
A Modified Artificial Bee Colony Algorithm
for Scheduling Optimization of Multi-aisle

AS/RS System

Xiaohui Yan1,2(B), Felix T. S. Chan2, Zhicong Zhang1, Cixing Lv1, and Shuai Li1

1 School of Mechanical Engineering,
Dongguan University of Technology, Dongguan 523808, China

Yxhsunshine@gmail.com
2 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University,

Hong Hum, Kowloon, Hong Kong

Abstract. A modified artificial bee colony algorithm is proposed for solving the
schedulingoptimizationproblemofmulti-aisle automatic storage/retrieval system.
The optimization model of the problem is analyzed and founded, in which the
sequence constraint of tasks and calculation of the number of aisles are more
realistic. According to the features of the problem, the encoding and decoding
strategies for solutions to MABC algorithm are redesigned. Probability selection-
based updating method is also introduced to enhance the neighborhood search
and preserve the good fragments. The experimental results show that MABC can
obtain better results than PSO and GA algorithm, and is a competitive approach
for AS/RS scheduling optimization.

Keywords: Automatic storage retrieval system · Modified artificial bee colony ·
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1 Introduction

Automatic Storage/Retrieval System (AS/RS) is an indispensable part of modern logis-
tics. It has been widely used in manufacturing and logistics enterprises due to its advan-
tages of high efficiency, economic space occupation and labor saving. In an AS/RS
warehouse, S/R (storage/retrieval) machine is used instead of manual picking, which the
saving labor cost usually accounts for 60–70% of the total warehouse operation cost [1].
Therefore, the scheduling optimization of S/R machine is the key point to AS/RS ware-
house optimization. Many scholars have studied on it these years. Shiau et al. pointed
out that picking scheduling optimization was a special case of Traveling Salesman Prob-
lem (TSP), and proposed a three-stage heuristic algorithm to optimize the order of the
products to be picked [2]. Lerher et al. established travel time models for aisle trans-
fer systems and shuttle-based systems for AS/RS warehouse [3, 4]. Ma et al. founded
a multi-objective automated warehouse scheduling model and proposed an ensemble
multi-objective biogeography-based optimization algorithm to solve it [5]. Cinar et al.
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investigated the scheduling of truck load operations in AS/RS, and proposed a priority
based genetic algorithm to sequence the retrieving pallets [6].

However, there are also some shortcomings in existing studies. For example, in the
multi-aisle AS/RS warehouse, one aisle corresponds to two storage racks on its both
sides. Even if two products are on two different storage racks, the S/R machine can
complete these two tasks without switching aisles if they are adjacent and located on
two sides of the same aisle separately. Besides, S/R machines usually have more than
one carrier and can hold several products at one time. However, it needs unoccupied
carrier to pick up outbound products, which has certain requirements on the order of
inbound and outbound tasks.

In this paper, the scheduling optimization model of multi-aisles AS/RS with multi-
carrier S/R machine is established, and a modified artificial bee colony (MABC) algo-
rithm is proposed to solve it. The new algorithm keeps the advantage of neighborhood
searching of ABC algorithm and is also redesigned to adapt the AS/RS scheduling
problem. Experimental results show that the proposed MABC algorithm has better per-
formance than the particle swarm optimization (PSO) and genetic algorithm (GA) in
solving this problem.

The rest of the paper is organized as follows. In Sect. 2, the multi-aisle AS/RS
scheduling problem is introduced and its model is established. In Sect. 3, the MABC
algorithm is proposed and described in detail. The experiment and discussion are given
in Sect. 4 and conclusions are drawn in Sect. 5.

2 Scheduling Model of Multi-aisle AS/RS System

In this paper, we consider a multi-aisle AS/RSwarehouse systemwhich has been used in
many enterprises. In this kind of warehouse, there are several rows of storage racks [7].
Usually, the two edges of the warehouse are one side rack, close to the wall, while the
middle storage racks are two side racks back-to-back. There are passable aisles between
the storage racks for S/R machines to travel, store and retrieve products. And the S/R
machines can enter and exit freely at both ends of the storage racks. Each rack has a
number of layers and columns, each of them has its own coordinates, corresponding to
a storage unit which used to storage products. We use triples [X, Y, Z] to represent the
location of a storage unit, and Z, X, Y represent the serial number of the rack and the
serial numbers of column and layer of the location in the rack respectively.

