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Abstract. We present a new multiparty protocol for the distributed
generation of biprime RSA moduli, with security against any subset of
maliciously colluding parties assuming oblivious transfer and the hard-
ness of factoring.

Our protocol is highly modular, and its uppermost layer can be viewed
as a template that generalizes the structure of prior works and leads to a
simpler security proof. We introduce a combined sampling-and-sieving
technique that eliminates both the inherent leakage in the approach
of Frederiksen et al. (Crypto’18), and the dependence upon additively
homomorphic encryption in the approach of Hazay et al. (JCrypt’19). We
combine this technique with an efficient, privacy-free check to detect mali-
cious behavior retroactively when a sampled candidate is not a biprime,
and thereby overcome covert rejection-sampling attacks and achieve both
asymptotic and concrete efficiency improvements over the previous state
of the art.

1 Introduction

A biprime is a number N of the form N = p · q where p and q are primes.
Such numbers are used as a component of the public key (i.e., the modulus)
in the RSA cryptosystem [33], with the factorization being a component of the
secret key. A long line of research has studied methods for sampling biprimes
efficiently; in the early days, the task required specialized hardware and was not
considered generally practical [31,32]. In subsequent years, advances in compu-
tational power brought RSA into the realm of practicality, and then ubiquity.
Given a security parameter κ, the de facto standard method for sampling RSA
biprimes involves choosing random κ-bit numbers and subjecting them to the
Miller-Rabin primality test [27,30] until two primes are found; these primes are
then multiplied to form a 2κ-bit modulus. This method suffices when a single
party wishes to generate a modulus, and is permitted to know the associated
factorization.

The full version [7] of this work is available at http://ia.cr/2020/370.
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Boneh and Franklin [3,4] initiated the study of distributed RSA modulus
generation.1 This problem involves a set of parties who wish to jointly sample a
biprime in such a way that no corrupt and colluding subset (below some defined
threshold size) can learn the biprime’s factorization.

It is clear that applying generic multiparty computation (MPC) techniques
to the standard sampling algorithm yields an impractical solution: implement-
ing the Miller-Rabin primality test requires repeatedly computing ap−1 mod p,
where p is (in this case) secret, and so such an approach would require the generic
protocol to evaluate a circuit containing many modular exponentiations over κ
bits each. Instead, Boneh and Franklin [3,4] constructed a new biprimality test
that generalizes Miller-Rabin and avoids computing modular exponentiations
with secret moduli. Their test carries out all exponentiations modulo the pub-
lic biprime N , and this allows the exponentiations to be performed locally by
the parties. Furthermore, they introduced a three-phase structure for the overall
sampling protocol, which subsequent works have embraced:

1. Prime Candidate Sieving: candidate values for p and q are sampled jointly
in secret-shared form, and a weak-but-cheap form of trial division sieves them,
culling candidates with small factors.

2. Modulus Reconstruction: N ..= p · q is securely computed and revealed.
3. Biprimality Testing: using a distributed protocol, N is tested for biprimal-

ity. If N is not a biprime, then the process is repeated.

The seminal work of Boneh and Franklin considered the semi-honest n-party
setting with an honest majority of participants. Many extensions and improve-
ments followed (as detailed in Sect. 1.3), the most notable of which (for our pur-
poses) are two recent works that achieve malicious security against a dishonest
majority. In the first, Hazay et al. [19,20] proposed an n-party protocol in which
both sieving and modulus reconstruction are achieved via additively homomor-
phic encryption. Specifically, they rely upon both ElGamal and Paillier encryp-
tion, and in order to achieve malicious security, they use zero-knowledge proofs
for a variety of relations over the ciphertexts. Thus, their protocol represents
a substantial advancement in terms of its security guarantee, but this comes at
the cost of additional complexity assumptions and an intricate proof, and also at
substantial concrete cost, due to the use of many custom zero-knowledge proofs.

The subsequent protocol of Frederiksen et al. [16] (the second recent work of
note) relies mainly on oblivious transfer (OT), which they use to perform both
sieving and, via Gilboa’s classic multiplication protocol [17], modulus reconstruc-
tion. They achieved malicious security using the folklore technique in which a
“Proof of Honesty” is evaluated as the last step and demonstrated practicality

1 Prior works generally consider RSA key generation and include steps for generating
shares of e and d such that e ·d ≡ 1 (mod ϕ(N)). This work focuses only on the task
of sampling the RSA modulus N . Prior techniques can be applied to sample (e, d)
after sampling N , and the distributed generation of an RSA modulus has standalone
applications, such as for generating the trusted setup required by verifiable delay
functions [28,35]; consequently, we omit further discussion of e and d.
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by implementing their protocol; however, it is not clear how to extend their
approach to more than two parties in a straightforward way. Moreover, their
approach to sieving admits selective-failure attacks, for which they account by
including some leakage in the functionality. It also permits a malicious adver-
sary to selectively and covertly induce false negatives (i.e., force the rejection
of true biprimes after the sieving stage), a property that is again modeled in
their functionality. In conjunction, these attributes degrade security, because the
adversary can rejection-sample biprimes based on the additional leaked informa-
tion, and efficiency, because ruling out malicious false-negatives involves running
sufficiently many instances to make the probability of statistical failure in all
instances negligible.

Thus, given the current state of the art, it remains unclear whether one
can sample an RSA modulus among two parties (one being malicious) with-
out leaking additional information or permitting covert rejection sampling, or
whether one can sample an RSA modulus among many parties (all but one being
malicious) without involving heavy cryptographic primitives such as additively
homomorphic encryption, and their associated performance penalties. In this
work, we present a protocol which efficiently achieves both tasks.

1.1 Results and Contributions

A Clean Functionality. We define FRSAGen, a simple, natural functionality
for sampling biprimes from the same well-known distribution used by prior
works [4,16,20], with no leakage or conflation of sampling failures with adversar-
ial behavior.

A Modular Protocol, with Natural Assumptions. We present a protocol πRSAGen

in the (FAugMul, FBiprime)-hybrid model, where FAugMul is an augmented multiplier
functionality and FBiprime is a biprimality-testing functionality, and prove that it
UC-realizes FRSAGen in the malicious setting, assuming the hardness of factoring.
More specifically, we prove:

Theorem 1.1. (Main Security Theorem, Informal). In the presence of a PPT
malicious adversary corrupting any subset of parties, FRSAGen can be securely
computed with abort in the (FAugMul, FBiprime)-hybrid model, assuming the hard-
ness of factoring.

Additionally, because our security proof relies upon the hardness of factoring
only when the adversary cheats, we find to our surprise that our protocol achieves
perfect security against semi-honest adversaries.

Theorem 1.2. (Semi-Honest Security Theorem, Informal). In the presence of
a computationally unbounded semi-honest adversary corrupting any subset of
parties, FRSAGen can be computed with perfect security in the (FAugMul, FBiprime)-
hybrid model.
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Supporting Functionalities and Protocols. We define FBiprime, a simple, natural
functionality for biprimality testing, and show that it is UC-realized in the semi-
honest setting by a well known protocol of Boneh and Franklin [4], and in the
malicious setting by a derivative of the protocol of Frederiksen et al. [16]. We
believe this dramatically simplifies the composition of these two protocols, and
as a consequence, leads to a simpler analysis. Either protocol can be based
exclusively upon oblivious transfer.

We also define FAugMul, a functionality for sampling and multiplying secret-
shared values in a special form derived from the Chinese Remainder Theorem.
In the context of πRSAGen, this functionality allows us to efficiently sample num-
bers in a specific range, with no small factors, and then compute their product.
We prove that it can be UC-realized exclusively from oblivious transfer, using
derivatives of well-known multiplication protocols [13,14].

Asymptotic Efficiency. We perform an asymptotic analysis of our composed
protocols and find that our semi-honest protocol is a factor of κ/ log κ more
bandwidth-efficient than that of Frederiksen et al. [16]. Our malicious protocol
is a factor of κ/s more efficient than theirs in the optimistic case (when parties
follow the protocol), and a factor of κ more efficient when parties deviate from
the protocol. Recall that κ is the bit-length of the primes p and q, and s is a
statistical security parameter. Frederiksen et al. claim in turn that their protocol
is strictly superior to the protocol of Hazay et al. [20] with respect to asymptotic
bandwidth performance.

Concrete Efficiency. We perform a closed-form concrete analysis of our protocol
(with some optimizations, including the use of random oracles), and find that in
terms of communication, it outperforms the protocol of Frederiksen et al. (the
most efficient prior work) by a factor of roughly five in the presence of worst-
case malicious adversaries, and by a factor of eighty or more in the semi-honest
setting.

