®

Check for
updates

Chapter 3
Big Data Outlook, Tools,
and Architectures

Hajira Jabeen®)

CEPLAS, Botanical Institute, University of Cologne, Cologne, Germany
hajira.jabeen@uni-koeln.de

Abstract. Big data is a persistent phenomena, the data is being gener-
ated and processed in a myriad of digitised scenarios. This chapter covers
the history of ‘big data’ and aims to provide an overview of the existing
terms and enablers related to big data. Furthermore, the chapter covers
prominent technologies, tools, and architectures developed to handle this
large data at scale. At the end, the chapter reviews knowledge graphs
that address the challenges (e.g. heterogeneity, interoperability, variety)
of big data through their specialised representation. After reading this
chapter, the reader can develop an understanding of the broad spectrum
of big data ranging from important terms, challenges, handling technolo-
gies, and their connection with large scale knowledge graphs.

1 Introduction

The digital transformation has impacted almost all aspects of modern society.
The past decade has seen tremendous advancements in the areas of automation,
mobility, the internet, IoT, health, and similar areas. This growth has led to
enormous data-generation facilities, and data-capturing capabilities.

In the first section “Outlook”, we review the definitions and descriptions of
big data and discuss the drivers behind big data generation, the characteristics
exhibited by big data, the challenges offered by big data, and the handling of this
data by creating data value chains. In the section “Tools and Architectures”, we
cover the software solutions and architectures used to realise the big data value
chains. We further cover characteristics and challenges relating to big data. The
section “Harnessing the Big Data as Knowledge Graphs” connects knowledge
graphs and big data, outlining the rationale and existing tools to handle large-
scale knowledge graphs.

2 Big Data: Outlook

Today, big data is widespread across and beyond every aspect of everyday life.
This trend of increasing data was first envisioned and defined years ago. Notably,
the first evidence of the term big data comes from a paper [87] published in 1997,
© The Author(s) 2020

V. Janev et al. (Eds.): Knowledge Graphs and Big Data Processing, LNCS 12072, pp. 35-55, 2020.
https://doi.org/10.1007/978-3-030-53199-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53199-7_3&domain=pdf
http://orcid.org/0000-0003-1476-2121
https://doi.org/10.1007/978-3-030-53199-7_3

36 H. Jabeen

where the authors described the problem as BigData when the data do not fit in
the main memory (core) of a computing system, or on the local disk. According
to the Oxford English Dictionary (OED), big data is defined as: “data of a
very large size, typically to the extent that its manipulation and management
present significant logistical challenges.” Later, when the terms velocity, variety,
and volume were associated as characteristics of big data, the newer definitions
of the term ‘big data’ came to cover these characteristics, as listed below:

1. “Big data is high volume, high velocity, and/or high variety information assets
that require new forms of processing to enable enhanced decision making,
insight discovery and process optimization,” [271,297].

2. “When the size of the data itself becomes part of the problem and traditional
techniques for working with data run out of steam,” [288].

3. Big Data is “data whose size forces us to look beyond the tried-and-true
methods that are prevalent at that time,” [217].

4. “Big Data technologies are a new generation of technologies and architectures
designed to extract value economically from very large volumes of a wide
variety of data by enabling high-velocity capture, discovery, and/or analysis,”
[470].

5. “Big data is high-volume, high-velocity and high-variety information assets
that demand cost-effective innovative forms of information processing for
enhanced insight and decision making,” [271].

6. “Big Data is a term encompassing the use of techniques to capture, process,
analyse and visualize potentially large datasets in a reasonable timeframe not
accessible to standard IT technologies.” By extension, the platform, tools and
software used for this purpose are collectively called “Big Data technologies,”
[98].

7. “Big data can mean big volume, big velocity, or big variety,” [414].

8. “The term is used for a collection of datasets so large and complex that it
becomes difficult to process using on-hand database management tools or
traditional data processing applications”?!.

9. “Big data represents the information assets characterized by such a high
volume, velocity and variety to require specific technology and analytical
methods for its transformation into value”?.

Regardless of the defining text, big data is a persistent phenomenon and is
here to stay. We take a brief overview of the key enabling technologies that made
big data possible in the following section.

2.1 Key Technologies and Business Drivers

As recently as the year 2000, digital information only constituted about one
quarter of all the stored information worldwide®. Other information was mainly

! http://en.wikipedia.org/.
2 http://en.wikipedia.org/.
3 https:/ /www.foreignaffairs.com/articles /2013-04-03 /rise- big-data.

http://en.wikipedia.org/
http://en.wikipedia.org/
https://www.foreignaffairs.com/articles/2013-04-03/rise-big-data

Chapter 3 Big Data Outlook, Tools, and Architectures 37

stored on paper, film, or other analogue media. Today, by contrast, less than
two percent of all stored information is non-digital. The key enablers of the big
digital data revolution are the advancements in technologies, be it increased
internet speed, the availability of low-cost handheld mobile devices, or the myr-
iad of applications ranging from social media to personal banking. At present,
organizations view the acquisition and possession of data as significant assets. A
report by the World Economic Forum [315], “Big Data, Big Impact,” declared
‘data’ an asset akin to currency or gold. This fact has led to significant changes
in business models. Besides, aggressive acquisition and retention of data have
become more popular among organizations. Prominent examples are internet
companies such as Google, Yahoo, Amazon, or Facebook, which are driven by
new business models. Technology proliferation is one of the major enablers of big
data acquisition. Cheaper and accessible technology is being used in almost all
parts of modern society, be it smart devices, mobile devices, wearable devices, or
resources to store data on the cloud, enabling customers to make purchases and
book vacations among other functions. In the following section, we will cover a
few of the prominent big data enabling technologies and key drivers.

Internet. The advancements in internet bandwidth and streaming have enabled
fast and efficient data transfer between physically distant devices. People around
the globe are accessing the internet via their mobile devices and the number
of connected devices is constantly increasing. The number of internet users
increased from 4.021 billion to 4.39 billion from 2018 to 2019. Almost 4.48 billion
people were active internet users as of October 2019, encompassing 58% of the
global population [83]. In the age of digital society, there is a need for a powerful
wireless network that can rapidly transfer large volumes of data. Presently, we
are moving from 4G LTE to 5G NR, which will enable entirely new applications
and data-collection scenarios. 5G not only comes with better bandwidth and
faster speed but also lower latency. The low latency of 5G was demonstrated
by “Orchestrating the Orchestra”® — an event that enabled musicians across
different locations to perform at the Bristol 5G Smart Tourism event. Violinist
Anneka Sutcliffe was playing in Bristol, Professor Mischa Dohler was playing the
piano in The Guildhall, London, and vocalist Noa Dohler and violinist Rita Fer-
nandes were at Digital Catapult in Euston, London. These developments have
made it possible to share and curate large amounts of data at high speeds.