There is an I/O location for inbound and outbound operation. It is located at one side
of the warehouse and denoted by the triple [0, 0, 1]. Most of the existing S/R machines
havemultiple carriers (such as forks) in order to improve efficiency, which can loadmore
than one product at a time. We assume that the number of carriers is N. On one travel,
the S/R machine picks up a maximum of N inbound products from the I/O location
and places them in the designated location, then it picks up a maximum of N outbound
products from the designated location and returns to the I/O point. In this paper, we
mainly concern the total operation time for S/R machine to complete all tasks.

Generally, in order to maximize the efficiency of S/R machine, reduce the operation
time, it is better to carry as many as possible products at the same time. In each route, the
S/R machine should carry N storage products, complete N inbound tasks, and take out
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N outbound products, complete N outbound tasks if the number of rest task is no less
than N. Suppose there are m inbound tasks, n outbound tasks, r = max (ceil(m/N), ceil
(n/N)), where ceil(x) stands for rounding the elements of x to the nearest integers towards
infinity. It needs r routes to complete all inbound and outbound tasks. For situation that
m �= n, we can add |m − n| virtual inbound or outbound tasks to make them be equal,
which is more convenient for coding and calculation. The locations of virtual tasks are
set as [0, 0, 0]. These tasks will be ignored when calculating the operation time.

As it has mentioned above, the AS/RS scheduling optimization problem can be
regarded as a special case of TSP problem, we can construct its 0–1 integer programming
model.

Define ejk = 1, if the S/R machine travels from storage unit j (corresponding to task
j) to storage unit k, otherwise, ejk = 0. Define aji = 1, if the task j is executed in route i,
otherwise, aji = 0. Define bgi = 1, cgi = 0, if the gth task in route i is an inbound task,
else if it is an outbound task, bgi = 0, cgi = 1.

The goal is to minimize the total operation time.

min f =
∑r

i=1

(∑m+n

j=1

∑m+n

k=1
tjkejkajiaki

)
. (1)

Among that, tjk is the time for S/R machines moves from storage unit j to storage
unit k.

The constraints are listed as below.
∑r

i=1
aji = 1, ∀ j ∈ 1, 2, 3 . . .m + n, (2)

∑m

j=1
aji ≤ N , ∀ i ∈ 1, 2, 3 . . . r, (3)

∑m+n

j=m+1
aji ≤ N , ∀ i ∈ 1, 2, 3 . . . r, (4)

∑r

i=1

∑m+n

j=1
aji = m + n, (5)

∑h

g=1
bgi −

∑h

g=1
cgi ≥ 0, ∀ i ∈ 1, 2, 3 . . . r, ∀ h ∈ 1, 2, 3 . . . 2N . (6)

Formulation (2) indicates that each task is executed only once. Formulations (3) and
(4) are the load capacity constraint. It indicates that there can be nomore thanN inbound
tasks and N outbound tasks are executed in each route. Formulation (5) grantees that all
tasks are executed. Formulation (6) grantees that the S/R machine can pick up outbound
products only when it has unoccupied carrier.

Suppose the storage racks are numbered start from 1, as it has mentioned in Sect. 1,
the first rack is close to the wall. The first and second racks are separated by an aisle.
The second and third racks are back to back close to each other. The third and fourth
racks are separated by an aisle, and so on.

The time for S/R machine moves from storage unit j to storage unit k is calculated
as follow.
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tjk =
{
max

(
W × ∣∣Xj − Xk

∣∣/Vx,H × ∣∣Yj − Yk
∣∣/Vy

)
, if it doesn’t need to swith aisles

max((W × min(
∣∣Xj − Xk

∣∣, 2C − Xj − Xk ) + L × θ
(
Zj, Zk

)
)/Vx,H × ∣∣Yj − Yk

∣∣/Vy), else
,

(7)

whereW is the width for each storage unit, H is the height of each storage unit, L is the
width of each aisle. θ

(
Zj,Zk

)
is a function to calculate the number of aisles between the

location of the jth and kth tasks. C is the number of columns for each storage rack. If
the locations of task j and k are at the same storage rack or at the adjacent storage but
are distributed on two sides of the same roadway (this condition can be expressed as
Zj = Zk or

(∣∣Zj − Zk
∣∣ = 1 && mod(min(Zi,Zi), 2) �= 0

)
), the S/R machine can move

from location j to k without switching aisles. Otherwise, the S/Rmachine needs to switch
aisles. Since the S/R machine can move from both ends of the aisles, it is necessary to
consider from which end the distance is shorter. In addition, it is also necessary to
consider the time required on switching aisles.