1.2 Overview of Techniques

Constructive Sampling and Efficient Modulus Reconstruction. Most prior works
use rejection sampling to generate a pair of candidate primes, and then multiply
those primes together in a separate step. Specifically, they sample a shared value
p ← [0, 2κ) uniformly, and then run a trial-division protocol repeatedly, discard-
ing both the value and the work that has gone into testing it if trial division
fails. This represents a substantial amount of wasted work in expectation. Fur-
thermore, Frederiksen et al. [16] report that multiplication of candidates after
sieving accounts for two thirds of their concrete cost.

We propose a different approach that leverages the Chinese Remainder The-
orem (CRT) to constructively sample a pair of candidate primes and multiply
them together efficiently. A similar sieving approach (in spirit) was initially for-
mulated as an optimization in a different setting by Malkin et al. [26]. The CRT
implies an isomorphism between a set of values, each in a field modulo a distinct
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prime, and a single value in a ring modulo the product of those primes (i.e.,
Zm1 × . . . ×Zm�

� Zm1·...·m�
). We refer to the set of values as the CRT form or

CRT representation of the single value to which they are isomorphic. We formu-
late a sampling mechanism based on this isomorphism as follows: for each of the
first O(κ/ log κ) odd primes, the parties jointly (and efficiently) sample shares
of a value that is nonzero modulo that prime. These values are the shared CRT
form of a single κ-bit value that is guaranteed to be indivisible by any prime in
the set sampled against. For technical reasons, we sample two such candidates
simultaneously.

Rather than converting pairs of candidate primes from CRT form to standard
form, and then multiplying them, we instead multiply them component-wise in
CRT form, and then convert the product to standard form to complete the
protocol. This effectively replaces a single “full-width” multiplication of size
κ with O(κ/ log κ) individual multiplications, each of size O(log κ). We intend
to perform multiplication via an OT-based protocol, and the computation and
communication complexity of such protocols grows at least with the square of
their input length, even in the semi-honest case [17]. Thus in the semi-honest
case, our approach yields an overall complexity of O(κ log κ), as compared to
O(κ2) for a single full-width multiplication. In the malicious case, combining the
best known multiplier construction [13,14] with the most efficient known OT
extension scheme [5] yields a complexity that also grows with the product of
the input length and a statistical parameter s, and so our approach achieves an
overall complexity of O(κ log κ + κ · s), as compared to O(κ2 + κ · s) for a single
full-width malicious multiplication. Via closed-form analysis, we show that this
asymptotic improvement is also reflected concretely.

Achieving Security with Abort Efficiently. The fact that we sample primes in
CRT form also plays a crucial role in our security analysis. Unlike the work of
Frederiksen et al. [16], our protocol achieves the standard, intuitive notion of
security with abort: the adversary can instruct the functionality to abort regard-
less of whether a biprime is successfully sampled, and the honest parties are
always made aware of such adversarial aborts. There is, in other words, abso-
lutely no conflation of sampling failures with adversarial behavior. For the sake
of efficiency, our protocol permits the adversary to cheat prior to biprimality
testing, and then rules out such cheats retroactively using one of two strategies.
In the case that a biprime is successfully sampled, adversarial behavior is ruled
out retroactively in a privacy-preserving fashion using well-known but moder-
ately expensive techniques, which is tolerable only because it need not be done
more than once. In the case that a sampled value is not a biprime, however, the
inputs to the sampling protocol are revealed to all parties, and the retroactive
check is carried out in the clear. Proving the latter approach secure turns out to
be surprisingly subtle.

The challenge arises from the fact that the simulator must simulate the pro-
tocol transcript for the OT-multipliers on behalf of the honest parties without
knowing their inputs. Later, if the sampling-protocol inputs are revealed, the sim-
ulator must “explain” how the simulated transcript is consistent with the true
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inputs of the honest parties. Specifically, in maliciously secure OT-multipliers of
the sort we use [13,14], the OT receiver (Bob) uses a high-entropy encoding of
his input, and the sender (Alice) can, by cheating, learn a one-bit predicate of
this encoding. Before Bob’s true input is known to the simulator, it must pick
an encoding at random. When Bob’s input is revealed, the simulator must find
an encoding of his input which is consistent with the predicate on the random
encoding that Alice has learned. This task closely resembles solving a random
instance of subset sum.

We are able to overcome this difficulty because our multiplications are
performed component-wise over CRT-form representations of their operands.
Because each component is of size O(log κ) bits, the simulator can simply guess
random encodings until it finds one that matches the required constraints. We
show that this strategy succeeds in strict polynomial time, and that it induces
a distribution statistically close to that of the real execution.

This form of “privacy-free” malicious security (wherein honest behavior is
verified at the cost of sacrificing privacy) leads to considerable efficiency gains in
our case: it is up to a multiplicative factor of s (the statistical parameter) cheaper
than the privacy-preserving check used in the case that a candidate passes the
biprimality test (and the one used in prior OT-multipliers [13,14]). Since most
candidates fail the biprimality test, using the privacy-free check to verify that
they were generated honestly results in substantial savings.

Biprimality Testing as a Black Box. We specify a functionality for biprimality
testing, and prove that it can be realized by a maliciously secure version of the
Boneh-Franklin biprimality test. Our functionality has a clean interface and does
not, for example, require its inputs to be authenticated to ensure that they were
actually generated by the sampling phase of the protocol. The key insight that
allows us to achieve this level of modularity is a reduction to factoring: if an
adversary is able to cheat by supplying incorrect inputs to the biprimality test,
relative to a candidate biprime N , and the biprimality test succeeds, then we
show that the adversary can be used to factor biprimes. We are careful to rely
on this reduction only in the case that N is actually a biprime, and to prevent
the adversary from influencing the distribution of candidates.

The Benefits of Modularity. We claim as a contribution the fact that modularity
has yielded both a simpler protocol description and a reasonably simple proof
of security. We believe that this approach will lead to derivatives of our work
with stronger security properties or with security against stronger adversaries.
As a first example, we prove that a semi-honest version of our protocol (differing
only in that it omits the retroactive consistency check in the protocol’s final
step) achieves perfect security. We furthermore observe that in the malicious set-
ting, instantiating FBiprime and FAugMul with security against adaptive adversaries
yields an RSA modulus sampling protocol that is adaptively secure.

Similarly, only minor adjustments to the main protocol are required to
achieve security with identifiable abort [11,22]. If we assume that the underlying
functionalities FAugMul and FBiprime are instantiated with identifiable abort, then
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it remains only to ensure the use of consistent inputs across these functionalities,
and to detect which party has provided inconsistent inputs if an abort occurs.
This can be accomplished by augmenting FBiprime with an additional interface for
revealing the input values provided by all the parties upon global request (e.g.,
when the candidate N is not a biprime). Given identifiable abort, it is possible to
guarantee output delivery in the presence of up to n−1 corruptions via standard
techniques, although the functionality must be weakened to allow the adversary
to reject one biprime per corrupt party.2 A proof of this extension is beyond the
scope of this work; we focus instead on the advancements our framework yields
in the setting of security with abort.

1.3 Additional Related Work

Frankel, MacKenzie, and Yung [15] adjusted the protocol of Boneh and
Franklin [3] to achieve security against malicious adversaries in the honest-
majority setting. Their main contribution was the introduction of a method
for robust distributed multiplication over the integers. Cocks [8] proposed a
method for multiparty RSA key generation under heuristic assumptions, and
later attacks by Coppersmith (see [9]) and Joye and Pinch [23] suggest this
method may be insecure. Poupard and Stern [29] presented a maliciously secure
two-party protocol based on oblivious transfer. Gilboa [17] achieved improved
efficiency in the semi-honest two-party model, and introduced a novel method for
multiplication from oblivious transfer, from which our own multipliers ultimately
derive.

Malkin, Wu, and Boneh [26] implemented the protocol of Boneh and Franklin
and introduced an optimized sieving method similar in spirit to ours. In partic-
ular, their protocol generates sharings of random values in Z

∗
M (where M is a

primorial modulus) during the sieving phase, instead of näıve random candidates
for primes p and q. However, their method produces multiplicative sharings of p
and q, which are converted into additive sharings for biprimality testing via an
honest-majority, semi-honest protocol. This conversion requires rounds linear in
the party count, and it is unclear how to adapt it to tolerate a malicious majority
of parties without a significant performance penalty.