Automation and Digitization. Digital automation is a relatively broad term
and it covers tasks that can be done automatically with minimal human assis-
tance, increasing the speed and accuracy as a result. Businesses are more and
more favouring the use of automatization tools to achieve more throughput.
For example, advancements in automatic tools like scanning systems no longer
require manual entry, easing and speeding up the process at the cost of more and
reliable data capture. Similarly, in terms of digital data, cameras and photos are

4 https:/ /www.bristol.ac.uk/news/2019 /march/orchestrating-the-orchestra.html.

https://www.bristol.ac.uk/news/2019/march/orchestrating-the-orchestra.html

38 H. Jabeen

another example. The number of digital photos taken in 2017 was estimated to
be 1.2 trillion®, which is roughly 160 pictures for every one of the roughly 7.5 bil-
lion people inhabiting planet earth. With more and more devices being digitized,
more data is being created and stored in machine-readable form. Industries and
businesses must harness this data and use it to their advantage.

Commodity Computing. Commodity hardware, also known as off-the-shelf,
non-proprietary hardware, refers to low-cost devices that are widely available.
These devices can be easily replaced with a similar device, avoiding vendor lock-
in challenges. ‘Commodity cluster computing’ is the preference of using more of
average-performing, low-cost hardware to work in parallel (scalar computing),
rather than having a few high-performance, high-cost items of hardware. Hence,
commodity computing enables the use of a large number of already existing
computing resources for parallel and cluster computing without needing to buy
expensive supercomputers. Commodity computing is supported by the fact that
software solutions can be used to build multiple points of redundancy in the
cluster, making sure that the cluster remains functional in case of hardware
failures. Low-cost cluster computing resources have made it possible to build
proprietary data centres on-premises and to reap the benefits of in-house big
data handling and processing.

Mobile Computing. Handheld smart devices are becoming more and more
common due to increased affordability, relevance, and digital literacy. There were
5.11 billion unique mobile users in 2018 and 5.135 billion in 2019, accounting for
67% of the global population, and it is estimated [83] that by 2020, almost 75%
of the global population will be connected by mobile. Use of mobile computing
has enabled almost everyone to access and generate data, playing a key role in
big data generation and sharing.

Mobile Applications. Mobile devices are playing a key role in the present data
explosion. Mobile phones are no longer only being used for voice calls. Currently,
56% of web access worldwide is generated by mobile devices. At the moment,
more than 57% of the global population use the internet and more than 52% of
the global population use mobile devices [83]. Businesses are developing mobile
applications to not only assist users in ubiquitous computing but also to gener-
ate and capture data of interest. The mobile application development industry
is creating mobile apps for almost all fields, and existing mobile applications
cover a range of tasks like online banking, online purchases, social interactions,
travelling, eating, studying, or entertainment. All of these applications not only
assist in automated data collection related to tasks (e.g. orders) but also assist
in generating additional data that was not easily possible before (e.g. correlating
a new order with previous purchases).

5 https://www.statista.com /statistics /617136 /digital- population-worldwide/.

https://www.statista.com/statistics/617136/digital-population-worldwide/

Chapter 3 Big Data Outlook, Tools, and Architectures 39

Ubiquitous Devices (IoT). The internet of things (IoT) enables scenarios
where network connectivity and computing capability extends to objects, sensors
and everyday items not normally considered computers, allowing these devices to
generate, exchange and consume data with minimal human intervention. These
devices are not only increasing in number to cover different facets of life but are
also increasing their sensitivity. According to a GSMA report [16], between 2018
and 2025, the number of global IoT connections will triple to 25 billion. In an
estimate by CGI [2], the total volume of data generated by IoT will reach 600
7B per year by 2020.

Cloud Infrastructure. Cloud computing is the term used for storing, accessing
and processing data over the internet from a remote server. This ability to store
and manipulate data on the cloud using services like AWS [50], Google Cloud
Platform [264], Cloudera [378], etc. has made it possible to store and analyse
data on-demand with a pay-per-use model. Cloud computing saves costs, offers
better performance, reliability, unlimited capacity, and quick deployment pos-
sibilities. Cloud computing has assisted organizations with providing the data
centre management and efficient data-handling facilities.

2.2 Characteristics of Big Data

Driven by digital transformation, big data is identified by several key attributes.
Interestingly, they all start with the letter ‘V’; and therefore are also called the
V’s of big data. The number of characteristic attributes is constantly increasing
with advancements in technologies and underlying business requirements. In this
section, we cover a few of the main V’s used to describe big data.

Three Vs of Big Data [271,489)

1. Volume: The size of data is increasing at unprecedented rates. It includes data
generated in all fields including science, education, business, technology and
governance. If we take the social media giant Facebook (FB) as an example,
it has been reported that FB generates approximately 4 petabytes of data in
24 h with 100 million hours of video watch-time. FB users create 4 million
likes per minute, and more than 250 billion photos have been uploaded to
Facebook since its creation, which equates to 350 million photos per day.
Apart from the applications, a vast amount of data is being generated by
web, IoT and many other automation tools continuously. All of this data
must be captured, stored, processed and displayed.

2. Velocity: The speed at which the data is being generated has increased rapidly
over the years. The high rate and speed is contributed by the increase in the
use of portable devices to allow data generation and ever-increasing band-
width that allows fast data transfer. In addition, the rate of data generation
(from the Internet of Things, social media, etc.) is increasing as well. Google,
for example, receives over 63,000 searches per second on any given day. And
15% of all searches have never been searched before on Google. Therefore,

40 H. Jabeen

it is critical to manage and analyse the data at the same rate at which it is
being generated and stored in the system.

3. Variety: The data comes from a variety of data sources and is generated in
different forms. It can be structured or unstructured data. Data comes in
the form of text (emails, tweets), logs, signals, records, photos, videos, etc.
This data cannot be stored and queried via traditional structured database
management systems. It is important to develop new solutions that are able
to store and query diverse data; 4 Vs of Big Data [106].

