheduled under SCHED_DEADLINE is associated with a runtime
budget C; and a period T;, indicating to the kernel that C; time units are required
by that task every 7; time units, on any processor. For real-time applications,
T; corresponds to the minimum time elapsing between subsequent activations
(releases) of the task, and C; corresponds to the worst case execution time needed
by each execution of the task. On addition of a new task to this scheduling policy,
a schedulability test is performed and the task is only accepted if the test succeeds.
During scheduling, a task is suspended when it tries to run for longer than the
pre-allocated budget and deferred to its next execution period. This non work-
conserving strategy!! is required to guarantee temporal isolation between different
tasks. Thus, on single-processor or partitioned multi-processor systems (with tasks
pinned to a specific CPU), all accepted SCHED_DEADLINE tasks are guaranteed to
be scheduled for an overall time equal to their budget in every time window as long
as their period.

10See http://home.gna.org/adeos/.

1I'This means that the processor may be idle even when tasks could be executed. A definition of
the term can be found in Chap. 6 on p. 309.

http://home.gna.org/adeos/

4.4 Embedded Linux 227

Common Node Header Specific Node Content
e e
~ -~ A
. Total Node Node Header .
Bitmask Node Type Length CRC Inode/Direntry

0x1985

Fig. 4.16 Structure of the JFFS2 inode content

In the general case of tasks which are free to migrate on a multi-processor, as
SCHED_DEADLINE implements global EDF (as described in detail in Sect. 6.3.3),
the general tardiness bound for global EDF applies [128]. Benchmarks performed
in [336] give an amount of missed deadlines of less than 0.2% when running
SCHED_DEADLINE on a four-processor system with a utilization of 380% and
0.615% with a utilization of 390%. The numbers cited for a six-processor system
are of similar magnitude. Of course, no deadline misses occur on single-processor
systems or multi-core systems with processes pinned to a fixed processor core.

4.4.3 Flash Memory File Systems

Embedded systems pose different requirements to permanent storage than server
or desktop environments. Often, there is a large amount of static (read-only) data,
whereas the amount of varying data is in many cases quite limited.

Accordingly, file system storage can benefit from these special conditions. Since
most of the read-only data in current embedded SoCs is implemented as flash ROM,
optimization for this storage is an important aspect for the use of Linux in embedded
systems. Accordingly, a number of different file systems specifically designed for
using NAND-based flash storage have been developed.

One of the most stable flash-specific file systems available is the log-structured
Journaling Flash File System version 2 (JFFS2) [596]. In JFFS2, changes to files and
directories are “logged” to flash memory in so-called nodes. Two types of nodes
exist, inodes (shown in Fig.4.16), which consist of a header with file metadata
followed by an optional payload of file data, and dirent nodes, which are directory
entries each holding a name and an inode number. Nodes start out as valid when
they are created and become obsolete when a newer version has been created in a
different place in flash memory. JFFS2 supports transparent data compression by
storing compressed data as inode payloads.

However, compared to other log-structured file systems such as Berkeley Ifs
[473], there is no circular log. Instead, JFFS2 uses blocks, a unit the same size as
the erase segment of the flash medium. Blocks are filled with nodes in a bottom-up
manner one at a time, as shown in Fig. 4.17.

Clean blocks contain only valid nodes, whereas dirty blocks contain at least one
obsolete node. In order to reclaim memory, a background garbage collector collects

228 4 System Software

Nodes written in Flash memory

- Directory entry node
User actions Version Inode # Parent Inode # Name
Open a file and 001 0x10 0x0 Filename.txt
write 512 bytes 4 .
'aaaaa...' at offset 0 inode node
Version Offset Length Data
L 001 0x00 0x200 aaaaa...
- inode node
Version Offset Length Data
Write 6 kB 002 0x200 0x1000 bbbbb...
'bbbbb..." at A inode node
offset 512
Version Offset Length Data
003 0x1200 0x800 bbbbb...
-
inode node
Write 1 kB Version Offset Length Data
‘cccec...' at n
offset 256 \\ 004 0x100 0x400 cceece...

