Skip to main content

Amino Acids in Beef Cattle Nutrition and Production

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1285))

Abstract

Proteins have been recognized for a long time as an important dietary nutritional component for all animals. Most amino acids were isolated and characterized in the late nineteenth and early twentieth century. Initially dietary proteins were ranked high to low quality by growth and N balance studies. By the 1950s interest had shifted to studying the roles of individual amino acids in amino acid requirements by feeding studies with non-ruminants as rodents, poultry and pigs. The direct protein feeding approaches followed by measurements of nutritional outcomes were not possible however in ruminants (cattle and sheep). The development of measuring free amino acids by ion exchange chromatography enabled plasma amino acid analysis. It was thought that plasma amino acid profiles were useful in nutritional studies on proteins and amino acids. With non-ruminants, nutritional interpretations of plasma amino acid studies were possible. Unfortunately with beef cattle, protein/amino acid nutritional adequacy or requirements could not be routinely determined with plasma amino acid studies. In dairy cows, however, much valuable understanding was gained from amino acid studies. Concurrently, others studied amino acid transport in ruminant small intestines, the role of peptides in ruminant N metabolism, amino acid catabolism (in the animal) with emphasis on branched-chain amino acid catabolism. In addition, workable methodologies for studying protein turnover in ruminants were developed. By the 1990s, nutritionists could still not determine amino acid requirements with empirical experimental studies in beef cattle. Instead, computer software (expert systems) based on the accumulated knowledge in animal and ruminal amino acids, energy metabolism and protein production were realized and revised frequently. With these tools, the amino acid requirements, daily energy needs, ruminal and total gastrointestinal tract digestion and performance of growing beef cattle could be predicted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BCAA:

branched-chain amino acids

BCKDH:

branched-chain α-ketoacid dehydrogenases

CNCPS:

Cornell Net Carbohydrate and Protein System

IAA:

indispensable amino acids

MP:

metabolizable protein

NRC:

national research council

PAA:

plasma free amino acid profiles

RDP:

rumen degradable protein

RUP:

rumen undegradable protein

SCFA:

short-chain fatty acids

References

  • Ahmed BM, Bergen WG, Ames NK (1983) Effect of nutritional state and insulin on hind-limb amino acid metabolism in steers. J Nutr 113:1529–1543

    Article  CAS  PubMed  Google Scholar 

  • Allison JB (1955) Biological evaluation of proteins. Physiol Rev 35:664–700

    Article  CAS  PubMed  Google Scholar 

  • Allison JB (1961) The ideal aminogram. Fed Proc 20(Suppl 7):66–72

    CAS  PubMed  Google Scholar 

  • Almquist HJ (1954) Utilization of amino acids by chicks. Arch Biochem Biophys 2:197–202

    Article  Google Scholar 

  • Anderson PT, Hawkins DR, Bergen WG, Merkel RA (1988) A note on dry matter intake, composition of gain and other measures of Simmental bulls and steers fed to the same weight or age. Anim Prod 47:493–496

    Google Scholar 

  • Annison EF, Lindsay DB (1962) The measurement of entry rates of propionate and of butyrate in sheep. Biochem J 85:474–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anslie SJ, Fox DG, Perry TC, Ketchen DJ, Berry MC (1993) Predicting amino acid adequacy in diets fed to Holstein steers. J Anim Sci 71:1312–1319

    Article  Google Scholar 

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    Article  CAS  PubMed  Google Scholar 

  • Baker DH, Becker DE, Norton HW, Jensen AH, Harmon BG (1966) Quantitative evaluation of the tryptophan, methionine and lysine needs of adult swine for maintenance. J Nutr 89:441–447

    Article  CAS  PubMed  Google Scholar 

  • Ball RO, Bayley HS (1986) Influence of dietary protein concentration on the oxidation of phenylalanine by the young pig. Br J Nutr 55:651–658

    Article  CAS  PubMed  Google Scholar 

  • Barnard EA (1969) Biological function of pancreatic nuclease. Nature 221:340–344