4. Veracity: This is the quality, truthfulness or reliability of data. Data might
contain biases, noise, or abnormalities. It is important to be aware of whether
data being used can be trusted for use in making important decisions, or if
the data is meaningful to the problem being analysed. The data is to be
used to make decisions that can bring strategic competitive advantages to
the business; 10 Vs of Big Data [60].

5. Variability: This is the dynamic and evolving nature of data. The data flow
is not constant or consistent. The speed, density, structure, or format of data
can change over time and several factors influence the consistency of data
that changes the pattern, e.g. more shoppers near Christmas, more traffic in
peak hours etc.

6. Value: This refers to the worth of the data being extracted. For an orga-
nization, it is important to understand the cost and associated benefits of
collection and analysis of data. It is important to know that the data can
be turned into value by analysis, and that it follows set standards of data
quality, sparsity or relatedness.

7. Visualization is often thought of as the only way in which customers can
interact with models. It is important to visualize the reports and results
that can be communicated and extracted from data in order to understand
underlying patterns and behaviours.

In addition to the characteristics mentioned above, some researchers have
gone as far as to introduce 42 [395], or even 51 [243] different Vs to characterise
big data.

2.3 Challenges of Big Data

The characteristics of data combined with targeted business goals pose plenty of
challenges while dealing with big data. In this section, we briefly cover the main
challenges involved in using big data.

Heterogeneity. Heterogeneity is one of the major features of big data, also
characterised as the variety. It is data of different types and formats. The hetero-
geneous data introduces the problems of data integration in big data analytics,
making it difficult to obtain the desired value. The major cause of data hetero-
geneity is disparate sources of data that generate data in different forms. The
data can be text data coming from emails, tweets or replies; log-data coming
from web activities, sensing and event data coming from IoT; and other forms.

Chapter 3 Big Data Outlook, Tools, and Architectures 41

It is an important challenge to integrate this data for value-added analytics and
positive decision making.

Uncertainty of Data. The data gathered from heterogeneous sources like sen-
sors, social media, web activities, and internal-records is inherently uncertain
due to noise, incompleteness and inconsistency (e.g., there are 80% - 90% miss-
ing links in social networks and over 90% missing attribute values for a doctor
diagnosis in clinic and health fields). Efficient analysis to discover value from
these huge amounts of data demands tremendous effort and resources. However,
as the volume, variety and velocity of the data increases, the uncertainty inher-
ent in the data also increases, leading to doubtful confidence in the resulting
analytics and predicted decisions.

Scalability. The volume of data is drastically increasing and therefore an impor-
tant challenge is to deal with the scalability of the data. It is also important to
develop efficient analytics solutions and architectures that can scale up with
the increasing data without compromising the accuracy or efficiency. Most of
the existing learning algorithms cannot adapt themselves to the new big-data
paradigms like dealing with missing data, working with partial data access or
dealing with heterogeneous data sources. While the problem complexity of big
data is increasing at a very fast rate, the computational ability and the solution
capability is not increasing at a similar pace, posing a vital challenge.

Timeliness. When looking for added business values, timing is of prime impor-
tance. It is related to capturing data, execution of analytics and making deci-
sions at the right time. In a dynamic and rapidly evolving world, a slight delay
(sometimes microseconds) could lead to incorrect analytics and predictions. In
an example case of a bogus online bank transaction, the transaction must be
disapproved in a timely manner to avoid possible money loss.

Data Security. Data storage and exchange in organizations has created chal-
lenges in data security and privacy. With the increasing sizes of data, it is impor-
tant to protect e.g. transaction logs and data, real-time data, access control data,
communication and encryption data. Also, it is important to keep track of data
provenance, perform granular auditing of logs, and access control data to deter-
mine any misuse of data. Besides, the difference between legitimate use of data
and customer privacy must be respected by organizations and they must have
the right mechanisms in place to protect that data.

2.4 Big Data Value Chain

The ability to handle and process big data is vital to any organization. The
previous sections have discussed data generation abilities, and the characteristics
and challenges of dealing with big data. This section covers the required activities

42 H. Jabeen

and actions to handle such data to achieve business goals and objectives. The
term value chain [358] is used to define the chain of activities that an organization
performs to deliver a product for decision support management and services. A
value chain is composed of a sequence of interconnected sub-services, each with
its own inputs, transformation processes, and outputs. The noteworthy services
are described below.

Data Acquisition. This is the process of gathering data, filtering, and clean-
ing the data for storage and data analysis. Data acquisition is critical, as the
infrastructure required for the acquisition of big data must bear low, predictable
latency for capturing data as well as answering queries. It should be able to
handle very high transaction volumes in a distributed scalable environment, and
be able to support flexible and dynamic heterogeneous data.

Data Analysis. Interpreting the raw data and extraction of information from
the data, such that it can be used in informed decision making, is called data
analysis. There could be multiple domain-specific analysis based on the source
and use of data. The analysis includes filtering, exploring, and transforming
data to extract useful and often hidden information and patterns. The analysis
is further classified as business intelligence, data mining, or machine learning.

Data Curation. This is the active and continuous management of data through
its life cycle [350]. It includes the organization and integration of data from mul-
tiple sources and to ascertain that the data meets given quality requirements for
its usage. Curation covers tasks related to controlled data creation, maintenance
and management e.g. content creation, selection, validation or preservation.

Data Storage. This is persistent, scalable data management that can sat-
isfy the needs of applications requesting frequent data access and querying.
RDBMS have remained a de facto standard for organizational data manage-
ment for decades; however, its ability to handle data of limited capacity and
well-defined structure (ACID properties, Atomicity, Consistency, Isolation, and
Durability) has made it less suitable to handle big data that has variety, in addi-
tion to volume and velocity. Novel technologies are being designed to focus on
scalability and cope with a range of solutions handling numerous data models.

Data Usage. This is the analysis of data covering the business activities assist-
ing in business decision making. The analysis is made possible through the use
of specialised tools for data integration or querying.

3 Tools and Architectures

3.1 Big Data Architectures

Several reference architectures have been proposed to support the design of big
data systems. Big data architecture is the conceptual model that defines the

Chapter 3 Big Data Outlook, Tools, and Architectures 43

structure and behaviour of the system used to ingest and process “big data”
for business purposes. The architecture can be considered a blueprint to handle
the ingestion, processing, and analysis of data that is too large or complex for
traditional database systems. The aim is to design a solution based on the busi-
ness needs of the organization. Based on the requirements, the proposed solution
must be able to handle different types of workloads like batch processing or real-
time processing. Additionally, it should be able to perform analytics and mining
on this large-scale data.