Fig. 4.17 Changes to flash when writing data to JFFS2

dirty blocks and frees them. Valid nodes from dirty blocks are copies into a new
block, whereas obsolete blocks are skipped. After copying, the dirty block is marked
as free. The garbage collector is also able to consume clean blocks in order to even
out the flash memory wear-leveling and prevent localized erasure of blocks in a
mostly static file system, as is common in many embedded systems.

4.4.4 Reducing RAM Usage

Traditionally, Unix-like operating systems treat main memory (RAM) as a cache
for secondary storage on disk, i.e., swap space [385]. While this is a useful
assumption for desktop and server systems with large disks and equally large
memory requirements, it results in a waste of resources for embedded systems, since
programs which exist in a system’s non-volatile memory have to be loaded into
volatile memory for execution. This commonly includes the rather large operating
system kernel.

To eliminate this duplication of memory requirements, a number of execute-in-
place (XiP) techniques have been developed which allow the direct execution of

4.4 Embedded Linux 229

program code from flash memory, which is the common approach in most smaller,
microcontroller-based systems. However, XiP techniques face two challenges. On
the one hand, the non-volatile memory storing the executable code needs to support
accesses in byte or word granularity. On the other hand, executable programs are
commonly stored in a data format such as ELF, which contains meta information
(e.g., symbols for debugging) and needs to be linked at runtime before execution.

Support for XiP techniques is commonly implemented as a special file system,
such as the Advanced XiP Filesystem (AXFS) [43], which provides compressed
read-only functionality. The use of XiP is especially useful for the kernel itself,
which would normally consume a large part of non-swappable memory. Running the
kernel from flash memory would make more memory available for user-space code.
XiP for user mode code itself is less useful, since the kernel only loads required text
pages of an executable in virtual memory-enabled systems. Thus, RAM usage for
program code is automatically minimized.

Providing the byte- or word-granularity accesses required for XiP is mostly a
question of cost in current systems. The commonly used NAND flash technology,
as used in flash disks, SD cards, and SSDs, is inexpensive but only allows block-
level accesses, similar to hard disks. NOR flash is a flash technique supporting
random accesses; thus it is suitable for implementing XiP techniques. However,
NOR flash tends to be an order of magnitude more expensive than NAND flash and
is commonly somewhat slower than system RAM. As a consequence, equipping a
system with more RAM instead of a large NOR flash and not using XiP techniques
is a sensible design choice for most systems.

4.4.5 uClinux: Linux for MMU-Less Systems

One final resource restriction is apparent in low-end microcontroller systems, such
as ARM’s Cortex-M series. The processor cores in these SoCs were developed for
typical real-time OS scenarios, which often use a simple library OS approach, as
described for ERIKA above. Thus, they lack crucial OS support hardware such as a
paging memory management unit (see Appendix C). However, the large address
space and relatively high clock speeds of these microcontrollers enable running
a Linux-like operating system with some restrictions. Thus, uClinux was created
as a derivative of the Linux kernel for MMU-less systems. Since kernel version
2.5.46, uClinux support is available in the mainstream kernel source tree for a
number of architectures including ARM7TDMI, ARM Cortex-M3/4/7/R, MIPS,
M68k/ColdFire, as well as FPGA-based softcores such as Altera Nios II, Xilinx
MicroBlaze, and Lattice Mico32.

