Skip to main content

Trends in Atmospheric Deposition of Mercury

  • Chapter
  • First Online:

Abstract

In Chap. 2 of this volume Lange and Frederick evaluate changes in mercury (Hg) concentrations in Everglades biota to identify the occurrence of temporally coherent trends that ideally can be understood and related to changing process dynamics. To the extent such trends occur in the Everglades, processes that are potentially causative include atmospheric deposition of Hg, changing dynamics in key water quality variables such as sulfate and dissolved organic carbon, and changing hydrology. This overall process of trend identification and elucidation of underlying factors can in turn provide insight on possible strategies for mitigating the problem of excessive biota Hg concentrations in the Everglades. This chapter evaluates whether changes in atmospheric deposition of Hg to the Everglades have occurred in recent years using direct evidence from measured wet deposition and gaseous elemental mercury (GEM). The chapter also considers changes in mercury concentrations recorded in bottom sediments as a proxy for longer-term changes in atmospheric deposition. This latter analysis includes a review of changes observed in aquatic ecosystems from North America and Europe as well as south Florida and the Everglades, and whether recent changes in south Florida reflect large scale processes or reductions in local emissions of Hg.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that the period of record for wet deposition measurements began at the end of a sharp decline in local emissions which peaked in 1991 and had fallen by 65% by the end of 1993.

  2. 2.

    For example, the coefficient of variation equals 27.0% in weekly wet deposition Hg concentrations measured at the Beard Research Center between 1996 and 2016 compared to 52.6% for precipitation depth (both variables log-transformed to better approximate normality).

  3. 3.

    By definition, model residuals are calculated as the difference between the observed and modeled values. Thus, if a residual value is positive, the model has under-predicted the expected value, and apparent signal influencing the observation is higher than average signal applicable across the data set.

References

  • Atkeson TD, Pollman CD, Axelrad DR (2005) Chapter 26. Recent trends in mercury emissions, deposition, and biota in the Florida everglades: a monitoring and modeling analysis. In: Pirrone N, Mahaffey KR (eds) Dynamics of mercury pollution on regional and global scales: atmospheric processes and human exposures around the world. Springer, New York, pp 637–655

    Chapter  Google Scholar 

  • Beal SA, Jackson BP, Kelly MA, Stroup JS, Landis JD (2013) Effects of historical and modern mining on mercury deposition in southeastern Peru. Environ Sci Technol. https://doi.org/10.1021/es402317x

  • Beal SA, Kelly MA, Stroup JS, Jackson BP, Lowell TV, Tapia PM (2014) Natural and anthropogenic variations in atmospheric mercury deposition during the Holocene near Quelccaya Ice Cap, Peru. Glob Biogeochem Cycles 2014. https://doi.org/10.1002/2013GB004780

  • Benoit JM, Fitzgerald WF, Damman AWH (1998) The biogeochemistry of an ombrotrophic bog: evaluation of use as an archive of atmospheric mercury deposition. Environ Res 78:118–133

    Article  CAS  PubMed  Google Scholar 

  • Biester H, Kilian R, Franzen C, Woda C, Mangini A, Schöler HF (2001) Elevated mercury accumulation in a peat bog of the Magellanic Moorlands, Chile (53°S) - an anthropogenic signal from the Southern Hemisphere. Earth Planet Sci Lett 201:609–620

    Article  Google Scholar 

  • Biester H, Bindler R, Martinez-Cortizas A, Engstrom DR (2007) Modeling the past atmospheric deposition of mercury using natural archives. Environ Sci Technol 2007(41):4851–4860

    Article  CAS  Google Scholar 

  • Bindler R (2003) Estimating the natural background atmospheric deposition rate of mercury utilizing ombrotrophic bogs in southern Sweden. Environ Sci Technol 37:40–46

    Article  CAS  PubMed  Google Scholar 

  • Bindler R, Olofsson C, Renberg I, Frech W (2001a) Temporal trends in mercury accumulation in lake sediments in Sweden. Water Air Soil Pollut Focus 1:343–355