Good architecture design can help organizations to reduce costs, assist in
making faster and better decisions, and predict future needs or recommend new
solutions. However, the creation of such a system is not straightforward and
certain challenges exist in designing an optimal architecture.

Data Quality: This is one of the important challenges in all domains of data
handling. The data could be noisy, incomplete or simply missing. Substantial
processing is desired to make sure that the resulting data is of the desired quality.
It is a widely known fact that “data preparation accounts for about 80% of the
work of data scientists”.

Data Integration: The architecture must be able to handle the integration
of heterogeneous data coming from disparate sources. It is challenging to handle
and integrate data of multiple sizes and forms coming at different speeds from
multiple sources. Finally, the system should be able to carry out meaningful
analytics on the data to gain valuable insights.

Data Scale: It is important to design a system that works at an optimal
scale without over-reserving the resources. At the same time, it should be able
to scale up as needed without compromising performance.

In order to comply with the data value chain, any big data architecture comprises
of the components that can allow to perform desired operations.

Data Sources: The data of an organization might be originating from
databases, real-time sources like web-logs, activity data, IoT devices and many
others. There should be data ingestion and integration components embedded
in the architecture to deal with these data sources.

Data Ingestion: If the data is coming from the real-time sources, the archi-
tecture must support the real-time data ingestion mechanism.

Data Storage: Depending upon the number and types of data sources, effi-
cient data storage is important for big data architecture. In the case of multiple
types of data sources, a no-SQL “data lake” is usually built.

Data Processing: The data in the system needs to be queried and anal-
ysed, therefore it is important to develop efficient data-querying solutions, or
data-processing tools that can process the data at scale. These processing solu-
tions can either be real-time or batch, depending upon the originating data and
organizational needs.

Data Analysis: Specialised tools to analyse data for business intelligence
are needed to extract meaningful insights from the data.

Data Reporting, and Visualisation: These are the tools used to make
reports from the analysed data and to present the results in visual form.

44 H. Jabeen

Process Automation: Moving the data across the big data architecture
pipeline requires automated orchestration. The ingestion and transformation of
the data, moving it for processing, storage, and deriving insights and reporting
must be done in a repeatable workflow to continuously gain insights from the
data.

Depending upon the type of data and the individual requirements of the
organizations, the selected tasks must be handled by choosing corresponding
services. To support the tasks and selected services, the overall architecture to
realise the data value chain is designed. The big data architectures are mainly
divided into three main types as below:

Lambda Architecture. The lambda architecture, first proposed by Nathan
[99], addresses the issue of slow queries results on batch data, while real-time
data requires fast query results. Lambda architecture combines the real-time
(fast) query results with the queries (slow) from batch analysis of older data.
Lambda architecture creates two paths for the data flow. All data coming into the
system goes through these two paths. Batch Layer: also known as the cold path,
stores all the incoming data in its raw form and performs batch processing on the
data. This offers a convenient way to handle reprocessing. This layer executes
long-living batch-processes to do analyses on larger amounts of historical data.
Speed Layer: also known as the hot path, analyses the data in real-time. This
layer is designed for low latency. This layer executes small/mini batch-processes
on data according to the selected time window (e.g. 1s) to do analyses on the
latest data. Serving Layer: This layer combines the results from the batch and
speed processing layer to enable fast interactive analyses by users.

Kappa Architecture. Kappa architecture was proposed by Jay Kreps [263]
as an alternative to lambda architecture. Like Lambda architecture, all data
in Kappa architecture flows through the system, but uses a single path, i.e.
a stream processing system. Kappa architecture focuses only on data stream
processing, real-time processing, or processing of live discrete events. Examples
are IoT events, social networks, log files or transaction processing systems. The
architecture assumes that: The events are ordered and logged to a distributed file
system, from where they can be read on demand. The platform can repeatedly
request the logs for reprocessing in case of code updates. The system can handle
online machine learning algorithms.

Microservices-Based Architecture. “Microservice Architecture” has emer-
ged over the last few years to describe a particular way of designing software appli-
cations as suites of independently deployable services [283]. Microservices archi-
tecture makes use of loosely coupled services which can be developed, deployed
and maintained independently. These services can be built for business capability,
automated deployment, intelligence in the endpoints, and decentralized control of
languages and data.

Chapter 3 Big Data Outlook, Tools, and Architectures 45

Microservices-based architecture is enabled by a multitude of technology
advancements like the implementation of applications as services, emergence
of software containers for service deployment, orchestration of containers, devel-
opment of object stores for storing data beyond container lifecycle, requirement
for continuous integration, automated testing, and code analysis to improve soft-
ware quality. Microservices-based architecture allows fast delivery of individual
services independently. In this architecture, all the components of big data archi-
tecture are treated as services, deployable on a cluster.

3.2 Tools to Handle Big Data

In order to deal with big data, a variety of specialised tools have been created.
This section provides an overview of the existing tools based on their functional-
ities. A distributed platform handling big data is made up of components needed
for the following tasks. We will cover the tools developed to perform these specific
tasks in the preceding sections (Fig. 1).

‘ Data Acquisition

‘ Data Storage and Querying ‘ .g
J o
s N N g
% ‘ Distributed file system ‘ ‘ Data Flow ‘ =
‘ Distributed resource manager e
. \ v
™ [| 1 | | /|

Fig. 1. Classification of tools to handle big data

Resource Orchestration. Distributed coordination and consensus is the back-
bone of distributed systems. Distributed coordination deals with tasks like telling
each node about the other nodes in the cluster and facilitating communication
and high availability. High availability guarantees the presence of the mediator
node and avoids a single point of failure by replication resulting in a fault-tolerant
system. In a distributed setting, the nodes must share common configurations
and runtime variables and may need to store configuration data in a distributed
key-value store. The distributed coordination manages the sharing of the locks,
shared-variables, realtime-configurations at runtime among the nodes.