The lack of memory management hardware in uClinux-supported platforms
comes with a number of disadvantages. An obvious drawback is the lack of memory
protection, so any process is able to read and write other processes’ memory. The
lack of an MMU also has consequences for the traditional Unix process creation
approach. Commonly, processes in Unix are created as a copy of an existing process

230 4 System Software

using the fork() system call [470]. Instead of creating a physical copy in memory,
which would require copying potentially large amounts of data, only the page table
entries of the process executing fork() are replicated and point to physical page
frames of the parent process. When the newly created process memory starts to
differ from its parent due to data writes, only the affected page frames are copied on
demand using a copy-on-write strategy. The lack of hardware support for copy-on-
write semantics and the overhead involved in actually copying pages result in the
fork() system call being unavailable in uClinux.

Instead, uClinux provides the vfork() system call. This system call makes use of
the fact that most Unix-style processes immediately call exec() after a fork to start
a different executable file by overloading their memory image with text and data
segments of that different binary:

pid_t childPID;

childPID = vfork();

if (childPID == @) { // in child process
execl("/bin/sh", "sh", @);

3
printf("Parent program running again, child PID is %d", childPID);

The direct calling of exec() after vfork() implies that the complete address space
of the newly created process will be replaced in any case and only a small part of the
executable calling vfork() is actually used. In contrast to standard Unix behavior, vfork
guarantees that the parent process is stopped after forking until the child process
has called the exec() system call. Thus, the parent process is unable to interfere
with the execution of the child process until the new program image has been
loaded. However, some restrictions have to be observed to guarantee safe operation
of vfork(). It is not permitted to modify the stack in the created child process, i.e., no
function calls may be executed before exec. As a consequence, returning from vfork
in case of an error, e.g., insufficient memory or inability to execute the new program,
is impossible, since this would modify the stack. Instead, it is recommended to exit()
from the child process in case of a problem.

To summarize, uClinux is a way to use some Linux functionality on low-
end, microcontroller-style embedded systems. However, the on-chip memory even
in high-end microcontrollers is restricted to several hundreds of kB. A minimal
uClinux version, however, requires about 8 MB RAM, so the addition of an external
RAM chip is essential. For systems offering a smaller memory footprint, more
traditional RTOS systems are still the more feasible solution.

4.4.6 Evaluating the Use of Linux in Embedded Systems

In addition to technical criteria, the decision whether to base an embedded system
on Linux also has to consider legal and business questions.

4.4 Embedded Linux 231

On the technical side, Linux includes support for a large number of CPU
architectures, SoCs, and peripheral devices as well as communication protocols
commonly used in embedded applications, such as Internet protocol TCP/IP,
CAN, Bluetooth® or IEEE802.15.4/ZigBee®. It provides a POSIX-like API that
enables easy porting of existing code, not only written in C or C++ but also in
scripting languages such as Python or Lua and even more specialized languages
like Erlang. Linux development tools are available free of charge and can easily be
integrated into development toolflows utilizing IDEs such as Eclipse and continuous
integration testing services such as Jenkins. While in general, the Linux code base is
well tested, the quality of support varies with the targeted platform. When utilizing
a less common hardware platform, it is recommended to thoroughly investigate the
stability of CPU and driver support. One drawback of using Linux is the inherent
complexity of the large code base, requiring a good insight into and experience with
the system to debug problems. However, a number of semiconductor manufacturers
and third-party companies offer commercial support for embedded Linux, including
the provisioning of complete board support packages (BSPs) for a number of
reference designs.

From a business perspective, the obvious benefit of using Linux is the availability
of its source code free of cost. However, the GPL License version 2'? governing
the kernel source code also requires that the source code for modifications to the
existing code base is provided along with the binary code. This might jeopardize
trade secrets of hardware components or violate non-disclosure agreements with
hardware intellectual property owners. For some hardware, such as GPU drivers,
this is circumvented by the inclusion of binary code “blobs” which are loaded
by an open-source device driver stub. However, this approach is being actively
discouraged by the Linux kernel developers.