    Article  CAS  PubMed  Google Scholar 

  • Batista ED, Detmann E, Titgemeyer EC, Valadares Filho SC, Valadares RF, Prates LL, Rennó LN, Paulino MF (2016) Effects of varying ruminally undegradable protein supplementation on forage digestion, nitrogen metabolism, and urea kinetics in Nellore cattle fed low-quality tropical forage. J Anim Sci 94:201–216

    Article  CAS  PubMed  Google Scholar 

  • Beecher GR (1974) Some practical applications of protein synthesis to muscle growth. J Anim Sci 38:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Bender DA (2012) Amino acid metabolism. Wiley, New York, pp 2–65

    Book  Google Scholar 

  • Bergen WG (1974) Protein synthesis in animal models. J Anim Sci 38:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Bergen WG (1978) Postruminal digestion and absorption of nitrogenous components. Fed Proc 37:1223–1227

    CAS  PubMed  Google Scholar 

  • Bergen WG (1982) Ruminal microbial protein synthesis and efficiency. In: Protein Requirements for Cattle. FN Owens (edr), MP109 division of agriculture, Oklahoma State University: Oklahoma. pp 99–112

    Google Scholar 

  • Bergen WG (1986) Amino acid requirements of growing ruminants examined. Feedstuffs 58:18

    Google Scholar 

  • Bergen WG (2007) Contribution of research with farm animals to protein metabolism concepts: a historical perspective. J Nutr 137:706–710

    Article  CAS  PubMed  Google Scholar 

  • Bergen WG (2008) Measuring in vivo intracellular protein degradation rates in animal systems. J Anim Sci 86(Suppl 14):E3–E12

    Article  CAS  PubMed  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  CAS  PubMed  Google Scholar 

  • Bergen WG, Mulvaney DR, Skjaerlund DM, Johnson SE, Merkel RA (1987) In vivo and in vitro measurements of protein turnover. J Anim Sci 65(Suppl 2):88–106

    Article  Google Scholar 

  • Bergen WG, Busboom J, Merkel RA (1988) Leucine degradation in sheep. Br J Nutr 59:323–333

    Article  CAS  PubMed  Google Scholar 

  • Bergman EN, Heitmann RN (1978) Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues. Fed Proc 37:1228–1232

    CAS  PubMed  Google Scholar 

  • Bickerstaffe R, Annison EF, Linzell JL (1974) The metabolism of glucose, acetate, lipids and amino acids in lactating dairy cows. J Agric Sci 82:71–85

    Article  Google Scholar 

  • Bruins MJ, Soeters PB, Lamers WH, Deutz NEP (2002a) L-arginine supplementation in pigs decreases liver protein turnover and increases hindquarter protein turnover both during and after endotoxemia. Am J Clin Nutr 75:1031–1044

    Article  CAS  PubMed  Google Scholar 

  • Bruins, MJ, Soeters, PB, Deutz, NE (2002b) Endotoxemia affects organ protein metabolism differently during prolonged feeding in pigs. J Nutr 130:3003–3013

    Article  Google Scholar 

  • Burroughs W, Trenkle AH, Vetter RL (1971) Some new concepts of protein nutrition of feedlot cattle. (Metabolizable protein or metabolizable amino acids). Vet Med Small Anim Clin 66:238–244

    CAS  PubMed  Google Scholar 

  • Christensen HN (1962) Intestinal absorption with special reference to amino acids. Fed Proc 21:37–42

    CAS  Google Scholar 

  • Clark JH, Spires HR, Davis CL (1978) Uptake and metabolism of nitrogenous components by the lactating mammary gland. Fed Proc 37:1233–1238

    CAS  PubMed  Google Scholar 

  • Coward BJ, Buttery PJ (1979) Catabolism of branched chain amino acids by ruminant muscle. Proc Nutr Soc 38:139A

    Article  CAS  PubMed  Google Scholar 

  • Crowell PL, Block KP, Repa JJ, Torres N, Nawabi MD, Buse MG, Harper AE (1990) High branched-chain α-keto acid intake, branched-chain alpha-keto acid dehydrogenase activity, and plasma and brain amino acid and plasma α-ketoacid concentrations in rats. Am J Clin Nutr 52:313–319