Algesheimer, Camenish, and Shoup [1] described a method to compute a
distributed version of the Miller-Rabin test: they used secret-sharing conversion
techniques reliant on approximations of 1/p to compute exponentiations modulo
a shared p. However, each invocation of their Miller-Rabin test still has com-
plexity in O(κ3) per party, and their overall protocol has communication com-
plexity in O(κ5/ log2 κ), with Θ(κ) rounds of interaction. Concretely, Damg̊ard
and Mikkelsen [12] estimate that 10000 rounds are required to sample a 2000-bit
biprime using this method. Damg̊ard and Mikkelsen also extended their work to

2 The folklore technique involves invoking the protocol iteratively, each iteration elimi-
nating one corrupt party until a success occurs. For a constant fraction of corruptions,
the implied linear round complexity overhead can be reduced to super-constant (e.g.,
log∗ n) [10].
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improve both its communication and round complexity by several orders of mag-
nitude, and to achieve malicious security in the honest-majority setting. Their
protocol is at least a factor of O(κ) better than that of Algesheimer, Camenish,
and Shoup, but it still requires hundreds of rounds. We were not able to compute
an explicit complexity analysis of their approach.

1.4 Organization

Basic notation and background information are given in Sect. 2. Our ideal
biprime-sampling functionality is defined in Sect. 3, and we give a protocol that
realizes it in Sect. 4. In Sect. 5, we present our biprimality-testing protocol. In the
full version [7] of this work, we give an efficiency analysis, full proofs of security,
and the details of our multiplication protocol.

2 Preliminaries

Notation. We use = for equality, ..= for assignment, ← for sampling from a
distribution, ≡ for congruence, ≈c for computational indistinguishability, and
≈s for statistical indistinguishability. In general, single-letter variables are set in
italic font, multi-letter variables and function names are set in sans-serif font,
and string literals are set in slab-serif font. We use mod to indicate the mod-
ulus operator, while (mod m) at the end of a line indicates that all equivalence
relations on that line are to be taken over the integers modulo m. By convention,
we parameterize computational security by the bit-length of each prime in an
RSA biprime; we denote this length by κ throughout. We use s to represent
the statistical parameter. Where concrete efficiency is concerned, we introduce
a second computational security parameter, λ, which represents the length of a
symmetric key of equivalent strength to a biprime of length 2κ.3 κ and λ must
vary together, and a recommendation for the relationship between them has been
laid down by NIST [2].

Vectors and arrays are given in bold and indexed by subscripts; thus xi is the
ith element of the vector x, which is distinct from the scalar variable x. When we
wish to select a row or column from a two-dimensional array, we place a ∗ in the
dimension along which we are not selecting. Thus y∗,j is the jth column of matrix
y, and yj,∗ is the jth row. We use Pi to denote the party with index i, and when
only two parties are present, we refer to them as Alice and Bob. Variables may
often be subscripted with an index to indicate that they belong to a particular
party. When arrays are owned by a party, the party index always comes first. We
use |x| to denote the bit-length of x, and |y| to denote the number of elements
in the vector y.

3 In other words, a biprime of length 2κ provides λ bits of security.
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Universal Composability. We prove our protocols secure in the Universal Com-
posability (UC) framework, and use standard UC notation. We refer the reader
to Canetti [6] for further details. In functionality descriptions, we leave some
standard bookkeeping elements implicit. For example, we assume that the func-
tionality aborts if a party tries to reuse a session identifier inappropriately, send
messages out of order, etc. For convenience, we provide a function GenSID, which
takes any number of arguments and deterministically derives a unique Session
ID from those arguments.

Chinese Remainder Theorem. The Chinese Remainder Theorem (CRT) defines
an isomorphism between a set of residues modulo a set of respective coprime
values and a single value modulo the product of the same set of coprime values.
This forms the basis of our sampling procedure.

Theorem 2.1. (CRT). Let m be a vector of coprime positive integers and let
x be a vector of numbers such that |m| = |x| = � and 0 ≤ xj < mj for all
j ∈ [�], and finally let M ..=

∏
j∈[�] mj . Under these conditions there exists a

unique value y such that 0 ≤ y < M and y ≡ xj (mod mj) for every j ∈ [�].

We refer to x as the CRT form of y with respect to m. For completeness, we
give the CRTRecon algorithm, which finds the unique y given m and x.

Algorithm 2.2. CRTRecon(m,x)
1. With � ..= |m|, compute M =

∏
j∈[�] mj .

2. For j ∈ [�], compute aj
..= M/mj and find bj satisfying aj · bj ≡ 1

(mod mj) using the Extended Euclidean Algorithm (see Knuth [25]).
3. Output y ..=

∑
j∈[�] aj · bj · xj mod M .

3 Assumptions and Ideal Functionality

We begin this section by discussing the distribution of biprimes from which we
sample, and thus the precise factoring assumption that we make, and then we
give an efficient sampling algorithm and an ideal functionality that computes it.

3.1 Factoring Assumptions

The standard factoring experiment (Experiment 3.1) as formalized by Katz and
Lindell [24] is parametrized by an adversary A and a biprime-sampling algorithm
GenModulus. On input 1κ, this algorithm returns (N, p, q), where N = p · q, and
p and q are κ-bit primes.4

4 Technically, Katz and Lindell specify that sampling failures are permitted with negli-
gible probability, and require GenModulus to run in strict polynomial time. We elide
this detail.
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Experiment 3.1 FactorA,GenModulus(κ)
1. Run (N, p, q) ← GenModulus(1κ).
2. Send N to A, and receive p′, q′ > 1 in return.
3. Output 1 if and only if p′ · q′ = N .

In many cryptographic applications, GenModulus(1κ) is defined to sample p and
q uniformly from the set of primes in the range [2κ−1, 2κ) [18], and the factoring
assumption with respect to this common GenModulus function states that for
every PPT adversary A there exists a negligible function negl such that

Pr [FactorA,GenModulus(κ) = 1] ≤ negl(κ).

Because efficiently sampling according to this uniform biprime distribution
is difficult in a multiparty context, most prior works sample according to a
different distribution, and thus using the moduli they produce requires a slightly
different factoring assumption than the traditional one. In particular, several
recent works use a distribution originally proposed by Boneh and Franklin [4],
which is well-adapted to multiparty sampling. Our work follows this pattern.

Boneh and Franklin’s distribution is defined by the sampling algorithm
BFGM, which takes as an additional parameter the number of parties n. The
algorithm samples n integer shares, each in the range [0, 2κ−log n), and sums
these shares to arrive at a candidate prime. This does not induce a uniform dis-
tribution on the set of κ-bit primes. Furthermore, BFGM only samples individual
primes p or q that have p ≡ q ≡ 3 (mod 4), in order to facilitate efficient dis-
tributed primality testing, and it filters out the subset of otherwise-valid moduli
N = p · q that have p ≡ 1 (mod q) or q ≡ 1 (mod p).5

Algorithm 3.2. BFGM(κ, n)

1. For i ∈ [n], sample pi ← [
0, 2κ−log n

)
and qi ← [

0, 2κ−log n
)

subject to
p1 ≡ q1 ≡ 3 (mod 4) and pj ≡ qj ≡ 0 (mod 4) for j ∈ [2, n].

2. Compute

p ..=
∑

i∈[n]

pi and q ..=
∑

i∈[n]

qi and N ..= p · q

3. If gcd(N, p + q − 1) = 1, and both p and q are primes, then output
(N, {(pi, qi)}i∈[n]). Otherwise, repeat this procedure from Step 1.

Any protocol whose security depends upon the hardness of factoring mod-
uli output by our protocol (including our protocol itself) must rely upon the
assumption that for every PPT adversary A,

Pr [FactorA,BFGM(κ, n) = 1] ≤ negl(κ)

5 Boneh and Franklin actually propose two variations, one of which has no false nega-
tives; we choose the other variation, as it leads to a more efficient sampling protocol.



74 M. Chen et al.

3.2 The Distributed Biprime-Sampling Functionality

Unfortunately, our ideal modulus-sampling functionality cannot merely call
BFGM; we wish our functionality to run in strict polynomial time, whereas
the running time of BFGM is only expected polynomial. Thus, we define a new
sampling algorithm, CRTSample, which might fail, but conditioned on success
outputs samples statistically close to BFGM.6 Furthermore, we give CRTSample
a specific distribution of failures that is tied to the design of our protocol. As
a second concession to our protocol design (and following Hazay et al. [20]),
CRTSample takes as input up to n−1 integer shares of p and q, arbitrarily deter-
mined by the adversary, while the remaining shares are sampled randomly. We
begin with a few useful notions.

Definition 3.3. (Primorial Number). The ith primorial number is defined to
be the product of the first i prime numbers.

Definition 3.4. ((κ, n)-Near-Primorial Vector). Let � be the largest number
such that the �th primorial number is less than 2κ−log n−1, and let m be a vector
of length � such that m1 = 4 and m2, . . . ,m� are the odd factors of the �th

primorial number, in ascending order. m is the unique (κ, n)-near-primorial
vector.

Definition 3.5. (m-Coprimality). Let m be a vector of integers. An integer x
is m-coprime if and only if it is not divisible by any mi for i ∈ [|m|].