An increasingly serious problem is the security of embedded systems built on
Linux, especially in the context of the Internet of Things. Many security problems
affecting the Linux kernel also apply to embedded Linux. Inexpensive consumer
devices, such as Internet-based cameras, routers, and mobile phones, rarely receive
software updates but may be in active use for many years. This exposes them
to security vulnerabilities which are already being actively exploited, e.g., for
distributed denial-of-service attacks (DDOS) emanating from thousands of hijacked
embedded Linux devices. As a consequence, the cost of continually updating
devices in production as well as legacy devices in the field has to be considered
in order to provide secure systems.

12See http://www.gnu.org/licenses/gpl-2.0.html.

http://www.gnu.org/licenses/gpl-2.0.html

232 4 System Software
4.5 Hardware Abstraction Layer

Hardware abstraction layers (HALs) provide a way for accessing hardware through
a hardware-independent application programming interface (API). For example,
we could come up with a hardware-independent technique for accessing timers,
irrespective of the addresses to which timers are mapped. Hardware abstraction
layers are used mostly between the hardware and operating system layers. They
provide software intellectual property (IP), but they are neither part of operating
systems nor can they be classified as middleware. A survey over work in this area is
provided by Ecker, Miiller, and Domer [145].

4.6 Middleware

Communication libraries provide a means for adding communication functionality
to languages lacking this feature. They add communication functionality on top of
the basic functionality provided by operating systems. Due to being added on top
of the OS, they can be independent of the OS (and obviously also of the underlying
processor hardware). As a result, we will obtain communication-oriented cyber-
physical systems. Such communication is needed for the Internet of Things (IoT).
There is a trend toward supporting communication within some local system as well
as communication over longer distances. The use of Internet protocols in general is
becoming more popular. Frequently, such protocols enable secure communication,
based on en- and decryption (see p. 196). The corresponding algorithms are a
special case of middleware.

4.6.1 OSEK/VDX COM

OSEK/VDX® COM is a special communication standard for the OSEK automotive
operating systems [441].'3> OSEK COM provides an “Interaction Layer” as an
application programming interface (API) through which internal communication
(communication within one ECU) and external communication (communication
with other ECUs) can be performed. OSEK COM specifies just the functionality of
the Interaction Layer. Conforming implementations must be developed separately.
The Interaction Layer communicates with other ECUs via a “Network Layer”
and a “Data Link” layer. Some requirements for these layers are specified by
OSEK COM, but these layers themselves are not part of OSEK COM. This way,
communication can be implemented on top of different network protocols.

130SEK is a trademark of Continental Automotive GmbH.

4.6 Middleware 233

Fig. 4.18 Access to remote
objects using CORBA

110P—protocol

OSEK COM is an example of communication middleware dedicated toward
embedded systems. In addition to middleware tailored for embedded systems, many
communication standards developed for non-embedded applications can be adopted
for embedded systems as well.

4.6.2 CORBA

CORBA® (Common Object Request Broker Architecture) [433] is one example
of such adopted standards. CORBA facilitates the access to remote services.
With CORBA, remote objects can be accessed through standardized interfaces.
Clients are communicating with local stubs, imitating the access to the remote
objects. These clients send information about the object to be accessed as well as
parameters (if any) to the Object Request Broker (ORB; see Fig.4.18). The ORB
then determines the location of the object to be accessed and sends information
via a standardized protocol, e.g., the IIOP protocol, to where the object is located.
This information is then forwarded to the object via a skeleton, and the information
requested from the object (if any) is returned using the ORB again.

Standard CORBA does not provide the predictability required for real-time
applications. Therefore, a separate real-time CORBA (RT-CORBA) standard has
been defined [428]. A very essential feature of RT-CORBA is to provide end-to-
end predictability of timeliness in a fixed priority system. This involves respecting
thread priorities between client and server for resolving resource contention and
bounding the latencies of operation invocations. One particular problem of real-time
systems is that thread priorities might not be respected when threads obtain mutually
exclusive access to resources. The priority inversion problem (see p. 212) has to be
addressed in RT-CORBA. RT-CORBA includes provisions for bounding the time
during which such priority inversion can happen. RT-CORBA also includes facilities
for thread priority management. This priority is independent of the priorities
of the underlying operating system, even though it is compatible with the real-
time extensions of the POSIX standard for operating systems [201]. The thread
priority of clients can be propagated to the server side. Priority management is
also available for primitives providing mutually exclusive access to resources. The
priority inheritance protocol just described must be available in implementations of
RT-CORBA. Pools of pre-existing threads avoid the overhead of thread creation and
thread construction.