    Article  CAS  PubMed  Google Scholar 

  • Dozier WA 3rd, Corzo A, Kidd MT, Tillman PB, Branton SL (2011) Determination of the fourth and fifth limiting amino acids in broilers fed on diets containing maize, soybean meal and poultry by-product meal from 28 to 42 d of age. Br Poult Sci 52:238–244

    Article  CAS  PubMed  Google Scholar 

  • Elango R, Ball RO, Pencharz PB (2008) Indicator amino acid oxidation: concept and application. J Nutr 138:243–246

    Article  CAS  PubMed  Google Scholar 

  • Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955

    Article  CAS  PubMed  Google Scholar 

  • Fenderson CL, Bergen WG (1975) An assessment of essential amino acid requirements of growing steers. J Anim Sci 41:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Fern EB, Garlick PJ (1973) The specific radioactivity of the precursor pool for estimates of the rate of protein synthesis. Biochem J 134:1127–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firkins JL, Yu Z (2015) How to use data on the rumen microbiome to improve our understanding of ruminant nutrition. J Anim Sci 93:1450–1470

    Article  CAS  PubMed  Google Scholar 

  • Florini JR (1962) Incorporation of labeled amino acids into interior sites of protein by a cell-free system from rat skeletal muscle. Biochim Bipohys Res Commun 8:125–130

    Article  CAS  Google Scholar 

  • Foote AP, Keel BN, Zarek CM, Lindholm-Perry AK (2017) Beef steers with average dry matter intake and divergent average daily gain have altered gene expression in the jejunum. J Anim Sci 95:4430–4439

    Article  CAS  PubMed  Google Scholar 

  • Fox DG, Sniffen CJ, O’Connor JD, Russell JB, Van Soest PJ (1992) A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy. J Anim Sci 70:3578–3596

    Article  CAS  PubMed  Google Scholar 

  • Garlick PJ, Millward DJ (1972) An appraisal of techniques for the determination of protein turnover in vivo. Proc Nutr Soc 31:249–355

    Article  CAS  PubMed  Google Scholar 

  • Garlick PJ, Wernerman J, McNurlan MA, Essen P, Lobley GE, Milne E, Calder GA, Vinnars E (1989) Measurement of the rate of protein synthesis in muscle of postabsorptive young men by injection of a ‘flooding dose’ of [1-13C] leucine. Clin Sci (Lond) 77:329–336

    Article  CAS  Google Scholar 

  • Gilbert ER, Wong EA, Webb KEJ (2008) Peptide absorption and utilization: implications for animal nutrition and health. J Anim Sci 86:2135–2155

    Article  CAS  PubMed  Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2020) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61

    Google Scholar 

  • Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4:409–454

    Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Google Scholar 

  • Huber JT, Emery RS, Bergen WG, Liesman JS, Kung LJ, King KJ, Gardner RW, Checketts M (1984) Influences of methionine hydroxy analog on milk and milk fat production, blood serum lipids, and plasma amino acids. J Dairy Sci 67:2525–2531

    Article  CAS  PubMed  Google Scholar 

  • Hume ID, Jacobson CR, Mitchel GE Jr (1972) Quantitative studies on amino absorption in sheep. J Nutr 102:495–505

    Article  CAS  PubMed  Google Scholar 

  • Huntington GB, Reynolds PJ (1986) Net absorption of glucose, L-lactate, volatile fatty acids, and nitrogenous compounds by bovine given abomasal infusions of starch or glucose. J Dairy Sci 69:2428–2436

    Article  CAS  PubMed  Google Scholar 

  • Johns JT, Bergen WG (1973) Studies on amino acid uptake by ovine small intestine. J Nutr 104:1581–1586

    Article  Google Scholar 

  • Kim KI, Elliott JI, Bayley HS (1983a) Oxidation of an indicator amino acid by young pigs receiving diets with varying levels of lysine or threonine, and an assessment of amino acid requirements. Br J Nutr 50:391–399

    Article  CAS  PubMed  Google Scholar 

  • Kim KI, McMillan I, Bayley HS (1983b) Determination of amino acid requirements of young pigs using an indicator amino acid. Br J Nutr 50:369–382

    Article  CAS  PubMed  Google Scholar 

  • King KJ, Bergen WG, Sniffen CJ, Grant AL, Grieve DB, King VL, Ames NK (1981) An assessment of absorbable lysine requirements in lactating cows. J Dairy Sci 74:2530–2539