    Article  CAS  Google Scholar 

  • Bindler R, Renberg I, Appleby PG, Anderson NJ, Rose NL (2001b) Mercury accumulation rates and spatial patterns in lake sediments from West Greenland: a coast to ice margin transect. Environ Sci Technol 35:1736–1741

    Article  CAS  PubMed  Google Scholar 

  • Butler TJ, Cohen MD, Vermeylen FM, Likens GE, Schmeltz D, Artz RS (2008) Regional precipitation mercury trends in the eastern USA, 1998–2005: declines in the Northeast and Midwest, no trend in the Southeast. Atmos Environ 42:1582–1592

    Article  CAS  Google Scholar 

  • Chellman N, McConnell JR, Arienzo M, Pederson GT, Aarons SM, Csank A (2017) Reassessment of the Upper Fremont Glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology. Environ Sci Technol 51(8):4230–4238

    Article  CAS  PubMed  Google Scholar 

  • Cohen MJ, Lamsal S, Osborne TZ, Bonzongo JCJ, Newman S, Reddy KR (2009) Soil total mercury concentrations across the Greater Everglades. Soil Sci Soc Am J 73:675–685

    Article  CAS  Google Scholar 

  • Cooke CA, Balcom PH, Biester H, Wolfe AP (2009) Over three millennia of mercury pollution in the Peruvian Andes. Proc Natl Acad Sci 106(22):8830–8834

    Article  CAS  PubMed  Google Scholar 

  • Cooke CA, Hintelmann H, Ague JJ, Burger R, Biester H, Sachs JP, Engstrom DR (2013) Use and legacy of mercury in the Andes. Environ Sci Technol 47:4181–4188

    Article  CAS  PubMed  Google Scholar 

  • Delfino JJ, Crisman TL, Gottgens JF, Rood BE, Earle CDA (1993) Spatial and temporal distribution of mercury in Everglades and Okefenokee wetland sediments. Department of Environmental Engineering Sciences, University of Florida, Gainesville

    Google Scholar 

  • Drevnick PE, Engstrom DR, Driscoll CT, Swain EB, Balogh SJ, Kamman NC, Long DT, Mui DGC, Parsons MJ, Rolfhus KR, Rossmann R (2012a) Spatial and temporal patterns of mercury accumulation in lacustrine sediments across the Laurentian Great Lakes region. Environ Pollut 161:252–260

    Article  CAS  PubMed  Google Scholar 

  • Drevnick PE, Yang H, Lamborg CH, Rose NL (2012b) Net atmospheric mercury deposition to Svalbard: estimates from lacustrine sediments. Atmos Environ 59:509–513

    Article  CAS  Google Scholar 

  • Drevnick PE, Cooke CA, Barraza D, Blais JM, Coale KH, Cumming BF, Curtis CJ, Das B, Donahue WF, Eagles-Smith CA, Engstrom DR, Fitzgerald WF, Furl CV, Gray JE, Hall RI, Jackson TA, Laird KR, Lockhart WL, Macdonald RW, Mast MA, Mathieum C, Muir DCG, Outridge PM, Reinemann SA, Rothenberg SE, Ruiz-Fernández AC, Louis VLS, Sanders RD, Sanei H, Skierszkane EK, Van Metre PC, Veverica TJ, Wiklund JA, Wolfe BB (2016) Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. Sci Tot Environ 568:1157–1170

    Article  CAS  Google Scholar 

  • Duan N (1983) Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc 78(383):605–610

    Article  Google Scholar 

  • Dvonch JT, Graney JR, Keeler GI, Stevens RK (1999) Use of elemental tracers to source apportion mercury in South Florida precipitation. Environ Sci Technol 33:4522–4527

    Article  CAS  Google Scholar 

  • Engstrom DR, Swain EB (1997) Recent declines in atmospheric mercury deposition in the upper Midwest. Environ Sci Technol 312:960–967

    Article  Google Scholar 

  • Engstrom DR, Pollman CD, Fitzgerald WF, Balcom PH (2003) Evaluation of recent trends in atmospheric mercury deposition in South Florida from lake sediment records. Final Research Report Florida Department of Environmental Protection, Tallahassee, FL