46 H. Jabeen

In addition, fault-tolerant distributed systems contain methods to deal with
the consensus problem, i.e. the servers or mediators in the distributed system
perform agreement on certain values or variables, e.g. there can be a consensus
that the cluster with 7 servers can continue to operate if 4 servers get down,
i.e. with only 3 servers running successfully. The popular orchestration tools are
Apache zookeeper and etcd. The systems are consistent and provide primitives
to be used within complex distributed systems. Such distributed orchestrators
ease the development of distributed applications and make them more generic
and fault resilient.

Apache Zookeeper: Apache Zookeeper [209] is an open-source project that
originated from the Hadoop ecosystem and is being used in many top-level
projects including Ambari, Mesos, Yarn, Kafka, Storm, Solr, and many more
(discussed in later sections). Zookeeper is a centralised service for managing
cluster configuration information, naming and distributed synchronization and
coordination. It is a distributed key-value store that allows the coordination of
distributed processes through a shared hierarchical name space of data registers
(znodes), like a file system. Zookeeper provides high throughput, low latency,
high availability and strictly ordered access to the znodes. Zookeeper is used
in large distributed clusters and provides fault tolerance and high availability.
These aspects allow it to be used in large complex systems to attain high avail-
ability and synchronization for resilient operations. In these complex distributed
systems, Zookeeper can be viewed as a centralized repository where distributed
applications read and write data. It is used to keep the distributed application
functioning together as a single unit by making use of its synchronization, seri-
alization and coordination abilities.

Etcd: Eted [1] is a strongly consistent distributed reliable key-value store
that is simple, secure and fast. It provides a reliable way to store data that
needs to be accessed by a distributed system to provide consistent cluster coor-
dination and state management. The name etcd is derived from distributing the
Unix “/etc” directory used for global configurations. It gracefully handles leader
elections and can tolerate machine failure, even in the leader node. The leaders
in etcd handle all client requests needing consensus. Requests like reading can
be handled by any cluster node. The leader accepts, replicates and commits the
new changes after the followers verify the receipt.

Etcd uses the raft protocol to maintain the logs of state-changing events. It
uses full replication, i.e. the entire data is available on every node, making it
highly available. This also makes it possible that any node can act as a leader.
The applications can read and write data to etcd and it can be used for storing
database connection details, or feature flags. These values can be watched and
allow the applications to reconfigure themselves when values change. In addition,
eted consistency is used to implement leader election or distributed locking. etcd
is used as the coordinating mechanism for Kubernetes and Cloud Foundry. It
is also used in production environments by AWS, Google Cloud Platform and
Azure.

Chapter 3 Big Data Outlook, Tools, and Architectures 47

Resource Management. The big data platform works on top of a set of dis-
tributed computing and memory resources. The resource manager performs the
task of resource allocation in terms of CPU time and memory usage. In a cluster,
multiple applications are usually deployed at one time, e.g. it is common to have
a distributed application like Apache Spark running in parallel to a distributed
database for storage like Apache Hbase in the same cluster. A resource man-
ager is an authority that arbitrates resources among all the applications in the
system. In addition, the resource manager is also responsible for job scheduling
with the help of a scheduler, or an application master.

YARN: Yet another resource manager (YARN) [444] is an important inte-
gral part of the Hadoop ecosystem and mainly supports Hadoop workloads.
In YARN, the application-level resource manager is a dedicated scheduler that
runs on the master daemon and assigns resources to the requesting applications.
It keeps a global view of all resources in the cluster and handles the resource
requests by scheduling the request and assigning the resources to the requesting
application. It is a critical component in the Hadoop cluster and runs on a dedi-
cated master node. The resource manager has two components: a scheduler and
an application manager. The application manager receives the job-submissions,
looks for the container to execute the ApplicationMaster and helps in restarting
the ApplicationMaster on another node in case of failure. The ApplicationMaster
is created for each application and it is responsible for the allocation of appro-
priate resources from the scheduler, tracking their status and monitoring their
progress. ApplicationMaster works together with the Node Manager. The Node
manager runs on slave daemon and is responsible for the execution of tasks on
each node. It monitors their resource usage and reports it to the ResourceMan-
ager. The focus of YARN on one aspect at a time enables YARN to be scalable,
generic and makes it able to support multi-tenant cluster. The High available
version of Yarn uses Zookeeper to establish automatic failover.

Mesos: Apache Mesos is an open-source cluster manager [233] that handles
workloads in a distributed environment through dynamic resource sharing and
isolation. It is also called a distributed systems kernel. Mesos works between the
application layer and the operating system and makes it easier to manage and
deploy applications in large distributed clusters by doing resource management.
It turns a cluster into a single large pool of resources by leveraging the features
of modern kernels of resource isolation, prioritization, limiting, and accounting,
at a higher level of abstraction. Mesos also uses zookeeper to achieve high avail-
ability and recovery from master failure. Mesos carries out microscale resource
management as it works as a microkernel.

Data Flow: Message Passing. Message passing is crucial to distributed big
data applications that must deal with real-time data. This data could be event
logs, user activities, sensor signals, stock exchanges, bank transactions, among
many others. Efficient and fault free ingestion of this real-time data is critical
for real-time applications. Message passing solutions are needed for real-time
streaming applications and data flows.

48 H. Jabeen

Message passing tools, as the name suggests, assist in communication between
the software components of a big data processing pipeline. The systems usu-
ally decouple the sender and receiver by using a message broker that hides the
implementation details like the operating system or network interface from the
application interfaces. This creates a common platform for messaging that is also
easy to develop for the developers. The applications of message passing pipelines
are website activity monitoring, metrics collection, log aggregation etc. Below
we briefly discuss Apache Kafka, which is frequently used in real-time big data
applications.

Apache Kafka: Apache Kafka [147] is a distributed messaging system that
uses the publish-subscribe mechanism. It was developed to support continuous
and resilient messaging with high throughput at LinkedIn. Kafka is a fast, scal-
able, durable, and fault-tolerant system. It maintains feeds of messages in cate-
gories called topics. These topics are used to store messages from the producers
and deliver them to the consumers who have subscribed to that topic.

Kafka is a durable, high volume message broker that enables applications
to process, persist and re-process streaming data. Kafka has a straightforward
routing approach that uses a routing key to send messages to a topic. Kafka
offers much higher performance than message brokers like RabbitMQ. Its boosted
performance makes it suitable to achieve high throughput (millions of messages
per second) with limited resources.

