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Abstract. The rapid development of digital technologies, IoT products
and connectivity platforms, social networking applications, video, audio
and geolocation services has created opportunities for collecting/accu-
mulating a large amount of data. While in the past corporations used
to deal with static, centrally stored data collected from various sources,
with the birth of the web and cloud services, cloud computing is rapidly
overtaking the traditional in-house system as a reliable, scalable and cost-
effective IT solution. The high volumes of structures and unstructured
data, stored in a distributed manner, and the wide variety of data sources
pose problems related to data/knowledge representation and integration,
data querying, business analysis and knowledge discovery. This intro-
ductory chapter serves to characterize the relevant aspects of the Big
Data Ecosystem with respect to big data characteristics, the compo-
nents needed for implementing end-to-end big data processing and the
need for using semantics for improving the data management, integra-
tion, processing, and analytical tasks.

1 Introduction

In 2001, in an attempt to characterize and visualize the changes that are likely
to emerge in the future, Douglas Laney [271] of META Group (Gartner now)
proposed three dimensions that characterize the challenges and opportunities of
increasingly large data: Volume, Velocity, and Variety, known as the 3 Vs of big
data. Thus, according to Gartner

“Big data” is high-volume, velocity, and variety information assets that
demand cost-effective, innovative forms of information processing for
enhanced insight and decision making.

According to Manyika et al. [297] this definition is intentionally subjective
and incorporates a moving definition of how big a dataset needs to be in order
to be considered big data. Along this lines, big data to Amazon or Google (see
Table 1) is quite different from big data to a medium-sized insurance or telecom-
munications organization. Hence, many different definitions have emerged over
time (see Chap. 3), but in general, it refers to “datasets whose size is beyond the
ability of typical database software tools to capture, store, manage, and analyze”
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[297] and technologies that address “data management challenges” and process
and analyze data to uncover valuable information that can benefit businesses
and organizations. Additional “Vs” of data have been added over the years, but
Volume, Velocity and Variety are the tree main dimensions that characterize the
data.

The volume dimension refers to the largeness of the data. The data size in
a big data ecosystem can range from dozens of terabytes to a few zettabytes
and is still growing [484]. In 2010, the McKinsey Global Institute estimated that
enterprises globally stored more than 7 exabytes of new data on disk drives,
while consumers stored more than 6 exabytes of new data on devices such as
PCs and notebooks. While more than 800,000 Petabytes (1 PB = 1015 bytes) of
data were stored in the year 2000, according to International Data Corporation
expectations [346] this volume will exceed 175 zettabytes (1 PB = 1021 bytes) by
2025 [85].

The velocity dimension refers to the increasing speed at which big data is cre-
ated and the increasing speed at which the data need to be stored and analysed,
while the variety dimension refers to increased diversity of data types.

Variety introduces additional complexity to data processing as more kinds
of data need to be processed, combined and stored. While the 3 Vs have been
continuously used to describe big data, the additional dimensions of veracity
and value have been added to describe data integrity and quality, in what is
called the 5 Vs of big data. More Vs have been introduced, including validity,
vulnerability, volatility, and visualization, which sums up to the 10 Vs of big
data [138] (see Table 1). Regardless of how many descriptors are isolated when
describing the nature of big data, it is abundantly clear that the nature of big
data is highly complex and that it, as such, requires special technical solutions
for every step in the data workflow.

2 Big Data Ecosystem

The term Ecosystem is defined in scientific literature as a complex network or
interconnected systems (see Table 2). While in the past corporations used to deal
with static, centrally stored data collected from various sources, with the birth of
the web and cloud services, cloud computing is rapidly overtaking the traditional
in-house system as a reliable, scalable and cost-effective IT solution. Thus, large
datasets – log files, social media sentiments, click-streams – are no longer expected
to reside within a central server or within a fixed place in the cloud. To handle the
copious amounts of data, advanced analytical tools are needed which can process
and store billions of bytes of real-time data, with hundreds of thousands of transac-
tions per second. Hence, the goal of this book is to introduce definitions, methods,
tools, frameworks and solutions for big data processing starting from the process
of information extraction, via knowledge processing and knowledge representation
to storing and visualization, sense-making, and practical applications.
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Table 1. Big data characteristics

3 Vs Volume Vast amount of data that has to be captured, stored, processed and

displayed

Velocity Rate at which the data is being generated, or analyzed

Variety Differences in data structure (format) or differences in data sources

themselves (text, images, voice, geospacial data)