    Article  Google Scholar 

  • King KJ, Huber JT, Sadik M, Bergen WG, Grant AL, King VL (1990) Influence of dietary protein sources on the amino acid profiles available for digestion and metabolism in lactating cows. J Dairy Sci 73:3208–3216

    Article  CAS  PubMed  Google Scholar 

  • Klain GJ, Greene DE, Scott HM, Johnson BC (1960) The protein requirement of the growing chick determined with amino acid mixtures. J Nutr 71:209–212

    Article  CAS  PubMed  Google Scholar 

  • Kung LJ, Huber JT, Bergen WG, Petitclerc D (1984) Amino acids in plasma and duodenal digesta and plasma growth hormone in cows fed varying amounts of protein of differing degradability. J Dairy Sci 67:2519–2524

    Article  CAS  PubMed  Google Scholar 

  • Kurpad AV, El-Khoury AE, Beaumier L, Srivatsa A, Kuriyan R, Raj T, Borgonha S, Ajami AM, Young VR (1998) An initial assessment, using 24-h [13C]leucine kinetics, of the lysine requirement of healthy adult Indian subjects. Am J Clin Nutr 67:58–66

    Article  CAS  PubMed  Google Scholar 

  • Lapierre H, Pacheco D, Berthiaume R, Ouellet DR, Schwab CG, Dubreuil P, Holtrop G, Lobley GE (2006) What is the true supply of amino acids for a dairy cow? J Dairy Sci 89(Suppl 1):E1–E14

    Article  PubMed  Google Scholar 

  • Leng RA, Steel JW, Luick JR (1967) Contribution of propionate to glucose synthesis. Biochem J 103:785–790

    Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Google Scholar 

  • Liao SF, Vanzant ES, Boling JA, Matthews JC (2008) Identification and expression pattern of cationic amino acid transporter-1 mRNA in small intestinal epithelia of Angus steers at four production stages. J Anim Sci 86:620–631

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Lu G, Sun H, She P, Youn JY, Warburton S, Ping P, Vondriska TM, Cai H, Lynch CJ, Wang Y (2009) Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. J Clin Invest 119:1678–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G (2017) L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 49:957–964

    Article  CAS  PubMed  Google Scholar 

  • McCann JC, Wickersham TA, Loor JJ (2014) High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinf Biol Insights 8:109–125

    Article  CAS  Google Scholar 

  • McCarthy FD, Bergen WG, Hawkins DR (1983) Muscle protein turnover in cattle of differing genetic backgrounds as measured by urinary N tau-methylhistidine excretion. J Nutr 113:2455–2463

    Article  CAS  PubMed  Google Scholar 

  • McLaughlan JM (1974) Nutritional significance of alterations in plasma amino acids and serum proteins. In: Committee on amino acids, food and nutrition. National Academy of Sciences, Washington, DC, pp 89–108

    Google Scholar 

  • McNeil CJ, Hoskin SO, Bremner DM, Holtrop G, Lobley GE (2016) Whole-body and splanchnic amino acid metabolism in sheep during an acute endotoxin challenge. Br J Nutr 116:211–222

    Article  CAS  PubMed  Google Scholar 

  • McNurlan MA, Tomkins AM, Garlick PJ (1979) The effect of starvation on rate of protein synthesis in the rat. Biochem J 178:373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millward DJ (2004) Vernon Young and the development of current knowledge in protein and amino acid nutrition. Br J Nutr 92:189–197

    Article  CAS  PubMed  Google Scholar 

  • Moore S, Stein WH (1954) Procedures for the chromatographic determination of amino acids on four per cent cross-linked sulfonated polystyrene resins. J Biol Chem 211:893–906

    Article  CAS  PubMed  Google Scholar 

  • Munk BG (1976) Amino acid transport. In: Cole DJA, Boorman KN, Buttery PJ, Lewis D, Neale RJ, Swan H (eds) Protein metabolism and nutrition. Butterworth, London, pp 73–95

    Google Scholar 

  • NRC (National Research Council) (2016) Nutritive requirements of beef cattle, 8th revision. National Academy of Science, Washington, DC