Data Handling. The data handling and acquisition assists in collecting, select-
ing, filtering and cleaning the data being received and generated. This data can
be later stored in a data warehouse, or another storage solution, where further
processing can be performed for gaining the insights.

Apache Flume: Apache Flume [198] is a framework to collect massive
amounts of streaming event data from multiple sources, aggregate it, and move
it into HDFS. It is used for collecting, aggregating, and moving large amounts
of streaming data such as log files, events from various sources like network
traffic, social media, email messages etc. to HDFS. Flume provides reliable mes-
sage delivery. The transactions in Flume are channel-based where two transac-
tions (one sender and one receiver) are maintained for each message. If the read
rate exceeds the write rate, Flume provides a steady flow of data between read
and write operations. Flume allows ingestion of data from multiple servers (and
sources) into Hadoop.

Apache Sqoop: Most of the older companies have stored their data on
RDBMS, but with the increase in data sizes beyond terabytes, it is important
to switch to HDFS. Apache Sqoop [428] is a tool designed to transfer bulk
data between structured data stores such as RDBMS and Hadoop in an efficient
manner. Sqoop imports data from external datastores into HDF'S and vice versa.
It can also be used to populate tables in Hive and HBase. Sqoop uses a connector-
based architecture which supports plugins providing smooth connectivity to the
external systems.

Chapter 3 Big Data Outlook, Tools, and Architectures 49

Data Processing. Data-flow processing technologies are mainly categorised
into batch (historical data) processing systems and stream (real-time) processing
systems.

Baitch processing systems are high throughput systems for processing high
volumes of data collected over some time. The data is collected, entered, pro-
cessed and then the batch results generated resulting in high latency systems.

Stream processing systems are high throughput i.e. the system continuously
receives data that is under constant change (e.g. traffic control, sensor data,
social media), low latency stream processing systems. The data is processed
on the fly and produces real-time insights. There are three main methods for
streaming: At least once, At most once, and Exactly once.

Until a few years ago, a clear distinction between these two processing sys-
tems existed. However, recent technologies such as Apache Spark and Apache
Flink can handle both kinds of processing, diminishing this distinction. We will
discuss some of the key technologies in the following sections.

Hadoop MapReduce: Hadoop is a platform for distributed storage and
analysis of very large data sets. It has four main modules: Hadoop Common,
HDFS, MapReduce and YARN [153]. MapReduce is the distributed data process-
ing engine of Hadoop. It is a programming model and provides a software frame-
work to write the applications for distributed processing of very large amounts
of data in parallel. MapReduce processes the data in two phases: The map phase
and the reduce phase. In the map phase, the framework reads data from HDFS.
Each dataset is called an input record and split into independent chunks that are
processed by the map tasks in parallel. In the reduce phase, the results from the
map phase are processed and stored. The storage target can either be a database
or back HDF'S or something else. Working with MapReduce requires a low level
and specialised design thinking and programming models, making it challenging
for developers to create generic applications. As a result, many tools have been
developed around Hadoop MapReduce to address these limitations. These tools
include:

Apache Pig: This provides a high-level language for expressing data analysis
programs that can be executed in MapReduce [150]. The platform was devel-
oped by Yahoo. The developers can write programs for data manipulation and
transformation as data flow sequences using Pig Latin language. These pro-
grams are easy to write, understand, and maintain. In addition, Apache Pig
offers an infrastructure to evaluate and optimize these programs automatically.
This allows developers to focus more on semantics and productivity. Apache Pig
can execute its jobs in Apache Tez, or Apache Spark (covered in the following
sections).

Apache Hive: This offers a higher-level API to facilitate reading, writing, and
managing large datasets [203] residing in distributed storage (e.g. HDFS) using
SQL-like queries in a custom query language, called HiveQL. Implicitly, each
query is translated into MapReduce commands.

Apache Mahout: This is a machine learning library [337] developed to be used
with MapReduce. It provides an API for distributed or scalable machine learn-

50 H. Jabeen

ing algorithms mostly focusing on linear algebra. It provides algorithms like
classification, likelihood estimation, and clustering. All algorithms are implicitly
transformed into MapReduce jobs.

Apache Spark: Apache Spark is a generic, in-memory data processing
engine [480]. It provides high-level APIs in Java, Python and Scala. Apache
Spark has simplified the programming complexity by introducing the abstraction
of Resilient Distributed Datasets (RDD), i.e. a logical collection of data parti-
tioned across machines. The rich API for RDDs manipulation follows the models
for processing local collections of data, making it easier to develop complex pro-
grams. Spark provides higher-level constructs and libraries to further facilitate
users in writing distributed applications. At the time of writing, Apache Spark
provides four libraries:

Spark SQL - Offers support for SQL querying of data stored in RDDs, or an
external data source. It allows structured data processing using high-level col-
lections named dataset and data frame. A Dataset is a distributed collection of
data and a DataFrame is a Dataset organized into named columns. It is con-
ceptually similar to a table in a relational database. The DataFrames can be
constructed in numerous different ways like reading from structured data files,
tables in Hive, external databases, or existing RDDs.

Spark streaming - Spark implements stream processing by ingesting data in mini-
batches. Spark streaming makes it easy to build scalable fault-tolerant real-time
applications. The data can be ingested from a variety of streaming sources like
Kafka, Flume (covered in earlier sections). This data can be processed using
complex real-time algorithms using a high-level API.

MLIlib Machine Learning Library - Provides scalable machine learning algo-
rithms. It provides common algorithms for classification, regression, clustering,
algorithms for feature extraction, feature selection and dimensionality reduction,
high-level API for machine learning pipelines, saving and loading algorithms, and
utilities for linear algebra and statistics.

GraphX - Provides a distributed graph processing using graph-parallel compu-
tation. GraphX extends the Spark RDD by introducing “Graph”: a directed
multigraph with properties attached to each vertex and edge. GraphX comes
with a variety of graph operators like subgraph, joinVertices, or algorithms like
pageRank, ConnectedComponents, and several graph builders that allow build-
ing a graph from a collection of vertices and edges from RDD or other data
sources.