    Google Scholar 

  • Engstrom DR, Swain EB, Balogh SJ (2007) History of mercury inputs to Minnesota lakes: influences of watershed disturbance and localized atmospheric deposition. Limnol Oceanogr 52:2467–2483

    Article  CAS  Google Scholar 

  • Engstrom DR, Fitzgerald WF, Cooke CA, Lamborg CH, Drevnick PE, Swain EB, Balogh SJ, Balcom PH (2014) Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: a reevaluation from lake-sediment archives. Environ Sci Technol 48:6533–6543

    Google Scholar 

  • Enrico M, Le Roux G, Heimbürger L-E, Van Beek P, Souhaut M, Chmeleff J, Sonke J (2017) Holocene atmospheric mercury levels reconstructed from peat bog mercury stable isotopes. Environ Sci Technol. https://doi.org/10.1021/acs.est.6b05804

  • Fitzgerald WF, Engstrom DR, Lamborg CH, Tseng C-M, Balcom PH (2005) Modern and historic atmospheric mercury fluxes in northern Alaska: global sources and Arctic depletion. Environ Sci Technol 39:557–568

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald WF, Engstrom DR, Hammerschmidt CR, Lamborg CH, Balcom PH, Lima-Braun AL, Bothner MH, Reddy CM (2018) Global and local sources of mercury deposition in coastal New England reconstructed from a multiproxy, high resolution, estuarine sediment record. Environ Sci Technol 52:7614–7620

    Article  CAS  PubMed  Google Scholar 

  • Florida Department of Environmental Protection (FDEP) (2013). http://www.dep.state.fl.us/water/tmdl/docs/tmdls/mercury/Mercury-TMDL.pdf

  • Frederick PC, Spalding MG, Sepulveda MS, Williams GE Jr, Nico L, Robbins R (1999) Exposure of Great Egret nestlings to mercury through diet in the Everglades of Florida. Environ Toxicol Chem 18:1940–1947

    Article  CAS  Google Scholar 

  • Frederick PC, Hylton BA, Heath JA, Spalding MG (2004) A historical record of mercury contamination in southern Florida as inferred from avian feather tissue. Environ Toxicol Chem 23:1474–1478

    Article  CAS  PubMed  Google Scholar 

  • Gill GA, Guentzel JL, Landing WM, Pollman CD (1995) Total gaseous mercury measurements in Florida: the FAMS project (1992–1994). Water Air Soil Pollut 80:235–244

    Article  CAS  Google Scholar 

  • Givelet N, Roos-Barraclough F, Shotyk W (2003) Predominant anthropogenic sources and rates of atmospheric mercury accumulation in southern Ontario recorded by peat cores from three bogs: comparison with natural “background” values (past 8000 years). J Environ Monit 5:935–949

    Article  CAS  PubMed  Google Scholar 

  • Guentzel JL, Landing WM, Gill GA, Pollman CD (2001) Processes influencing rainfall deposition of mercury in Florida: the FAMS Project (1992–1996). Environ Sci Technol 35:863–873

    Article  CAS  PubMed  Google Scholar 

  • Hamilton LC (2013) Statistics with Stata: updated for Version 12, 8th edn. Brooks/Cole, Boston, 473 pp

    Google Scholar 

  • Hermanns Y-M, Biester H (2013) Anthropogenic mercury signals in lake sediments from southernmost Patagonia, Chile. Sci Tot Environ 445–446:126–135

    Article  CAS  Google Scholar 

  • Jensen A, Jensen A (1991) Historical deposition rates of mercury in Scandinavia estimated by dating and measurement of mercury in cores of peat bogs. Water Air Soil Pollut 56:769–777

    Article  CAS  Google Scholar 

  • Johansson K (1985) Mercury in sediment in Swedish forest lakes. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 22:2359–2363

    CAS  Google Scholar 

  • Johnson MG (1987) Trace element loadings to sediments of fourteen Ontario lakes and correlations with concentrations in fish. Can J Fish Aquat Sci 44:3–13