Algorithm 3.6. CRTSample(κ, n, {(pi, qi)}i∈P∗)
1. Let m be the (κ, n)-near-primorial vector, with length �, and let M be

the product of m.
2. For i ∈ [n] \ P∗, sample pi ← [0,M) and qi ← [0,M) subject to

pi ≡ qi ≡
{

3 (mod 4) if i = 1
0 (mod 4) if i 	= 1

and subject to p and q being m-coprime, where

p ..=
∑

i∈[n]

pi and q ..=
∑

i∈[n]

qi

are computed over the integers.
3. If gcd(p ·q, p+q−1) = 1, and if both p and q are primes, and if p ≡ q ≡ 3

(mod 4), then output (success, p, q); otherwise, output (failure, p, q).

6 CRTSample never outputs biprimes with factors smaller than κ, whereas BFGM
outputs such biprimes with negligible probability. The discrepancy of share ranges
can be remedied by using non-integer values of κ with BFGM.
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Boneh and Franklin [4, Lemma 2.1] showed that knowledge of n − 1 integer
shares of the factors p and q does not give the adversary any meaningful advan-
tage in factoring biprimes from the distribution produced by BFGM and, by
extension, CRTSample. Hazay et al. [20, Lemma 4.1] extended this argument to
the malicious setting, wherein the adversary is allowed to choose its own shares.

Lemma 3.7. ([4,20]). Let n < κ and let (A1,A2) be a pair of PPT algorithms.
For (state, {(pi, qi)}i∈[n−1]) ← A1(1κ, 1n), let N be a biprime sampled by run-
ning CRTSample(κ, n, {(pi, qi)}i∈[n−1]). If A2(state, N) outputs the factors of
N with probability at least 1/κd, then there exists an expected-polynomial-
time algorithm B that succeeds with probability 1/24n3κd in the experiment
FactorB,BFGM(κ,n).

Multiparty Functionality. Our ideal functionality FRSAGen is a natural embedding
of CRTSample in a multiparty functionality: it receives inputs {(pi, qi)}i∈P∗ from
the adversary and runs a single iteration of CRTSample with these inputs when
invoked. It either outputs the corresponding modulus N ..= p · q if it is valid,
or indicates that a sampling failure has occurred. Running a single iteration
of CRTSample per invocation of FRSAGen enables significant freedom in the use
of FRSAGen, because it can be composed in different ways to tune the trade-off
between resource usage and execution time. It also simplifies the analysis of the
protocol πRSAGen that realizes FRSAGen, because the analysis is made independent
of the success rate of the sampling procedure.

The functionality may not deliver N to the honest parties for one of two
reasons: either CRTSample failed to sample a biprime, or the adversary caused
the computation to abort. In either case, the honest parties are informed of the
cause of the failure, and consequently the adversary is unable to conflate the two
cases. This is essentially the standard notion of security with abort, applied to
the multiparty computation of the CRTSample algorithm. In both cases, the p
and q output by CRTSample are given to the adversary. This leakage simplifies
our proof considerably, and we consider it benign, since the honest parties never
receive (and therefore cannot possibly use) N .

Functionality 3.8. FRSAGen(κ, n). Distributed Biprime Sampling
This n-party functionality attempts to sample an RSA modulus with prime
length κ, and interacts directly with an ideal adversary S who corrupts the
parties indexed by P∗. Let M be the largest number such that M/2 is a
primorial number and M < 2κ−log n.

Sampling: On receiving (sample, sid) from each party Pi for i ∈ [n] \ P∗

and (adv-sample, sid, i, pi, qi) from S for i ∈ P∗, if 0 ≤ pi < M and 0 ≤
qi < M for all i ∈ P∗, then run CRTSample(κ, n, {(pi, qi)}i∈P∗), and receive
as a result either (success, p, q) or (failure, p, q).
– If p 	≡ 3 (mod 4) or q 	≡ 3 (mod 4), then send (factors, sid, p, q) to S

and abort, informing all parties in an adversarially delayed fashion.
– If p ≡ q ≡ 3 (mod 4), and the result was failure, then store

(non-biprime, sid, p, q) in memory and send (factors, sid, p, q) to S.
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– If p ≡ q ≡ 3 (mod 4), and the result was success, then com-
pute N ..= p · q, store (biprime, sid, N, p, q) in memory, and send
(biprime, sid, N) to S.

Output: On receiving either (proceed, sid) or (cheat, sid) from S, if
(biprime, sid, N, p, q) or (non-biprime, sid, p, q) exists in memory,

– If proceed was received, then send either (biprime, sid, N) or
(non-biprime, sid) to all parties as adversarially delayed output, as appro-
priate. Terminate successfully.

– If cheat was received, then abort, notifying all parties in an adversarially
delayed fashion, and send (factors, sid, p, q) directly to S.

Regardless, ignore all further instructions with this sid.

4 The Distributed Biprime-Sampling Protocol

In this section, we present the distributed biprime-sampling protocol πRSAGen,
with which we realize FRSAGen. We begin with a high-level overview, and then in
Sect. 4.2, we formally define the two ideal functionalities on which our protocol
relies, after which in Sect. 4.3 we give the protocol itself. In Sect. 4.4, we present
proof sketches of semi-honest and malicious security.

4.1 High-Level Overview

As described in the Introduction, our protocol derives from that of Boneh
and Franklin [4], the main technical differences relative to other recent Boneh-
Franklin derivatives [16,20] being the modularity with which it is described and
proven, and the use of CRT-based sampling. Our protocol has three main phases,
which we now describe in sequence.

Candidate Sieving. In the first phase of our protocol, the parties jointly sample
two κ-bit candidate primes p and q without any small factors, and multiply
them to learn their product N . Our protocol achieves these tasks in a unified,
integrated way, thanks to the Chinese Remainder Theorem.

Consider a prime m and a set of shares xi for i ∈ [n] over the field Zm. As in
the description of CRTRecon, let a and b be defined such that a · b ≡ 1 (mod m),
and let M be an integer. Observe that if m divides M , then

∑

i∈[n]

xi 	≡ 0 (mod m) =⇒
∑

i∈[n]

a · b · xi mod M 	≡ 0 (mod m) (1)

Now consider a vector of coprime integers m of length �, and let M be their
product. Let x be a vector, each element secret shared over the fields defined
by the corresponding element of m, and let a and b be defined as in CRTRecon
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(i.e., aj
..= M/mj and aj · bj ≡ 1 (mod mj)). We can see that for any k, j ∈ [�]

such that k 	= j,

aj ≡ 0 (mod mk) =⇒
∑

i∈[n]

aj · bj · xi,j mod M ≡ 0 (mod mk) (2)

and the conjunction of Eqs. 1 and 2 gives us
∑

j∈[�]

∑

i∈[n]

aj · bj · xi,j mod M ≡
∑

i∈[n]

xi,k (mod mk)

for all k ∈ [�]. Observe that this holds regardless of which order we perform the
sums in, and regardless of whether the mod M operation is done at the end, or
between the two sums, or not at all.

It follows then that we can sample n shares for an additive secret sharing over
the integers of a κ-bit value x (distributed between 0 and n · M) by choosing m
to be the (κ, n)-near-primorial vector (per Definition 3.4), instructing each party
Pi for i ∈ [n] to pick xi,j locally for j ∈ [�] such that 0 ≤ xi,j < mj , and then
instructing each party to locally reconstruct xi

..= CRTRecon(m,xi,∗), its share
of x. It furthermore follows that if the parties can contrive to ensure that

∑

i∈[n]

xi,j 	≡ 0 (mod mj) (3)

for j ∈ [�], then x will not be divisible by any prime in m.
Observe next that if the parties sample two shared vectors p and q as above

(corresponding to the candidate primes p and q) and compute a shared vector
N of identical dimension such that

∑

i∈[n]

pi,j ·
∑

i∈[n]

qi,j ≡
∑

i∈[n]

Ni,j (mod mj) (4)

for all j ∈ [�], then it follows that
∑

i∈[n]

CRTRecon(m,pi,∗) ·
∑

i∈[n]

CRTRecon(m,qi,∗) =
∑

i∈[n]

CRTRecon(m,Ni,∗)

and from this it follows that the parties can calculate integer shares of N = p · q
by multiplying p and q together element-wise using a modular-multiplication
protocol for linear secret shares, and then locally running CRTRecon on the
output to reconstruct N . In fact, our sampling protocol makes use of a special
functionality FAugMul, which samples p, q, and N simultaneously such that the
conditions in Eqs. 3 and 4 hold.