    Google Scholar 

  • O’Connor JD, Sniffen CJ, Fox DG, Chalupa W (1993) A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. J Anim Sci 71:1298–1311

    Article  PubMed  Google Scholar 

  • Owens FN, Bergen WG (1983) Nitrogen metabolism of ruminant animals: historical perspective, current understanding and future implications. J Anim Sci 57(Suppl 2):498–518

    CAS  PubMed  Google Scholar 

  • Packett LV, Groves TD (1965) Urea recycling in the ovine. J Anim Sci 24:341–346

    Article  CAS  PubMed  Google Scholar 

  • Pencharz PB, Ball RO (2003) Different approaches to define individual amino acid requirements. Annu Rev Nutr 23:101–116

    Article  CAS  PubMed  Google Scholar 

  • Perry TW, Beeson WM, Mohler MT (1967) A comparison of high-urea supplements with natural protein supplements for growing and fattening beef cattle. J Anim Sci 6:1434–1437

    Article  Google Scholar 

  • Picou D, Taylor-Roberts T (1969) The measure of total protein synthesis and catabolism and nitrogen turnover in infants in different nutritional states and receiving different amounts of dietary proteins. Clin Sci 36:283–296

    CAS  PubMed  Google Scholar 

  • Potter EL, Bergen WG (1974) Duodenal protein infusions and plasma glucose, urea and amino acid levels in sheep. J Anim Sci 39:775–779

    Article  CAS  PubMed  Google Scholar 

  • Potter EL, Purser DB, Bergen WG (1972) A plasma reference index for predicting limiting amino acids of sheep and rats. J Anim Sci 34:660–671

    Article  CAS  PubMed  Google Scholar 

  • Rathmacher JA, Nissen SL (1998) Development and application of a compartmental model of 3-methylhistidine metabolism in humans and domestic animals. Adv Exp Med Biol 445:303–324

    Article  CAS  PubMed  Google Scholar 

  • Reynolds CK, Kristensen NB (2008) Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. J Anim Sci 86(Suppl 14):E293–E305

    Article  CAS  PubMed  Google Scholar 

  • Rose WC (1957) The amino acid requirements of adult man. Nutr Abstr Rev 27:631–647

    CAS  PubMed  Google Scholar 

  • Russell JB, O’Connor JD, Fox DG, Van Soest PJ, Sniffen CJ (1992) A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J Anim Sci 70:3551–3561

    Article  CAS  PubMed  Google Scholar 

  • Satter LD, Slyter LL (1974) Effect of ammonia concentration of rumen microbial protein production in vitro. Br J Nutr 32:199–208

    Article  CAS  PubMed  Google Scholar 

  • Schelling GT, Hinds FC, Hatfield EE (1967) Effect of dietary protein levels, amino acid supplementation and nitrogen source upon the plasma free amino acid concentrations in growing lambs. J Nutr 92:339–347

    Article  CAS  PubMed  Google Scholar 

  • Schwab CG, Broderick GA (2017) A 100-year review: protein and amino acid nutrition in dairy cows. J Dairy Sci 100:10094–10112

    Article  CAS  PubMed  Google Scholar 

  • Schwab CG, Satter LD, Clay AB (1976) Response of lactating dairy cows to abomasal infusion of amino acids. J Dairy Sci 59:1254–1270

    Article  CAS  PubMed  Google Scholar 

  • Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, etc CAL (2018) Cultivation and sequencing of rumen microbiome members from the Hungate1000 collection. Nat Biotechnol 36:359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw JH, Wolfe RR (1986) Glucose, fatty acid, and urea kinetics in patients with severe pancreatitis. The response to substrate infusion and total parenteral nutrition. Ann Surg 204:665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimomura Y, Suzuki T, Saitoh S, Tasaki Y, Harris RA, Suzuki M (1990) Activation of branched-chain a-keto acid dehydrogenase complex byexercise: effect of high-fat diet intake. J Appl Physiol 68:161–165

    Google Scholar 

  • Smith RH, McAllan AB, Hill WB (1970) Nucleic acids in bovine nutrition. 3. Fate of nucleic acids presented to the small intestine. Proc Nutr Soc 28:28A