Apache Flink: Apache Flink is a true distributed streaming data-flow
engine [69] and offers a unified stream and batch processing. It treats batch
processing as a special case of streaming with bounded data. The APIs offered
by Flink are similar but the implementation is different. Flink executes arbi-
trary dataflow programs in a data-parallel and pipelined manner. It offers a
complete software stack of libraries using building blocks, exposed as abstract
data types, for streams (DataStream API), for finite sets (DataSet API) and
for relational data processing (relational APIs - the Table API and SQL). The
high-level libraries offered by Apache Flink are:

Chapter 3 Big Data Outlook, Tools, and Architectures 51

Gelly: Flink Graph - provides methods and utilities to simplify the development
of graph analysis applications in Flink. The graphs can be transformed and
modified using high-level functions similar to the ones provided by the batch
processing API. Gelly provides graph algorithms like pageRank, communityDe-
tection, connectedComponents, or shortestPath finding.

Machine Learning: FlinkML is a machine learning library aimed to provide a
list of machine learning algorithms. At the moment, it has been temporarily
deprecated in Apache Flink 1.9.0 for the sake of developing ML core and ML
pipeline interfaces using high-level APIs.

FlinkCEP: Complex event processing for Flink - Allows detection of event pat-
terns in the incoming stream.

State Processor API - provides functionality to read, write, and modify save
points and checkpoints using DataSet API. It also allows using relational Table
APIT or SQL queries to analyze and process state data.

Data Storage: Distributed File Systems. Distributed file systems allow
access to the files from multiple hosts, in addition to distributing the storage of
large files over multiple machines. Such systems mostly provide the interfaces
and semantics, similar to the existing local files systems, while the distributed
file system handles the network communication, data movement and distributed
directories seamlessly.

Hadoop Distributed File System (HDFS): HDFS, the main component
of the Hadoop ecosystem, has become the de facto standard for distributed file
systems [62]. It is known as the most reliable storage system. HDFS is designed
to run on commodity hardware, making it more popular for its cost-effectiveness.
In addition to working with the conventional file management commands (e.g. 1s,
rm, mkdir, tail, copy, etc), HDFS also works with a REST API that complies with
the FileSystem/FileContext interface for HDFS. HDF'S architecture is designed
to store very large files and does not suit models with large numbers of small
files. The files are split into blocks which are then distributed and replicated
across the nodes for fault-tolerance. HDF'S stores data reliably, even in the case
of hardware failure. HDFS provides parallel access to data, resulting in high
throughput access to application data.

Data Storage and Querying. RDBMS and SQL have remained the main
choice for data storage and management for organizations for years. Gradually,
the main strength of RDBMS technology (the fixed schema design) has turned
into its fundamental weakness in the era of big and heterogeneous data. Today’s
data appears in structured and unstructured forms and originates from a variety
of sources such as emails, log files, social media, sensor events etc. Besides, high
volumes of data are being generated and are subject to high rates of change. On
the other hand, one of the key characteristics of big data applications is that
they demand real-time responses, i.e. data needs to be stored, such that it can
be accessed quickly when required. The non-conventional, relatively new NoSQL
(not only SQL) stores are designed to efficiently and effectively tackle these big

52 H. Jabeen

data requirements. Not only do these stores support dynamic schema design
but they also offer increased flexibility, scalability and customization compared
to relational databases. These stores are built to support distributed environ-
ments, with the ability to scale horizontally by adding new nodes as demand
increases. Consistent with the CAP theorem (which states that distributed sys-
tems can only guarantee at most two properties from Consistency, Availability
and Partition tolerance), NoSQL stores compromise consistency in favour of
high availability and scalability. Generally, NoSQL stores support flexible data
models, provide simple interfaces and use weak consistency models by aban-
doning the ACID (Atomicity, Consistency, Isolation, and Durability) transac-
tions in favour of BASE (Basically Available, Soft state, Eventually Consis-
tent) transaction models. Based on the data models supported by these systems,
NoSQL databases can be categorised into four groups, i.e. key-value stores, doc-
ument stores, column-oriented stores and graph databases. The following section
describes these NoSQL database models in further detail and lists a few examples
of the technologies per model.

Key-Value Stores: Key-value stores can be categorised as the simplest
NoSQL databases. These stores are designed for storing schema-free data as
Key-Value pairs. The keys are the unique IDs for the data, and they can also
work as indexes for accessing the data. The Values contain the actual data in
the form of attributes or complex objects. All the values may not share the same
structure.

Examples: Redis, Riak KV, Amazon DynamoDB, Memcached, Microsoft
Azure Cosmos DB, and eted.

Document Stores: Document stores are built upon the idea of key-value
stores. They pair each key with a complex data structure described as a docu-
ment. These documents may contain different key-value pairs, key-array pairs or
even nested documents. The document stores are designed for storing, retriev-
ing and managing document-oriented information, also known as semi-structured
data. There is no schema that all documents must adhere to as in the case for
records in relational databases. Each document is assigned a unique key, which
is used to retrieve the document. However, it is possible to access documents
by querying their internal structure, e.g searching for a field with the speci-
fied value. The capability of the query interface is typically dependent on the
encoding format like XML or JSON.

Examples: CouchDB, MongoDB

Column-Oriented Stores: Column-oriented stores are also known as wide-
column stores and extensible record stores. They store each column continuously,
i.e. on disk or in-memory each column is stored in sequential blocks. Instead of
storing data in rows, these databases are designed for storing data tables as
sections of columns of data. Therefore, these stores enable faster column-based
analytics compared to traditional row-oriented databases.