There remains one problem: our vector m was chosen for sampling integer-
shared values between 0 and n · M (with each share no larger than M), but N
might be as large as n2 · M2. In order to avoid wrapping during reconstruction
of N , we must reconstruct with respect to a larger vector of primes (while
continuing to sample with respect to a smaller one). Let m now be of length �′,
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and let � continue to denote the length of the prefix of m with respect to which
sampling is performed. After sampling the initial vectors p, q, and N, each party
Pi for i ∈ [n] must extend pi,∗ locally to �′ elements, by computing

pi,j
..= CRTRecon

(
{mj′}j′∈[�] , {pj′}j′∈[�]

)
mod mj

for j ∈ [� + 1, �′], and then likewise for qi,∗. Finally, the parties must use a
modular-multiplication protocol to compute the appropriate extension of N;
from this extended N, they can reconstruct shares of N = p · q. They swap
these shares, and thus each party ends the Sieving phase of our protocol with a
candidate biprime N and an integer share of each of its factors, pi and qi.

Each party completes the first phase by performing a local trial division to
check if N is divisible by any prime smaller than some bound B (which is a
parameter of the protocol). The purpose of this step is to reduce the number of
calls to FBiprime and thus improve efficiency.

Biprimality Test. The parties jointly execute a biprimality test, where every
party inputs the candidate N and its shares pi and qi, and receives back a bipri-
mality indicator. This phase essentially comprises a single call to a functionality
FBiprime, which allows an adversary to force spurious negative results, but never
returns false positive results. Though this phase is simple, much of the subtlety
of our proof concentrates here: we show via a reduction to factoring that cheat-
ing parties have a negligible chance to pass the biprimality test if they provide
wrong inputs. This eliminates the need to authenticate the inputs in any way.

Consistency Check. To achieve malicious security, the parties must ensure that
none among them cheated during the previous stages in a way that might influ-
ence the result of the computation. This is what we have previously termed the
retroactive consistency check. If the biprimality test indicated that N is not a
biprime, then the parties use a special interface of FAugMul to reveal the shares
they used during the protocol, and then they verify locally and independently
that p and q are not both primes. If the biprimality test indicated that N is
a biprime, then the parties run a secure test (again via a special interface of
FAugMul) to ensure that length extensions of p and q were performed honestly.
To achieve semi-honest security, this phase is unnecessary, and the protocol can
end with the biprimality test.

4.2 Ideal Functionalities Used in the Protocol

Augmented Multiparty Multiplier. The augmented multiplier functionality
FAugMul (Functionality 4.1) is a reactive functionality that operates in multiple
phases and stores an internal state across calls. It is meant to help in manipu-
lating CRT-form secret shares. It contains five basic interfaces.

– The sample interface allows the parties to sample shares of non-zero multipli-
cation triplets over small primes. That is, given a prime m, the functionality
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receives a triplet (xi, yi, zi) from every corrupted party Pi, and then samples
a triplet (xj , yj , zj) ← Z

3
m for every honest Pj conditioned on

∑

i∈[n]

zi ≡
∑

i∈[n]

xi ·
∑

i∈[n]

yi 	≡ 0 (mod m)

In the context of πRSAGen, this is used to sample CRT-shares of p and q.
– The input and multiply interfaces, taken together, allow the parties to load

shares (with respect to some small prime modulus m) into the functionality’s
memory, and later perform modular multiplication on two sets of shares that
are associated with the same modulus. That is, given a prime m, each party
Pi inputs xi and, independently, yi, and when the parties request a product,
with each corrupt party Pj also supplying its own an output share zj , the
functionality samples a share of z from Zm for each honest party subject to

∑

i∈[n]

zi ≡
∑

i∈[n]

xi ·
∑

i∈[n]

yi (mod m)

In the context of πRSAGen, this interface is used to perform length-extension
on CRT-shares of p and q.

– The check interface allows the parties to securely compute a predicate over
the set of stored values. In the context of πRSAGen, this is used to check that
the CRT-share extension of p and q has been performed correctly, when N is
a biprime.

– The open interface allows the parties to retroactively reveal their inputs to
one another. In the context of πRSAGen, this is used to verify the sampling
procedure and biprimality test when N is not a biprime.

These five interfaces suffice for the malicious version of the protocol, and the
first three alone suffice for the semi-honest version. We make a final adjustment,
which leads to a substantial efficiency improvement in the protocol with which
we realize FAugMul (which we describe in the full version of this paper [7]). Specif-
ically, we give the adversary an interface by which it can request that any stored
value be leaked to itself, and by which it can (arbitrarily) determine the output
of any call to the sample or multiply interfaces. However, if the adversary uses
this interface, the functionality remembers, and informs the honest parties by
aborting when the check or open interfaces is used.

Functionality 4.1. FAugMul(n). Augmented n-Party Multiplication
This functionality is parametrized by the party count n. In addition to
the parties it interacts with an ideal adversary S who corrupts the parties
indexed by P∗. The remaining honest parties are indexed by P* ..= [n] \P∗.

Cheater Activation: Upon receiving (cheat, sid) from S, store
(cheater, sid) in memory and send every record of the form
(value, sid, i, xi,m) to S. For the purposes of this functionality, we will
consider session IDs to be fresh even when a cheater record already exists
in memory.
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Sampling: Upon receiving (sample, sid1, sid2,m) from each party Pi for
i ∈ P* and (adv-sample, sid1, sid2, xi, yi, zi,m) from S for i ∈ P∗,a if sid1
and sid2 are fresh, agreed-upon values and if m is an agreed-upon prime,
and if neither (cheater, sid1) nor (cheater, sid2) exists in memory, then
sample (xi, yi, zi) ← Z

3
m uniformly for each i ∈ P* subject to

∑

i∈[n]

zi ≡
∑

i∈[n]

xi ·
∑

i∈[n]

yi 	≡ 0 (mod m)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) exists
in memory, then send (cheat-sample, sid1, sid2) to S and in response receive
(cheat-samples, sid1, sid2, {(xi, yi, zi)}i∈P*

) where 0 ≤ xi, yi, zi < m for all
i and where ∑

i∈[n]

zi 	≡ 0 (mod m)

(if these conditions are violated, then ignore the response from S). Regard-
less, store (value, sid1, i, xi,m) and (value, sid2, i, yi,m) in memory for
i ∈ [n], and then send (sampled-product, sid1, sid2, xi, yi, zi) to each party
Pi as adversarially delayed private output.

Input: Upon receiving (input, sid, xi,m) from each party Pi, where i ∈ [n]:
if sid is a fresh, agreed-upon value and if m is an agreed-upon prime, and
if 0 ≤ xi < m for all i ∈ [n], then store (value, sid, i, xi,m) in memory for
each i ∈ [n] and send (value-loaded, sid) to all parties. If (cheater, sid)
exists in memory, then send (value, sid, i, xi,m) to S for each i ∈ [n].

Multiplication: Upon receiving (multiply, sid1, sid2, sid3) from each
party Pi for i ∈ P* and (adv-multiply, sid1, sid2, sid3, i, zi) from S for each
i ∈ P∗,a if all three session IDs are agreed upon and sid3 is fresh, and if no
record of the form (cheater, sid1) or (cheater, sid2) exists in memory, and
if records of the form (value, sid1, i, xi,m1) and (value, sid2, i, yi,m2) exist
in memory for all i ∈ [n] such that m1 = m2, then sample zi ← Zm1 for
i ∈ P* subject to

∑

i∈[n]

zi ≡
∑

i∈[n]

xi ·
∑

i∈[n]

yi (mod m1)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) exists
in memory, then send (cheat-multiply, sid1, sid2, sid3) to S and in response
receive (cheat-product, sid3, {zi}i∈P*

) where 0 ≤ zi < m1 for all i. Regard-
less, send (product, sid3, zi) to each party Pi for i ∈ [n] as adversarially
delayed private output. Note that this procedure only permits multiplica-
tions of values associated with the same modulus.

Predicate Cheater Check: Upon receiving (check, sids, f) from all
parties, where f is the description of a predicate over the set of stored
values associated with the vector of session IDs sids, if f is not agreed upon,
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or if any record (cheater, sid) exists in memory such that sid ∈ sids, then
abort, informing all parties in an adversarially delayed fashion. Otherwise,
let x be the vector of stored values associated with sids, or in other words,
let it be a vector such that for all j ∈ [|x|] and i ∈ [n], records of the form
(value, sidsj , i, yi,m) exist in memory such that

0 ≤ xj < m and xj ≡
∑

i∈[n]

yi (mod m)

Send (predicate-result, sids, f(x)) to all parties as adversarially delayed
private output, and refuse all future messages with any session ID in sids.

Input Revelation: Upon receiving (open, sid) from all parties, if a record
of the form (cheater, sid) exists in memory, then abort, informing all par-
ties in an adversarially delayed fashion. Otherwise, for each record of the
form (value, sid, i, xi) in memory, send (opening, sid, i, xi) to all parties
as adversarially delayed output. Refuse all future messages with this sid.

aIn the semi-honest setting, the adversary does not send these values to
the functionality; instead the functionality samples the shares for corrupt
parties just as it does for honest parties.