    Article  CAS  Google Scholar 

  • Johnson MG, Culp LR, George SE (1986) Temporal and spatial trends in metal loadings to sediments of the Turkey Lakes, Ontario. Can J Fish Aquat Sci 43:754–762

    Article  CAS  Google Scholar 

  • Kamman NC, Engstrom DR (2002) Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 210Pb dated sediment cores. Atmos Environ 36:1599–1609

    Article  CAS  Google Scholar 

  • Kamman NC, Chalmers A, Clair TA, Major A, Moore RB, Norton SA, Shanley JB (2005) Factors influencing mercury in freshwater surface sediments of northeastern North America. Ecotoxicology 14:101–111

    Article  CAS  PubMed  Google Scholar 

  • Kang W-J (1999) Inputs of sediment and mercury to the lower Everglades and Florida Bay: a temporal and spatial perspective. M.S. thesis, Division of Marine & Environmental Systems, Florida Institute of Technology, Melbourne, FL

    Google Scholar 

  • Kang W-J, Trefry JH, Nielsen TA, Wanless HR (2000) Direct atmospheric inputs versus runoff fluxes of mercury to the lower Everglades and Florida Bay. Environ Sci Technol 34:4058–4063

    Article  CAS  Google Scholar 

  • Kang S, Huang J, Wang F, Zhang Q, Zhang Y, Li C, Wang L, Chen P, Sharma C, Li Q, Sillanpää M, Hou J, Xu B, Guo J (2016) Atmospheric mercury depositional chronology reconstructed from lake sediment and ice cores in the Himalayas and Tibetan Plateau. Environ Sci Technol 50:2859–2869

    Article  CAS  PubMed  Google Scholar 

  • Keeler GJ, Gratz LE, Al-Wali K (2005) Long-term atmospheric mercury wet deposition at Underhill, VT. Ecotoxicology 14:71–83

    Article  CAS  PubMed  Google Scholar 

  • Lamborg CH, Fitzgerald WF, Damman AWH, Benoit JM, Balcom PH, Engstrom DR (2002) Modern and historic atmospheric mercury fluxes in both hemispheres: global and regional mercury cycling implications. Glob Biogeochem Cycles 16:1104. https://doi.org/10.1029/2001GB1847

    Article  Google Scholar 

  • Lamborg CH, Engstrom DR, Fitzgerald WF, Balcom PH (2013) Apportioning global and non-global components of mercury deposition through 210Pb indexing. Sci Tot Environ 448:132–140

    Article  CAS  Google Scholar 

  • Landers DH, Ford J, Gubala C, Monetti M, Lasorsa BK, Martinson J (1995) Mercury in vegetation and lake-sediments from the U.S. Arctic. Water Air Soil Pollut 80:591–601

    Article  CAS  Google Scholar 

  • Landers DH, Gubala C, Verta M, Lucotte M, Johansson K, Vlasova T, Lockhart WL (1998) Using lake sediment mercury flux ratios to evaluate the regional and continental dimensions of mercury deposition in arctic and boreal ecosystems. Atmos Environ 32:919–928

    Article  CAS  Google Scholar 

  • Landis MS, Vette AF, Keeler GJ (2002) Atmospheric mercury in the Lake Michigan Basin: influence of the Chicago/Gary urban area. Environ Sci Technol 36:4508–4517

    Article  CAS  PubMed  Google Scholar 

  • Lockhart WL, Wilkinson P, Billeck BN, Hunt RV, Wagemann R, Brunskill GJ (1995) Current and historical inputs of mercury to high-latitude lakes in Canada and to Hudson Bay. Water Air Soil Pollut 80:603–610

    Article  CAS  Google Scholar 

  • Lockhart WL, Wilkinson P, Billeck BN, Dannel RA, Hunt RV, Brunskill GJ, Delaronde J, St. Louis V (1998) Fluxes of mercury to lake sediments in central and northern Canada inferred from dated sediment cores. Biogeochemistry 40:163–173

    Article  CAS  Google Scholar 

  • Lorey PM (2001) The determination of ultra trace levels of mercury in environmental samples in the Northeastern U.S.: inferring the past, present, and future of atmospheric mercury deposition. Ph.D. Syracuse University, Syracuse, NY