θ
(
Zj,Zk

)
is calculated as follows.

θ
(
Zj,Zk

) =⎧
⎨

⎩

∣∣Zj − Zk
∣∣/2 if mod

(∣∣Zj − Zk
∣∣, 2

) = 0∣∣Zj − Zk
∣∣/2 − 0.5, if mod

(∣∣Zj − Zk
∣∣, 2

) �= 0 && mod
(
min

(
Zj,Zk

)
, 2

) �= 0∣∣Zj − Zk
∣∣/2 + 0.5, if mod

(∣∣Zj − Zk
∣∣, 2

) �= 0 && mod
(
min

(
Zj,Zk

)
, 2

) = 0

(8)

3 Modified Artificial Bee Colony Algorithm

3.1 Artificial Bee Colony Algorithm

Artificial bee colony algorithm is proposed by Karaboga in 2005, which inspired by the
behaviors of the bee colony searching food sources [8]. In ABC algorithm, it regards the
searching space as the natural environment, and each solution of the problem represents
a food sources to be exploited. The amount of nectar of the food sources corresponds to
the fitness of the solution. There are three kinds of bees in ABC algorithm, employed
bees, onlooker bees and scout bees. In ABC algorithm, half of the colony is employed
bees the other half is onlooker bees. The number of scout bees is set to 1.

The process of ABC algorithm is also divided into the stage of employed bees, the
stage of onlooker bees and the stage of the scout bee.

At the initialization stage, a set of food sources is randomly generated in the search
space. The number of food sources equals half of the number of bees. The dimension of
the food sources is the same with the problem to be solving. For each food source, there
is a counter used to record the cumulative iterations for which it has not been improved.

At the employed bees’ stage, each employed bee looks for a new food source near
the original one according to formula (9).

vi,j = xi,j + φ
(
xi,j − xk,j

)
. (9)
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Among that, xi is the original food source, xk is a randomly selected neighbor, vi
is the candidate food source newly produced, j is a randomly selected dimension. φ is
a random number according to uniform distribution between [−1, 1]. If the new food
source is better than the original one, then the employed bee turns to the new one and
the original one is abandoned. Otherwise, the original one is kept and the corresponding
counter is increased by 1.

At the onlooker bees’ stage, the onlooker bee chooses a food sources to exploit
depending on a probability related to the fitness of the food sources, seen as formula
(10). The food source with higher fitness has larger probability to be chosen and may be
chosen more than once.

Pi = fitnessi∑SN
j=1 fitnessj

. (10)

After the food source is chosen, the onlooker bee will exploit a new food source
nearby, just like it does at the employed bees’ stage. Greedy selection and un-improved
counter are also used.

At the scout bee’s stage, if a bee’s un-improved counter is larger than a predeter-
mined parameter “limit”, it indicates that the food source has been exploited out, the
bee becomes scout bee, and will find a random food source in the searching area. At the
same time, the counter is reset to 0.

Compared with PSO and other algorithm, ABC algorithm pays more attention
to neighborhood search and obtains good results in many numerical and engineering
optimization problems [9]. The optimal solution of scheduling optimization is usually
obtained by neighborhood transformation of the suboptimal solution. Therefore, ABC
algorithm may have better optimization potential in the AS/RS scheduling problem.
However, we also need to redesign the encoding, decoding and updating methods of
solutions to make the algorithm suitable for discrete AS/RS scheduling optimization
problem.

3.2 Modified Artificial Bee Colony Algorithm

3.2.1 Encoding and Decoding Strategies

As mentioned above, the solution to the multi-aisle AS/RS warehouse scheduling prob-
lem is a sequence of inbound and outbound tasks. For the convenience of programming
and solving, we use real number coding in MABC algorithm. The solution of the prob-
lem is a random sequence of the task numbers without repetition. However, according
to the above constraints, the feasible solution also has certain requirements. The S/R
machine must have an empty carrier to carry outbound tasks. As a result, in each route,
the number of inbound tasks (including virtual task) must be larger than or equal to the
number of outbound tasks from the first task to the end of the route. A repair mechanism
is designed to ensure the feasibility of the solution.

a) Divide the solution into inbound task sequence and outbound task sequence
according to the serial number.
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b) Each time select N inbound tasks and N outbound tasks in sequence to form a route
(including virtual tasks, and the number of tasks may be less than N at the last time
due to the number of tasks may be not a multiple of 2N exactly). And then remove
them from the task sequences.

c) In each route, the first task must be the inbound task. From the second one, compare
the order of the first remaining inbound and first remaining outbound tasks in the
original solution. If it is not against the rule following the order, then add the first
task in order to the route. Otherwise, add the inbound task to the route.