Biprimality Test. The biprimality-test functionality FBiprime (Functionality 4.2)
abstracts the behavior of the biprimality test of Boneh and Franklin [4]. The
functionality receives from each party a candidate biprime N , along with shares
of its factors p and q. It checks whether p and q are primes and whether N =
p · q. The adversary is given an additional interface, by which it can ask the
functionality to leak the honest parties’ inputs, but when this interface is used
then the functionality reports to the honest parties that N is not a biprime, even
if it is one.

Functionality 4.2. FBiprime(M,n). Distributed Biprimality Test
This functionality is parametrized by the integer M and the party-count n.
In addition to the parties it interacts with an ideal adversary S.

Biprimality Test:
1. Wait to receive (check-biprimality, sid, N, pi, qi) from each party Pi

for i ∈ [n], where sid is a fresh, agreed-upon value.
2. Over the integers, compute

p ..=
∑

i∈[n]

pi and q ..=
∑

i∈[n]

qi and N ′ ..= p · q

3. If all parties agreed on the value of N in Step 1, and N = N ′, and both p
and q are primes, and p 	≡ 1 (mod q), and q 	≡ 1 (mod p), and 0 ≤ p < M
and 0 ≤ q < M , then send a message (biprime, sid) to S. If S responds
with (proceed, sid), then output (biprime, sid) to all parties as adversar-
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ially delayed output. If S responds with (cheat, sid)a, or if any of the pre-
vious predicates is false, then output (leaked-shares, sid, {(pi, qi)}i∈[n])
directly to S, and output (not-biprime, sid) to all parties as adversari-
ally delayed output.

aSemi-honest adversaries are forbidden to send the cheat instruction.

Realizations. In the full version of this paper [7], we discuss a protocol to realize
FAugMul, and in Sect. 5, we propose a protocol to realize FBiprime. Both make use
of generic MPC, but in such a way that no generic MPC is required unless N is
a biprime.

4.3 The Protocol Itself

We refer the reader back to Sect. 4.1 for an overview of our protocol. We have
mentioned that it requires a vector of coprime values, which is prefixed by the
(κ, n)-near-primorial vector. We now give this vector a precise definition. Note
that the efficiency of our protocol relies upon this vector, because we use its
contents to sieve candidate primes. Since smaller numbers are more likely to
be factors for the candidate primes, we choose the largest allowable set of the
smallest sequential primes.

Definition 4.3. ((κ, n)-Compatible Parameter Set). Let �′ be the smallest num-
ber such that the �′th primorial number is greater than 22κ−1, and let m be a
vector of length �′ such that m1 = 4 and m2, . . . ,m�′ are the odd factors of the
�′th primorial number, in ascending order. (m, �′, �,M) is the (κ, n)-compatible
parameter set if � < �′ and the prefix of m of length � is the (κ, n)-near-primorial
vector per Definition 3.4, and if M is the product of this prefix.

Protocol 4.4. πRSAGen(κ, n,B). Distributed Biprime Sampling
This protocol is parametrized by the RSA prime length κ, the number of
parties n, and the trial-division bound B. Let (m, �′, �,M) be the (κ, n)-
compatible parameter set, per Definition 4.3. In this protocol the parties
have access to the functionalities FAugMul and FBiprime.

Candidate Sieving:
1. Upon receiving input (sample, sid) from the environment, the parties

begin the protocol. Every party Pi for i ∈ [n] computes three vectors of
session IDs

psids ..= {GenSID(sid, j, p)}j∈[�′]

qsids ..= {GenSID(sid, j, q)}j∈[�′]

Nsids ..= {GenSID(sid, j, N)}j∈[�′]

and sends (sample,psidsj ,qsidsj ,mj) to FAugMul(n) for every j ∈
[2, �], and receives (sampled-product,psidsj ,qsidsj ,pi,j ,qi,j ,Ni,j) in
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response. The parties also set p1,1
..= q1,1

..= 3 and pi′,1
..= qi′,1

..= 0 for
i′ ∈ [2, n].

2. Each party Pi for i ∈ [n] computes

pi
..= CRTRecon

(
{mj}j∈[�] , {pi,j}j∈[�]

)

qi
..= CRTRecon

(
{mj}j∈[�] , {qi,j}j∈[�]

)

and then, for j ∈ [� + 1, �′], Pi computes

pi,j
..= pi mod mj and qi,j

..= qi mod mj

Note that each party Pi is now in possession of a pair of vectors

pi,∗ ∈ Zm1 × . . . × Zm�′ and qi,∗ ∈ Zm1 × . . . × Zm�′

3. For j ∈ [� + 1, �′], every party Pi for i ∈ [n] sends the following sequence
of messages to FAugMul(n), waiting for confirmation after each:
(a) (input,psidsj ,pi,j ,mj)
(b) (input,qsidsj ,qi,j ,mj)
(c) (multiply,psidsj ,qsidsj ,Nsidsj)
and at the end of this sequence, each party Pi receives
(product,Nsidsj ,Ni,j) from FAugMul(n) in response. Note that each party
Pi is now in possession of a vector Ni,∗ ∈ Zm1 × . . . × Zm�′ .

4. For j ∈ [2, �′], each party Pi for i ∈ [n] broadcasts Ni,j . Once all parties
have received shares from all other parties, they compute

N ..= CRTRecon

⎛

⎜
⎝m,

⎧
⎨

⎩

∑

i′∈[n]

Ni′,j mod mj

⎫
⎬

⎭
j∈[�′]

⎞

⎟
⎠

5. Each party Pi performs a local trial division on N by all primes less
than B. If N is divisible by some prime, then the parties skip directly to
Step 7, and take the privacy-free branch.

Biprimality Test:

6. Each party Pi for i ∈ [n] sends (check-biprimality, sid, N, pi, qi) to
FBiprime(M,n) and waits for either (biprime, sid) or (not-biprime, sid)
in response.

Consistency Check: a

7. Let f be the predicate that is defined to compute

pi′ ..= CRTRecon (m,pi′,∗) and qi′ ..= CRTRecon (m,qi′,∗)
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for all i′ ∈ [n] and to return 1 if and only if

N =
∑

i′∈[n]

pi′ ·
∑

i′∈[n]

qi′

∧ 0 ≤ pi′ < M ∧ 0 ≤ qi′ < M for all i′ ∈ [n]

where the sums and product are taken over the integers.
– If biprime is received from FBiprime(M,n), then N is a biprime,

and a privacy-preserving check must be performed. Each party
sends (check,psids‖qsids, f) to FAugMul(n). If FAugMul returns
(predicate-result,psids‖qsids, 1) then the parties halt successfully
and output (biprime, sid, N) to the environment; otherwise, they
abort.

– If not-biprime is received from FBiprime(M,n), then either N is not a
biprime or some party has cheated; consequently, a privacy-free check
is performed.
(a) For j ∈ [2, �′], each party Pi for i ∈ [n] sends (open,psidsj) and

(open,qsidsj) to FAugMul(n). If Pi observes FAugMul(n) to abort in
response to any of these queries, then Pi itself aborts. Otherwise,
Pi receives (opening,psidsj ,pi′,j) and (opening,qsidsj ,qi′,j) for
each i′ ∈ [n] and j ∈ [2, �′].

(b) The parties individually check that the predicate f holds over the
vectors of shares which they now all possess. If this predicate holds
and p and q are not both prime, then all parties halt successfully
and output (non-biprime, sid) to the environment. Otherwise, a
party has cheated, and they abort.

aIf only security against semi-honest adversaries is required, the protocol
can terminate after the Biprimality-Test phase, and these checks are unnec-
essary.

4.4 Security Sketches

We now informally argue that πRSAGen realizes FRSAGen in the semi-honest and
malicious settings. We give a full proof for the malicious setting in the full version
of this paper [7].

Theorem 4.5. πRSAGen UC-realizes FRSAGen with perfect security in the
(FAugMul, FBiprime)-hybrid model against a static, semi-honest adversary that cor-
rupts up to n − 1 parties.

Proof Sketch. In lieu of arguing for the correctness of our protocol, we refer
the reader to the explanation in Sect. 4.1, and focus here on the strategy of a
simulator S against a semi-honest adversary A who corrupts the parties indexed
by P∗. S forwards all messages between A and the environment faithfully.
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In Step 1 of πRSAGen, for each j ∈ [2, �], S receives the sample instruction
with modulus mj on behalf of FAugMul from all parties indexed by P∗. For each
j it then samples (pi,j ,qi,j ,Ni,j) ← Z

3
mj

uniformly for i ∈ P∗, and returns each
triple to the appropriate party.