    Google Scholar 

  • Lorey P, Driscoll CT (1999) Historical trends of mercury deposition in Adirondack lakes. Environ Sci Technol. https://doi.org/10.1021/es9800277

  • Lucotte M, Mucci A, Hillaire-Marcel C, Pichet P, Grondin A (1995) Anthropogenic mercury enrichment in remote lakes of northern Québec (Canada). Water Air Soil Pollut 80:467–476

    Article  CAS  Google Scholar 

  • Martinez-Cortizas A, Pontevedra-Pombal X, Garcia-Rodeja E, Novoa-Munoz JC, Shotyk W (1999) Mercury in a Spanish Peat Bog: archive of climate change and atmospheric metal deposition. Science 284:939942

    Google Scholar 

  • Mason RP, Sheu GR (2000) Annual and seasonal trends in mercury deposition in Maryland. Atmos Environ 34:1691–1701

    Article  CAS  Google Scholar 

  • Meili M (1995) Preindustrial atmospheric deposition of mercury - uncertain rates from lake sediment and peat cores. Water Air Soil Pollut 80:637–640

    Article  CAS  Google Scholar 

  • Mitchell MN (2012) Interpreting and visualizing regression models using Stata. Stata Press, Plano, TX, 558 pp

    Google Scholar 

  • Muir DCG, Wang X, Yang F, Nguyen N, Jackson TA, Evans MS, Douglas M, Kock G, Lamoureux S, Pienitz R (2009) Spatial trends and historical deposition of mercury in eastern and northern Canada inferred from lake sediment cores. Environ Sci Technol 43(13):4802–4809

    Article  CAS  PubMed  Google Scholar 

  • Munthe J, Hultberg H, Lee Y-H, Parkman H, Iverfeldt Å, Renberg I (1995) Trends of mercury and methylmercury in deposition, run-off water and sediments in relation to experimental manipulations and acidification. Water Air Soil Pollut 85(2):743–748

    Article  CAS  Google Scholar 

  • Nater EA, Grigal DF (1992) Regional trends in mercury distribution across the Great Lakes states, north central USA. Nature 358:139–140

    Article  CAS  Google Scholar 

  • Newman MC (1993) Regression analysis of log-transformed data: statistical bias and its correction. Environ Toxicol Chem 12:1129–1133

    Article  CAS  Google Scholar 

  • Norton SA, Evans GC, Kahl JS (1997) Comparison of Hg and Pb fluxes to hummocks and Hollows of ombrotrophic Big Heath Bog and to nearby Sargent Mt. Pond, Maine, USA. Water Air Soil Pollut 100:271–286

    Article  CAS  Google Scholar 

  • Perry E, Norton SA, Kamman NC, Lorey PM, Driscoll CT (2005) Deconstruction of historic mercury accumulation in lake sediments, northeastern United States. Ecotoxicology 14:85–99

    Article  CAS  PubMed  Google Scholar 

  • Phillips VJA, St. Louis V, Cooke CA, Vinebrooke RD, Hobbs WO (2011) Increased mercury loading to western Canadian alpine lakes over the past 150 years. Environ Sci Technol 45:2042–2047

    Article  CAS  PubMed  Google Scholar 

  • Polgreen LA, Brooks JM (2012) Estimating incremental costs with skew: a cautionary note. Appl Health Econ Policy 10(5):319–329

    Article  Google Scholar 

  • Pollman CD, Porcella DB (2003) Assessment of trends in mercury-related data sets. J Phys IV France 107:1083–1090

    Article  CAS  Google Scholar 

  • Prestbo EM, Gay DA (2009) Wet deposition of mercury in the US and Canada, 1996–2005: results and analysis of the NADP mercury deposition network (MDN). Atmos Environ 43:4223–4233

    Article  CAS  Google Scholar 

  • Rada RG, Powell DE, Wiener JG (1993) Whole-lake burdens and spatial distribution of mercury in surficial sediments in Wisconsin seepage lakes. Can J Fish Aquat Sci 50:865–873