Through this mechanism, all randomly generated solutions can be converted to the
corresponding feasible solutions. This repair mechanism is not only used in MABC
algorithm, but also used in the other comparison algorithms. Each time a new solution is
produced, it needs to use this repair mechanism to convert it to a feasible solution before
calculating its fitness.

3.2.2 Probability Selection-Based Solution Updating Strategy

The solution updating strategy of the original ABC algorithm is designed for continuous
optimization problem. It learns from a random neighbor on a randomly selected dimen-
sion. The AS/RS scheduling optimization problem is a discrete optimization problem.
We must redesign the solution updating strategy so that it can adapt to and solve the
problem better. The neighborhood searching of ABC is modified as follows.

a) Select a neighbor solution randomly.
b) The values on dimensions which their values are the samewith the neighbor solution

are inherited into the same location of the new solution.
c) For the dimensions which their values are not the same, they are selected with a

probability of 0.5.
d) For the selected dimensions, the values of the original food source on these

dimensions are directly inherited into the same location of the new solution.
e) For the dimensions which are not selected, find the positions of their values in the

neighbor solution, and insert them into the vacant positions of the new solution in
order.

This solution updating strategy can guarantee that the solution newly produced is
a non-repetitive task sequence, which can be transformed to a feasible solution of the
AS/RS scheduling problem. On another hand, the solution is produced using neighbor-
hood searching on the basis of the original solution. It keeps the advantage of original
ABC algorithm. Both the neighborhood searching in employed bees and onlooker bees’
phases use this strategy. In the scout bees’ phase, a random solution is generated to keep
diversity.

4 Experiments and Results

In this section, we tested the optimization ability of MABC algorithm on AS/RS
scheduling problem and compared it with GA and PSO algorithm.
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4.1 Test Instances

The width of each storage unit W = 0.5 m, The height of each storage unit H = 0.8 m,
the width of each aisle L = 3.0 m, The numbers of the storage racks is 14. The numbers
of columns and layers of each rack are 15 and 6. Accordingly, location X, Y and Z for
the inbound and outbound tasks are distributed randomly from [1, 15], [1, 6] and [1, 14]
separately. The movement velocity on the horizontal direction is 1.2 m/s. The movement
velocity on the vertical direction is 0.4 m/s, which is close to the actual value. In this
experiment, we generated three instances. In the first instance, the total number of tasks
is 30, the number of inbound tasks m equals 14, number of outbound tasks n equals 16.
In the second instance, m equals 22, n equals 18. In the third instance, m equals 26, n
equals 24. The numbers of carriers of the S/R machine N of all instances are 2.

4.2 Parameters Setting

In this experiment, the population sizes of all algorithms are 50. Maximum number of
function evaluations (FEs) is used as the terminated criterion [10, 11], and its value
is 10000. In MABC algorithm, limit = 50. In PSO, learning factor C1 = C2 = 2,
inertia weight ω decreases linearly from 0.9 to 0.4 [12]. The continuous version is
used. The boundaries of all dimensions are [0, 1], and the maximum and velocity is
0.1 and minimum velocity is −0.1, the solutions are converted to desecrate solutions of
AS/RS problem by rank of order (ROV) after each updating. In GA algorithm, crossover
probability pc = 0.95, mutation probability pm = 0.1 [13]. In the crossover stage, some
tasks may appear twice, and some others may be missing in the offspring solutions.
These solutions will be checked and repaired to the sequence of tasks numbers without
repetition.Greedy selection is also used in this stage. In themutation stage, swap operator
is used. The values of two randomly selected dimensionswill be swappedwith each other.

For all the three algorithms, the repair mechanism mentioned in Sect. 3.2.1 is used
to make the solutions feasible and won’t break the requirements of orders of inbound
and outbound. All solutions will use this mechanism before being evaluated.