Step 2 involves no interaction on the part of the parties, but it is at this point
that S computes pi and qi for i ∈ P∗, in the same way that the parties themselves
do. Note that since p∗,1 and q∗,1 are deterministically chosen, they are known
to S. The simulator then sends these shares to FRSAGen via the functionality’s
adv-input interface, and receives in return either a biprime N , or two factors p
and q such that N ..= p · q is not a biprime. Regardless, it instructs FRSAGen to
proceed.

In Step 3 of πRSAGen, S receives two input instructions from each corrupted
party for each j ∈ [�+1, �′] on behalf of FAugMul, and confirms receipt as FAugMul

would. Subsequently, for each j ∈ [� + 1, �′], the corrupt parties all send a
multiply instruction, and then S samples Ni,j ← Zmj

for i ∈ [n] subject to
∑

i∈[n]

Ni,j ≡ N (mod mj)

and returns each share to the matching corrupt party.
In Step 4 of πRSAGen, for every j ∈ [�′], every corrupt party Pi′ for i′ ∈ P∗,

and every honest party Pi for i ∈ [n] \ P∗, S sends Ni,j to Pi′ on behalf of Pi,
and receives Ni′,j (which it already knows) in reply.

To simulate the final steps of πRSAGen, S tries to divide N by all primes smaller
than B. If it succeeds, then the protocol is complete. Otherwise, it receives
check-biprimality from all of the corrupt parties on behalf of FBiprime, and
replies with biprime or not-biprime as appropriate. It can be verified by inspec-
tion that the view of the environment is identically distributed in the ideal-world
experiment containing S and honest parties that interact with FRSAGen, and the
real-world experiment containing A and parties running πRSAGen. 
�
Theorem 4.6. If factoring biprimes sampled by BFGM is hard, then πRSAGen

UC-realizes FRSAGen in the (FAugMul, FBiprime)-hybrid model against a static, mali-
cious PPT adversary that corrupts up to n − 1 parties.

Proof Sketch. We observe that if the adversary simply follows the specification
of the protocol and does not cheat in its inputs to FAugMul or FBiprime, then
the simulator can follow the same strategy as in the semi-honest case. At any
point if the adversary deviates from the protocol, the simulator requests FRSAGen

to reveal all honest parties’ shares, and thereafter the simulator uses them by
effectively running the code of the honest parties. This matches the adversary’s
view in the real protocol as far as the distribution of the honest parties’ shares
is concerned.

It remains to be argued that any deviation from the protocol specification will
also result in an abort in the real world with honest parties, and will additionally
be recognized by the honest parties as an adversarially induced cheat (as opposed
to a statistical sampling failure). Note that the honest parties must only detect
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cheating when N is truly a biprime and the adversary has sabotaged a successful
candidate; if N is not a biprime and would have been rejected anyway, then cheat-
detection is unimportant. We analyze all possible cases where the adversary
deviates from the protocol below. Let N be defined as the value implied by
parties’ sampled shares in Step 1 of πRSAGen.

Case 1: N is a non-biprime and reconstructed correctly. In this case, FBiprime will
always reject N as there exist no satisfying inputs (i.e., there are no two prime
factors p, q such that p · q = N).

Case 2: N is a non-biprime and reconstructed incorrectly as N ′. If by fluke N ′

happens to be a biprime then the incorrect reconstruction will be caught by the
explicit secure predicate check during the consistency-check phase. If N ′ is a
non-biprime then the argument from the previous case applies.

Case 3: N is a biprime and reconstructed correctly. If consistent inputs are
used for the biprimality test and nobody cheats, the candidate N is successfully
accepted (this case essentially corresponds to the semi-honest case). Otherwise,
if inconsistent inputs are used for the biprimality test, one of the following events
will occur:

– FBiprime rejects this candidate. In this case, all parties reveal their shares of
p and q to one another (with guaranteed correctness via FAugMul) and locally
test their primality. This will reveal that N was a biprime, and that FBiprime

must have been supplied with inconsistent inputs, implying that some party
has cheated.

– FBiprime accepts this candidate. This case occurs with negligible probability
(assuming factoring is hard). Because N only has two factors, there is exactly
one pair of inputs that the adversary can supply to FBiprime to induce this
scenario, apart from the pair specified by the protocol. In our full proof (see
the full version [7] of this paper) we show that finding this alternative pair of
satisfying inputs implies factoring N . We are careful to rely on the hardness
of factoring only in this case, where by premise N is a biprime with κ-bit
factors (i.e., an instance of the factoring problem).

Case 4: N is a biprime and reconstructed incorrectly as N ′. If N ′ is a biprime
then the incorrect reconstruction will be caught during the consistency-check
phase, just as when N is a biprime. If N ′ is a non-biprime then it will by
rejected by FBiprime, inducing all parties to reveal their shares and find that their
shares do not in fact reconstruct to N ′, with the implication that some party
has cheated.

Thus the adversary is always caught when trying to sabotage a true biprime,
and it can never sneak a non-biprime past the consistency check. Because the
real-world protocol always aborts in the case of cheating, it is indistinguishable
from the simulation described above, assuming that factoring is hard. 
�
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5 Distributed Biprimality Testing

In the semi-honest setting, FBiprime can be realized by the biprimality-testing
protocol of Boneh and Franklin [4]. We discuss this in the full version [7] of this
paper. The following lemma follows immediately from their work.

Lemma 5.1. The biprimality-testing protocol described by Boneh and
Franklin [4] UC-realizes FBiprime with statistical security in the FComCompute-
hybrid model against a static, semi-honest adversary who corrupts up to n − 1
parties.

5.1 The Malicious Setting

Unlike a semi-honest adversary, we permit a malicious adversary to force a true
biprime to fail our biprimality test, and detect such behavior using independent
mechanisms in the πRSAGen protocol. However, we must ensure that a non-biprime
can never pass the test with more than negligible probability. To achieve this, we
use a derivative of the biprimality-testing protocol of Frederiksen et al. [16]; rel-
ative to their protocol, ours is simpler, and we prove that it UC-realizes FBiprime.

The protocol essentially comprises a randomized version of the semi-honest
Boneh-Franklin test described previously, followed by a Schnorr-like protocol to
verify that the test was performed correctly. The soundness error of the under-
lying biprimality test is compounded by the Schnorr-like protocol’s soundness
error to yield a combined error of 3/4; this necessitates an increase in the num-
ber of iterations by a factor of log4/3(2) < 2.5. While this is sufficient to ensure
the test itself is carried out honestly, it does not ensure the correct inputs are
used. Consequently, generic MPC is used to verify the relationship between the
messages involved in the Schnorr-like protocol and the true candidate given by
N and shares of its factors. As a side effect, this generic computation samples
r ← ZN and outputs z = r · (p + q − 1) mod N so that the GCD test can
afterward be run locally by each party.

Our protocol makes use of a number of subfunctionalities, all of which are
standard and described in the full version of this paper [7]. Namely, we use
a coin-tossing functionality FCT to uniformly sample an element from some set,
the one-to-many commitment functionality FCom, the generic MPC functionality
over committed inputs FComCompute, and the integer-sharing-of-zero functionality
FZero. In addition, the protocol uses the algorithm VerifyBiprime (Algorithm 5.3).

Protocol 5.2. πBiprime(M,n). Distributed Biprimality Testing
This protocol is parametrized by an integer M and the number of parties
n. In addition, there is a statistical parameter s. The parties have access to
the FCT, FCom, FComCompute, and FZero functionalities.

Input Commitment:
1. Upon receiving input (check-biprimality, sid, N, pi, qi) from the envi-

ronment, each party Pi for i ∈ [n] samples τi,j ← ZM ·2s+1 for j ∈ [2.5s]
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and commits to these values, along with its shares of p and q, by sending
(commit,GenSID(sid, i), (pi, qi, τi,∗)) to FComCompute(n).

Boneh-Franklin Test:

2. Each party Pi for i ∈ [n] sends (sample, sid) to FZero(n, 22κ+s) and
receives (zero-share, sid, ri) in response.

3. For j ∈ [2.5s], the parties invoke FCT(n, JN ), where JN is the subdomain
of Z∗

N that contains only values with Jacobi symbol 1. The parties define
vector γ that contains the 2.5s sampled values.

4. For every j ∈ [2.5s], party P1 computesa

χ1,j
..= γ

r1−(p1+q1−6)/4
j mod N

and every other party Pi for i ∈ [2, n] computes

χi,j
..= γ

ri−(pi+qi)/4
j mod N

5. Every Pi for i ∈ [n] sends (commit,GenSID(sid, i), χi,∗, [n]) to FCom(n).
6. After being notified that all other parties are committed, each party Pi

for i ∈ [n] sends (decommit,GenSID(sid, i)) to FCom(n), and in response
receives χi′,∗ from FCom(n) for i′ ∈ [n] \ {i}.