Examples: Apache HBase, Cassandra

Chapter 3 Big Data Outlook, Tools, and Architectures 53

4 Harnessing Big Data as Knowledge Graphs

Today, the term big data is potentially misleading as the size is only one of many
important aspects of the data. The word big promotes the misconception that
more data means good data and stronger insights. However, it is important to
realise that data volume alone is not sufficient to get good answers. The ways we
distribute, organize, integrate, and represent the data matters as much as, if not
more than, the size of the data. In this section, we briefly cover the variety or the
heterogeneity of the data and the possibility of organizing this data as a graph.
Organizing the data as a graph has several advantages compared to alternatives
like database models. Graphs provide a more intuitive and succinct abstraction
for the knowledge in most of the domains. Graphs encode the entities as nodes,
and their relationships as edges between entities. For example, in social inter-
actions the edges could represent friendship, co-authorship, co-worker-ship, or
other types of relations, whereas people are represented as the nodes. Graphs
have the ability to encode flexible, incomplete, schema-agnostic information that
is typically not possible in the relational scenario. Many graph query languages
cannot only support standard operations like joins but also support specialised
operators like arbitrary path-finding. At the same time, formal knowledge repre-
sentation (based on Ontologies) formats could also be used to create Graphs in
a semantically coherent and structured representation (RDF, RDFS). The term
knowledge graph was popularised in 2012 by Google with the slogan “things
not strings” with an argument that the strings can be ambiguous but in the
Knowledge Graphs, the entities (the nodes in a Knowledge Graph) can be dis-
ambiguated more easily by exploiting their relationships (edges/properties) with
other entities. Numerous definitions of Knowledge Graphs have been proposed
in the literature, and a recent and generic definition portrays the “knowledge
graph as a graph of data intended to accumulate and convey knowledge of the
real world, whose nodes represent entities of interest and whose edges represent
relations between these entities” [199]. A high number of public, open, cross-
domain knowledge graphs have been created and published online. Examples
include DBPedia, Wikidata or YAGO, which are either created by the commu-
nity or extract knowledge from Wikipedia. Domain dependent open knowledge
graphs have also been published covering areas like geography, life sciences, and
tourism. At the same time, numerous enterprise knowledge graphs (mostly in-
house) are created by e.g. IBM, Amazon, Facebook, LinkedIn and many others.
The creation of these knowledge graphs mainly involves three methods.

Manual Curation e.g. Cyc, Wikidata, Freebase etc.

Creation using Semi-structured sources e.g. Wikipedia (from Wikipedia
infoboxes), YAGO (WordNet, Wikipedia etc.) BableNet etc.

Creation from Unstructured Sources e.g. NELL (free text), WebIsA (free
text)

As briefly discussed above, such graphs could be created schema-agnostically,
as well as using a formal ontology that defines the set of concepts and categories

54 H. Jabeen

in a given domain alongside their properties and the relations. The knowledge
contained in the knowledge graphs can be characterized around two main dimen-
sions: a) Coverage of a single domain, which can be defined by the number of
Instances. The instances depict the details covered in a given knowledge graph
in a particular area, and more instances mean more details. Coverage could fur-
ther be defined by the number of assertions, i.e. the relationships contained in
the graph. Also, the link degree (average, median) can also assist in estimation
of the coverage of the graph. For b) Knowledge Coverage (multiple domains),
one can consider the number of classes in the schema, the number of relations,
the class hierarchy (depth and width), or the complexity of schema can help in
assessing the breadth and depth of the knowledge covered by a given knowledge
graph. In practice, the graphs can differ in their sizes in orders of magnitude,
but the complexity (linkage) of smaller graphs could still be higher. Similarly,
the underlying schema could either be simple or rather deep and detailed. The
number of instances per class could vary; on the contrary, there could be fewer
instances per class, covering more classes in total. In conclusion, the knowledge
graphs differ strongly in size, coverage, and level of detail.

4.1 Graph Stores

In order to handle large sizes of this relatively new-hyped knowledge represen-
tation format, several tools have been created which can be categorised into two
types, one more general and simple, like graphs, and other relatively formal for
RDF data named as Triple Stores.

Graph Databases. Graph databases are based on graph theory and store
data in graph structures using nodes and edges connecting each other through
relations. These databases are designed for data containing elements which are
interconnected, with an undetermined number of relations between them. Graph
databases usually provide index-free adjacency, i.e. every element contains a
direct pointer to its adjacent elements and no index lookups are necessary. Exam-
ples: Neo4J, FlockDB, HyperGraphDB.

Triple Stores. Triple stores are database management systems for the data
modelled using RDF. RDF data can be thought of as a directed labelled graph
wherein the arcs start with subject URIs, are labelled with predicate URIs, and
end up pointing to object URIs or scalar values. This RDF data can be queried
using SPARQL query language. Triple stores can be classified into three cate-
gories: Native triple stores - Triple stores implemented from scratch exploiting
the RDF data model to efficiently store and access the RDF data. Examples:
Stardog, Sesame, OWLIM RDBMS-backed triple stores - Triple stores built by
adding an RDF specific layer to an existing RDBMS. Example: OpenLink Virtu-
0so NoSQL triple stores - Triple stores built by adding an RDF specific layer to
existing NoSQL databases. Example: CumulusRDF (built on top of Cassandra).

Chapter 3 Big Data Outlook, Tools, and Architectures 55

Efficient handling of large-scale knowledge graphs requires the use of dis-
tributed file systems, distributed data stores, and partitioning strategies. Apart
for several centralised systems, many recent graph processing systems have been
built using existing distributed frameworks, e.g. Jena-HBase [241] and H2RDF
[341], H2RDF+ [342] make use of HBase, Rya [363] makes use of Accumulo,
D-SPARQ [320] works using MongoDB. S2RDF [385], S2X [384], SPARQLGX
[168] and SparkRDF [78] handle RDF data using Apache Spark. The main idea
behind representing data as a graph is not only querying the data, but also
efficient knowledge retrieval including reasoning, knowledge base completion,
enrichment (from other sources), entity linking and disambiguation, path min-
ing, and many other forms of analytics. It can be seen from many recent surveys
[192,235,473] that several systems have been proposed in the literature to deal
with one or a few of the many aspects of large-scale knowledge graph processing.
It is important to realize this gap and the need for a scalable framework that
caters for different tasks for large-scale knowledge graphs.

5 Conclusion

This chapter connects the term big data and knowledge graphs. The first section
of this chapter provides an overview of big data, its major enabling technologies,
the key characteristics of big data, the challenges that it poses, and the necessary
activities to create a big data value chain. In the second section, we cover the
big data architectures and provide a taxonomy of big data processing engines.
In the last section, we connect the big data with large-scale knowledge graphs
covered in Chap.1 and Chap. 2 of this book. We discuss a few key technologies
and cover the possibilities and key challenges to harness large-scale knowledge
graphs.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-030-53199-7_1
http://dx.doi.org/10.1007/978-3-030-53199-7_2
http://creativecommons.org/licenses/by/4.0/

	Chapter3 Big Data Outlook, Tools, and Architectures
	1 Introduction
	2 Big Data: Outlook
	2.1 Key Technologies and Business Drivers
	2.2 Characteristics of Big Data
	2.3 Challenges of Big Data
	2.4 Big Data Value Chain

	3 Tools and Architectures
	3.1 Big Data Architectures
	3.2 Tools to Handle Big Data

	4 Harnessing Big Data as Knowledge Graphs
	4.1 Graph Stores

	5 Conclusion