234 4 System Software
4.6.3 POSIX Threads (Pthreads)

The POSIX thread (Pthread) library is an application programming interface (API)
to threads at the operating system level [37]. Pthreads are consistent with the IEEE
POSIX 1003.1c operating system standard. A set of threads can be run in the
same address space. Therefore, communication can be based on shared memory
communication. This avoids the memory copy operations typically required for MPI
(see Sect.2.8.3 on p. 113). The library is therefore appropriate for programming
multi-core processors sharing the same address space, and it includes a standard
API with mechanisms for mutual exclusion. Pthreads use completely explicit
synchronization [554]. The exact semantics depends on the memory consistency
model used. Synchronization is hard to program correctly. The library can be
employed as a back end for other programming models.

4.6.4 UPnP and DPWS

Universal Plug and Play (UPnP) is an extension of the plug-and-play concept of PCs
toward devices connected within a network. Connecting network printers, storage
space, and switches in homes and offices easily can be seen as the key target [438].
Due to security concerns, only data is exchanged. Code cannot be transferred.

Devices Profile for Web Services (DPWS) aims at being more general than
UPnP. “The Devices Profile for Web Services (DPWS) defines a minimal set of
implementation constraints to enable secure Web Service messaging, discovery,
description, and eventing on resource-constrained devices” [597]. DPWS specifies
services for discovering devices connected to a network, for exchanging information
about available services, and for publishing and subscribing to events.

In addition to libraries designed for high-performance computing (HPC), several
comprehensive network communication libraries can be used. These are typically
designed for a loose coupling over Internet-based communication protocols.

MPI (see p. 113), OpenMP (see p. 114), OSEK/VDX COM, CORBA, Pthreads,
UPnP, and DPWS are special cases of communication middleware (software to be
used at a layer between the operating system and applications). Initially, they were
essentially designed for communication between desktop computers. However,
there are attempts to leverage the knowledge and techniques also for embedded
systems. In particular, MPI (Message Passing Interface) is designed for message
passing-based communication, and it is rather popular. It has recently been extended
to also support-shared memory-based communication.

For mobile devices like smart phones, using standard middleware may be
appropriate. For systems with hard time constraints (see Definition 1.8 on p. 10),
their overhead, their real-time capabilities, and their services may be inappropriate.

4.7 Real-Time Databases 235
4.7 Real-Time Databases

Databases provide a convenient and structured way of storing and accessing infor-
mation. Accordingly, data bases provide an API for writing and reading information.
A sequence of read and write operations is called a transaction. Transactions may
have to be aborted for a variety of reasons: there could be hardware problems,
deadlocks, problems with concurrency control, etc. A frequent requirement is that
transactions do not affect the state of the database unless they have been executed to
their very end. Hence, changes caused by transactions are normally not considered
to be final until they have been committed. Most transactions are required to be
atomic. This means that the end result (the new state of the database) generated by
some transaction must be the same as if the transaction has been fully completed or
not at all. Also, the database state resulting from a transaction must be consistent.
Consistency requirements include, for example, that the values from read requests
belonging to the same transaction are consistent (do not describe a state which never
existed in the environment modeled by the database). Furthermore, to some other
user of the database, no intermediate state resulting from a partial execution of a
transaction must be visible (the transactions must be performed as if they were
executed in isolation). Finally, the results of transactions should be persistent. This
property is also called durability of the transactions. Together, the four properties
printed in bold are known as ACID properties (see the book by Krishna and Shin
[310], Chapter 5).