    Google Scholar 

  • Sniffen CJ, O’Connor JD, Van Soest PJ, Fox DG, Russell JB (1992) A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 70:3562–3577

    Article  CAS  PubMed  Google Scholar 

  • Snyderman SE, Holt LE Jr, Nortn PM, Roitman E, Phansalkar SV (1968) The plasma aminogram. I. Influence of the level of protein intake and a comparison of whole protein and amino acid diets. Pediatr Res 2:131–144

    Article  CAS  PubMed  Google Scholar 

  • Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68:72–81

    Article  CAS  PubMed  Google Scholar 

  • Taylor RB (1962) Pancreatic secretions in the sheep. Res Vet Sci 3:63–77

    Article  Google Scholar 

  • Vik-Mo L, Huber JT, Bergen WG, Lichtenwalner RE, Emery RS (1974) Blood metabolites in cows abomasally infused with casein or glucose. J Dairy Sci 57:1024–1030

    Article  CAS  Google Scholar 

  • Wang XQ, Johnson GA, Burghardt RC, Wu G, Bazer FW (2015a) Uterine histotroph and conceptus development. I. Cooperative effects of arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1-Akt/PKB-TSC2MTORC1 signaling cascade. Biol Reprod 92:51

    PubMed  Google Scholar 

  • Wang XQ, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW (2015b) Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 92:75

    PubMed  Google Scholar 

  • Wang XQ, Johnson GA, Burghardt RC, Wu G, Bazer FW (2016a) Uterine histotroph and conceptus development. II. Arginine and secreted phosphoprotein 1 cooperatively stimulate migration and adhesion of ovine trophectoderm cells via focal adhesion-MTORC2 mediated cytoskeleton reorganization. Biol Reprod 95:71

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Li DF, Wu G, Bazer FW (2016b) Functional roles of fructose: crosstalk between O-linked glycosylation and phosphorylation of Akt-TSC2-MTOR cell signaling cascade in ovine trophectoderm cells. Biol Reprod 95:102

    Article  PubMed  CAS  Google Scholar 

  • Waterlow JC, Garlick PJ, Millward DJ (1978) Protein turnover in mammalian tissues and the whole body. North-Holland Publishing Company, Amsterdam/New York

    Google Scholar 

  • Webb KE Jr (1986) Amino acid and peptide absorption from the gastrointestinal tract. Fed Proc 45:2268–2271

    CAS  PubMed  Google Scholar 

  • Webb KE Jr, Matthews JC, DiRienzo DB (1992) Peptide absorption: a review of current concepts and future perspectives. J Anim Sci 70:3248–3257

    Article  CAS  PubMed  Google Scholar 

  • Webb LA, Sadri H, von Soosten D, Dänicke S, Egert S, Stehle P, Sauerwein HJ (2019) Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation. J Dairy Sci 102:3556–3568

    Article  CAS  PubMed  Google Scholar 

  • Weller RA (1957) The amino acid composition of hydrolysates of microbial preparations from the rumen of sheep. Aust J Biol Sci 10:384–389

    Article  CAS  Google Scholar 

  • Williams VJ (1969) The relative rates of absorption of amino acids from the small intestines of the sheep. Comp Biochem Physiol 29:865–870

    Article  CAS  PubMed  Google Scholar 

  • Wiseman G (1968) Absorption of amino acids. In: Code CF (ed) Handbook of physiology, section 6: alimentary canal, vol 3. American Physiological Socitey, Washington, DC, pp 1277–1307

    Google Scholar 

  • Wolff JE, Bergman EN (1972) Gluconeogenesis from plasma amino acids in fed sheep. Am J Physiol 223:455–460

    Google Scholar 

  • Wu G (1995) Urea synthesis in enterocytes of developing pigs. Biochem J 312:717–723

    Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

Research presented in this review from the author’s laboratory and fellow faculty in the dairy sciences at Michigan State University was supported by the Michigan Agricultural Experiment Station (now Ag Bio Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner G. Bergen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bergen, W.G. (2021). Amino Acids in Beef Cattle Nutrition and Production. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-54462-1_3

Download citation

Publish with us

Policies and ethics