7. The parties output (not-biprime, sid) to the environment and halt if
there exists j ∈ [2.5s] such that

γ
(N−5)/4
j ·

∏

i∈[n]

χi,j 	≡ ±1 (mod N)

Consistency Check and GCD Test:

8. For j ∈ [2.5s], each party Pi for i ∈ [n] computes αi,j
..= γ

τi,j

j mod N .
The parties all broadcast the values they have computed to one another.

9. The parties all send (flip, sid) to FCT(n, {0, 1}2.5s) to obtain an agreed-
upon random bit vector c of length 2.5s.

10. For j ∈ [2.5s], party P1 computes ζ1,j
..= τ1,j −cj · (p1 + q1)/4, and every

other party Pi for i ∈ [2, n] computes ζi,j
..= τi,j − cj · (pi + qi − 6)/4.

They all broadcast the values they have computed to one another.
11. The parties halt and output (not-biprime, sid) if there exists any j ∈

[2.5s] such that
∏

i∈[n]

γ
ζi,j

j 	≡
∏

i∈[n]

αi,j · χ
cj

i,j (mod N)

12. Let C be a circuit computing VerifyBiprime(N,M, c, {·, ·, ·, ζi,∗}i∈[n]);
that is, let it be a circuit representation of Algorithm 5.3 with



Multiparty Generation of an RSA Modulus 89

the public values N , M , c, and ζ hardcoded. The parties send
(compute, sid, {GenSID(sid, i)}i∈[n], C) to FComCompute(n), and in response
they all receive (result, sid, z). If z = ⊥, or if FComCompute(n) aborts, then
the parties halt and output (not-biprime, sid).

13. The parties halt and output (biprime, sid) to the environment if
gcd(z,N) = 1, or halt and output (not-biprime, sid) otherwise.

aRecall that p1 ≡ q1 ≡ 3 (mod 4), and so subtracting 6 from their sum
ensures that division by 4 can be performed without computing a modular
multiplicative inverse in Z

∗
N . We compensate for this offset using another

offset in Step 7.

Below we present the algorithm VerifyBiprime that is used for the GCD test.
The inputs are the candidate biprime N , an integer M (the bound on the shares’
size), a bit-vector c of length 2.5s, and for each i ∈ [n] a tuple consisting of
the shares pi and qi with the Schnorr-like messages τi,∗ and ζi,∗ generated by
Pi. The algorithm verifies that all input values are compatible, and returns
z = r · (p + q − 1) mod N for a random r.

Algorithm 5.3. VerifyBiprime(N,M, c, {(pi, qi, τi,∗, ζi,∗)}i∈[n])
1. Sample r ← ZN and compute

z ..= r ·
(

− 1 +
∑

i∈[n]

(pi + qi)
)

mod N

2. Return z if and only if it holds that

N =
∑

i∈[n]

pi ·
∑

i∈[n]

qi

∧ 0 ≤ pi < M ∧ 0 ≤ qi < M for all i ∈ [n]
∧ τ1,j = ζ1,j + cj · (p1 + q1 − 6)/4 for all j ∈ [2.5s]
∧ τi,j = ζi,j + cj · (pi + qi)/4 for all i ∈ [2, n] and j ∈ [2.5s]

If any part of the above predicate does not hold, output ⊥.

Theorem 5.4. πBiprime UC-realizes FBiprime in the (FCom,FComCompute,FCT,
FZero)-hybrid model with statistical security against a static, malicious adver-
sary that corrupts up to n − 1 parties.

Proof Sketch. Our simulator S for FBiprime receives N as common input. Let
P∗ and P* be vectors indexing the corrupt and honest parties, respectively. To
simulate Steps 1 through 3 of πBiprime, S simply behaves as FCT, FZero, and
FComCompute would in its interactions with the corrupt parties on their behalf,
remembering the values received and transmitted. Before continuing, S submits
the corrupted parties’ shares of p and q to FBiprime on their behalf. In response,
FBiprime either informs S that N is a biprime, or leaks the honest parties’ shares.
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In Step 4, S again behaves exactly as FCom would. During the remainder of the
protocol, the simulator must follow one of two different strategies, conditioned
on whether or not N is a biprime. We will show that both strategies lead to a
simulation that is statistically indistinguishable from the real-world experiment.

– If FBiprime reported that N is a biprime, then we know by the specification
of FBiprime that the corrupt parties committed to correct shares of p and q in
Step 1 of πBiprime. Boneh and Franklin [4] showed that the value (i.e., sign) of
the right-hand side of the equality in Step 7 is predictable and related to the
value of γj . We refer to them for a precise description and proof. If without
loss of generality we take that value to be 1, then S can simulate iteration
j of Steps 6 and 7 as follows. First, S computes χ̂i,j for i ∈ P∗ to be the
corrupt parties’ ideal values of χi,j as defined in Step 4 of πBiprime. Then, S
samples χi,j ← Z

∗
N uniformly for i ∈ P* subject to

∏

i∈P*

χi,j ≡ γ
(5−N)/4
j∏

i∈P∗
χ̂i,j

(mod N)

and simulates Step 6 by releasing χi,j for i ∈ P* to the corrupt parties on
behalf of FCom. These values are statistically close to their counterparts in
the real protocol. Finally, S simulates Step 7 by running the test for itself
and sending the cheat command to FBiprime on failure.
Given the information now known to S, Steps 8 through 11 of πBiprime can be
simulated in a manner similar to the simulation of a common Schnorr protocol:
S simply chooses ζi,∗ ← Z

2.5s
M ·2s+1 uniformly for i ∈ P*, fixes c ← {0, 1}2.5s

ahead of time, and then works backwards via the equation in Step 11 to
compute the values of αi,∗ for i ∈ P* that it must send on behalf of the honest
parties in Step 8. These values are statistically close to their counterparts in
the real protocol.
S finally simulates the remaining steps of πBiprime by checking the VerifyBiprime
predicate itself (since the final GCD test is purely local, no action need be
taken by S). If at any point after Step 4 the corrupt parties have cheated
(i.e., sent an unexpected value or violated the VerifyBiprime predicate), then
S sends the cheat command to FBiprime. Otherwise, it sends the proceed
command to FBiprime, completing the simulation.

– If FBiprime reported that N is not a biprime (which may indicate that the
corrupt parties supplied incorrect shares of p or q), then it also leaked the
honest parties’ shares of p and q to S. Thus, S can simulate Steps 4 through 13
of πBiprime by running the honest parties’ code on their behalf. In all instances
of the ideal-world experiment, the honest parties report to the environment
that N is a non-biprime. Thus, we need only prove that there is no strategy
by which the corrupt parties can successfully convince the honest parties that
N is a biprime in the real world.
In order to get away with such a real-world cheat, the adversary must cheat
in every iteration j of Steps 4 through 6 for which

γ
(N−p−q)/4
j 	≡ ±1 (mod N)
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Specifically, in every such iteration j, the corrupt parties must contrive to
send values χi,j for i ∈ P∗ such that

γ
(N−5)/4
j ·

∏

i∈[n]

χi,j ≡ γ
(N−p−q)/4+Δ1,j

j ≡ ±1 (mod N)

for some nonzero offset value Δ1,j . We can define a similar offset Δ2,j for
the corrupt parties’ transmitted values of αi,j , relative to the values of τi,j

committed in Step 1:

γ
Δ2,j

j ·
∏

i∈[n]

αi,j ≡
∏

i∈[n]

γ
τi,j

j (mod N)

Since we have presupposed that the protocol outputs biprime, we know that
the corrupt parties must transmit correctly calculated values of ζi,∗ in Step 10
of πBiprime, or else Step 12 would output non-biprime when these values are
checked by the VerifyBiprime predicate. It follows from this fact and from the
equation in Step 11 that Δ2,j ≡ cj · Δ1,j (mod ϕ(N)), where ϕ(·) is Euler’s
totient function. However, both Δ1,∗ and Δ2,∗ are fixed before c is revealed
to the corrupt parties, and so the adversary can succeed in this cheat with
probability at most 1/2 for any individual iteration j.
Per Boneh and Franklin [4, Lemma 4.1], a particular iteration j of Steps 4
through 6 of πBiprime produces a false positive result with probability at most
1/2 if the adversary behaves honestly. If we assume that the adversary cheats
always and only when a false positive would not have been produced by honest
behavior, then the total probability of an adversary producing a positive
outcome in the jth iteration of Steps 4 through 6 is upper-bounded by 3/4.
The probability that an adversary succeeds over all 2.5s iterations is therefore
at most (3/4)2.5s < 2−s. Thus, the adversary has a negligible chance to force
the acceptance of a non-biprime in the real world, and the distribution of
outcomes produced by S is statistically indistinguishable from the real-world
distribution. 
�
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