4.3 Results and Analysis

The results obtained by MABC, PSO and GA are listed in Table 1. It is intuitive that we
can obtain an acceptable feasible solution if we sort all the tasks according to the serial
numbers of racks (Z), and then repaired it according to the above repair mechanism.
Therefore, we define this solution as the base solution and the time it takes as the base
time. In the initialization phase of the three algorithms, all the solutions in the initial
populations are generated by applying a swap operator on the base solution.

Each algorithm will run for 20 times independently on the instances. The best mean
and standard are marked as bold. The mean convergence plots and boxplots of the final
results are also given in Fig. 1.

It is clear that MABC obtained the best results on all the three instances. Its con-
vergence speed and accuracy are all the best from Fig. 1. The mean results obtained by
MABC are reduced more than 20% compared with base time. PSO algorithm converges
fast at the beginning but hardly improves afterFEs= 5000, and obtained theworst results
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Table 1. Results obtained by MABC, PSO and GA on the three instances (unit: second)

Instances Base time MABC PSO GA

Mean Std Mean Std Mean Std

1 371.00 286.3750 6.7432 300.7750 9.0619 293.4000 6.0188

2 465.00 371.5750 6.9609 411.4750 10.4874 383.4750 10.3942

3 652.00 508.7000 4.4290 555.1750 10.2396 524.9750 8.0761

(a) Convergence plot on instance 1 (b) Boxplot on instance 1

(c) Convergence plot on instance 2 (d) Boxplot on instance 2

(e) Convergence plot on instance 3 (f) Boxplot on instance 3

Fig. 1. Convergence plots and boxplots obtained by MABC, PSO and GA on the instances
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among the three algorithms. The standard deviations of MABC are also the smallest on
instance 2 and instance 3. On instance1, its standard deviation is only a little worse than
GA, which can also be seen from the boxplots in Fig. 1. The results show that MABC
is superior to PSO and GA and is suitable for solving AS/RS scheduling problem.

The locations of inbound and outbound tasks in instance 1are listed in Table 2. The
best solution obtained by ABC algorithm on this instance is (I5-O11-I9-O16), (O3-O12),
(I11-I7-O15-O6), (I4-O14-I2-O4), (I10-I3-O13-O7), (I12-I1-O8-O9), (I8-I14-O10-O1), (I13-
I6-O2-O5), each bracket represents a route. And there are two virtual inbound tasks in
the second route when calculating. The total operation time of this solution is 274.5 s.

Table 2. The locations of inbound and outbound tasks in instance 1

I1(11, 3, 9) I2(12, 2, 5) I3(9, 6, 10) I4(3, 2, 4) I5(15, 4,
1)

I6(4, 4, 14) I7(1, 3, 4)

I8(15, 2, 9) I9(10, 5, 2) I10(5, 2, 8) I11(1, 2, 3) I12(7, 2,
10)

I13(3, 3,
11)

I14(14, 2,
11)

O1(3, 1, 14) O2(7, 3, 13) O3(2, 1, 3) O4(10, 1, 6) O5(1, 1,
12)

O6(8, 6, 4) O7(15, 6,
9)

O8(9, 4, 10) O9(13, 4, 6) O10(11, 2,
13)

O11(15, 3,
1)

O12(2, 2,
2)

O13(14, 6,
9)

O14(9, 1,
3)

O15(4, 5, 3) O16(5, 3, 1)

5 Conclusions

The scheduling optimization of multi carrier S/R machine in multi-aisle AS/RS ware-
house is introduced in this paper. A 0–1 integer programming model is founded, which
considers the realistic constraint of orders to inbound task and outbound task. The calcu-
lation of the number of aisles between two positions of the adjacent tasks is also redefined
due to the realistic placement of the storage racks. A modified artificial bee colony algo-
rithm is proposed for solving this optimization problem. In MABC, the encoding and
decoding strategy are redesigned, a probability selection-based updating strategy is also
introduced. The modifications make the algorithm adapt to the features of the prob-
lem, while keeping the advantages of ABC algorithm’s neighborhood searching. Three
instances with 30, 40 and 50 tasks were employed to test the optimization capability of
the algorithm. The results show that theMABCoutperforms PSO andGAalgorithm both
on convergence speed and accuracy, and is a suitable approach for solving the AS/RS
scheduling problem.
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