    Article  CAS  Google Scholar 

  • Renberg I (1986) Concentration and annual accumulation of heavy metals in lake sediments: their significance in studies of the history of heavy metal pollution. Hydrobiologia 143:379–385

    Article  CAS  Google Scholar 

  • Risch MR, Gay DA, Fowler KK, Keeler GJ, Backus SM, Blanchard P, Barres JA, Dvonch TJ (2012) Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008. Environ Pollut 161:261–271

    Article  CAS  PubMed  Google Scholar 

  • Robbins JA, Holmes C, Halley R, Bothner M, Shinn E, Graney J, Keeler G, tenBrink M, Oralandini KA, Rudnick D (2000) Time averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay. J Geophys Res 105(C12):28,805–28.821

    Article  CAS  Google Scholar 

  • Roelke M, Glass CM (1992) Florida panther biomedical evaluation. Florida Game and Fresh Water Fish Commission, Tallahasee, FL

    Google Scholar 

  • Rood BE, Gottgens JF, Delfino JJ, Earle CD, Crisman TL (1995) Mercury accumulation trends in Florida Everglades and Savannas Marsh flooded soils. Water Air Soil Pollut 80:981–990

    Article  CAS  Google Scholar 

  • Roos-Barraclough F, Shotyk W (2003) Millennial-scale records of atmospheric mercury deposition obtained from ombrotrophic and minerotrophic peatlands in the Swiss Jura Mountains. Environ Sci Technol 37:235–244

    Article  CAS  PubMed  Google Scholar 

  • Sacks LA, Swancar A, Lee TM (1998) Estimating groundwater exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida. U.S. Geological Survey Water-Resources Investigations Report 98-4133

    Google Scholar 

  • Scheidt DJ, Kalla PI (2007) Evergladees ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat: monitoring for adaptive management: a R-EMAP status report. USEPA Region 4, Athens, GA. EPA 904-R-07-001. 98 pp. http://www.epa.gov/region4/sesd/reports/epa904r07001/epa904r07001.pdf

  • Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF, Susong DD, Green JR, Abbott ML (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ Sci Technol 36:2303–2310

    Article  CAS  PubMed  Google Scholar 

  • StataCorp (2019) Stata statistical software: Release 16. StataCorp LLC, College Station, TX

    Google Scholar 

  • Steinnes E, Andersson EM (1991) Atmospheric deposition of mercury in Norway: temporal and spatial trends. Water Air Soil Pollut 56:391–404

    Article  CAS  Google Scholar 

  • Stevens DL Jr (1997) Variable density grid-based sampling designs for continuous spatial populations. Environmetrics 8:167–195

    Article  Google Scholar 

  • Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL (1992) Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257:784–787

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2019). https://www.epa.gov/everglades/everglades-ecosystem-assessment-water-management-and-quality-eutrophication-mercury

  • Verta M, Tolonen K, Simola H (1989) History of heavy metal pollution in Finland as recorded by lake sediments. Sci Total Environ 87/88:1–18

    Article  Google Scholar 

  • Weiss-Penzias P, Gay DA, Brigham ME, Parsons MT, Gustin MS, ter Schure A (2016) Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Sci Total Environ 568:546–556

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Battarbee RW, Turner SD, Rose NL, Derwent RG, Wu G, Yang R (2010a) Historical reconstruction of mercury pollution across the Tibetan Plateau using lake sediments. Environ Sci Technol 44(8):2918–2924

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Engstrom DR, Rose NL (2010b) Recent changes in atmospheric mercury deposition recorded in the sediments of remote equatorial lakes in the Rwenzori Mountains, Uganda. Environ Sci Technol 44:6570–6575

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, Louis VLS, Sunderland EM (2016) Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc Natl Acad Sci 113(3):526–531

    Article  CAS  PubMed  Google Scholar 

  • Zheng J (2015) Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic. Sci Total Environ 509–510:133–144

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis D. Pollman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pollman, C.D., Engstrom, D.R. (2020). Trends in Atmospheric Deposition of Mercury. In: Pollman, C.D., Axelrad, D.M., Rumbold, D.G. (eds) Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-55635-8_1

Download citation

Publish with us

Policies and ethics