For some databases, there are soft real-time constraints. For example, time-
constraints for airline reservation systems are soft. In contrast, there may also be
hard constraints. For example, automatic recognition of pedestrians in automobile
applications and target recognition in military applications must meet hard real-time
constraints. The above requirements make it very difficult to guarantee hard real-
time constraints. For example, transactions may be aborted various times before
they are finally committed. For all databases relying on demand paging and on hard
disks, the access times to disks are hardly predictable. Possible solutions include the
main memory databases and predictable use of flash memory. Embedded databases
are sometimes small enough to make this approach feasible. In other cases, it may
be possible to relax the ACID requirements. For further information, see the book
by Krishna and Shin as well as Lam and Kuo [319].

236 4 System Software

Table 4.1 Set of jobs requesting exclusive use of resources

Job Priority Arrival Run-time Printer Comm line
tp,p ty,p tr.c tv.c

Ji 1 (high) 3 4 1 4 - -

J 2 10 3 - - 1 2

J3 3 5 6 - - 4 6

Js 4 (low) 0 7 2 5 - -

4.8 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

4.1 Which requirements must be met for an embedded operating system?

4.2 Which techniques can be used to customize an embedded operating system in
the necessary way?

4.3 Which requirements must be met for a real-time operating system? How do
they differ from the requirements of a standard OS? Which features of a standard
OS like Windows or Linux could be missing in an RTOS?

4.4 How many seconds have been added at New Year’s Eve to compensate for the
differences between UTC and TAI since 1958? You may search in the Internet for
an answer to this question.

4.5 Find processors for which memory protection units are available! How are
memory protection units different from the more frequently used memory manage-
ment units (MMUs)? You may search in the Internet for an answer to this question.

4.6 Describe classes of embedded systems for which protection should definitely
be provided! Describe classes of systems, for which we would possibly not need
protection!

4.7 Provide an example demonstrating priority inversion for a system comprising
three jobs!

4.8 Download the levi learning module leviRTS from the levi web site [497]. Model
a job set as described in Table 4.1.

tp,p and tp c are the times relative to the start times, at which a job requests
exclusive use of the printer or the communication line, respectively (called Az P in
levi). tv,p and ty c are the times relative to the start times at which these resources
are released. Use priority-based, preemptive scheduling! Which problem occurs?
How can it be solved?

4.9 Which resource access protocols prevent deadlocks caused by exclusive access
to resources?

4.8 Problems 237

4.10 How is the use of the system stack optimized in ERIKA?

4.11 Which problems have to be solved if Linux is used as an operating system for
an embedded system?

4.12 Which impact does the priority inversion problem have on the design of
network middleware?

4.13 How could flash memory have an influence on the design of real-time
databases?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	4 System Software
	4.1 Embedded Operating Systems
	4.1.1 General Requirements
	4.1.2 Real-Time Operating Systems
	4.1.3 Virtual Machines

	4.2 Resource Access Protocols
	4.2.1 Priority Inversion
	4.2.2 Priority Inheritance
	4.2.3 Priority Ceiling Protocol
	4.2.4 Stack Resource Policy

	4.3 ERIKA
	4.4 Embedded Linux
	4.4.1 Embedded Linux Structure and Size
	4.4.2 Real-Time Properties
	4.4.3 Flash Memory File Systems
	4.4.4 Reducing RAM Usage
	4.4.5 uClinux: Linux for MMU-Less Systems
	4.4.6 Evaluating the Use of Linux in Embedded Systems

	4.5 Hardware Abstraction Layer
	4.6 Middleware
	4.6.1 OSEK/VDX COM
	4.6.2 CORBA
	4.6.3 POSIX Threads (Pthreads)
	4.6.4 UPnP and DPWS

	4.7 Real-Time Databases
	4.8 Problems