5 Vs Veracity Truthfulness (uncertainty) of data, authenticity, provenance,

accountability

Validity Suitability of the selected dataset for a given application, accuracy

and correctness of the data for its intended use

7 Vs Volatility Temporal validity and fluency of the data, data currency and

availability, and ensures rapid retrieval of information as required

Value Usefulness and relevance of the extracted data in making decisions

and capacity in turning information into action

10 Vs Visualization Data representation and understandability of methods (data clustering

or using tree maps, sunbursts, parallel coordinates, circular network

diagrams, or cone trees)

Vulnerability Security and privacy concerns associated with data processing

Variability the changing meaning of data, inconsistencies in the data, biases,

ambiguities, and noise in data

3 Components of the Big Data Ecosystem

In order to depict the information processing flow in just a few phases, in Fig. 1,
from left to right, we have divided the processing workflow into three layers:

– Data sources;
– Data management (integration, storage and processing);
– Data analytics, Business intelligence (BI) and knowledge discovery (KD).

Table 2. Examples of big data ecosystems

Facebook Facebook (2018) has more than two billion users on millions of servers, running thousands

of configuration changes every day involving trillions of configuration checks [310]

LinkedIn It takes a lot of horsepower to support LinkedIn’s 467 million members worldwide (in 2017),

especially when you consider that each member is getting a personalized experience and a

web page that includes only their contacts. Supporting the load are some 100,000 servers

spread across multiple data centers [215]

Alibaba The 402,000 web-facing computers that Alibaba hosts (2017) from China-allocated IP

addresses would alone be sufficient to make Alibaba the second largest hosting company in

the world today [321]

Google There’s no official data on how many servers there are in Google’s data centers, but Gartner

estimated in a July 2016 report that Google at the time had 2.5 million servers. Google

data centers process an average of 40 million searches per second, resulting in 3.5 billion

searches per day and 1.2 trillion searches per year, Internet Live Stats reports [390]

Amazon ... an estimate of 87 AWS datacenters in total and a range of somewhere between 2.8 and 5.6

million servers in Amazon’s cloud (2014) [301]

Twitter Twitter (2013) now has 150M worldwide active users, handles 300K queries per second

(QPS) to generate timelines, and a firehose that churns out 22MB/s. Some 400 million

tweets a day flow through the system and it can take up to 5min for a tweet to flow from

Lady Gaga’s fingers to her 31 million followers [197]

Such partition will allow the authors of this book to discuss big data topics
from different perspectives. For computer scientists and engineers, big data poses
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problems of data storage and management, communication, and computation.
For data scientists and statisticians responsible for machine learning models
development, the issues are how to get usable information out of datasets that are
too huge and complex for many traditional or classical methods to handle. From
an organizational viewpoint, business analysts are expected to select and deploy
analytics services and solutions that contribute mostly to the organizational
strategic goals, for instance, taking into consideration a framework for measuring
the organizational performance.

Data Sources. In a modern data ecosystem, the data sources layer is com-
posed of both private and public data sources – see the left side of Fig. 2. The
corporate data originates from internal systems, cloud-based systems, as well
as external data provided from partners and third parties. Within a modern
data architecture, any type of data can be acquired and stored; however, the
most challenging task is to capture the heterogeneous datasets from various ser-
vice providers. In order to allow developers to create new applications on top of
open datasets (see examples below), machine-readable formats are needed. As
such, XML and JSON have quickly become the de facto format for the web and
mobile applications due to their ease of integration into browser technologies and
server technologies that support Javascript. Once the data has been acquired, the
interlinking of diverse data sources is quite a complex and challenging process,
especially for the acquired unstructured data. That is the reason why semantic
technologies and Linked Data principles [51] have become popular over the last
decade [222]. Using Linked Data principles and a set of agreed vocabularies for
a domain, the input data is modeled in the form of resources, while the existing
relationships are modeled as a set of (named) relationships between resources.
In order to represent the knowledge of a specific domain, conceptual schemas
are applied (also called ontologies). Automatic procedures are used to map the
data to the target ontology, while standard languages are used to represent the
mappings (see Chap. 4). Furthermore, in order to unify the knowledge represen-
tation and data processing, standardized hierarchical and multilingual schemas
are used called taxonomies. Over the last decade, thousands of data reposito-
ries emerged on the web [48] that companies can use to improve their prod-
ucts and/or processes. The public data sources (statistics, trends, conversations,
images, videos, audios, and podcasts for instance from Google Trends, Twit-
ter, Instagram, and others [299]) provide real-time information and on-demand
insights that enable businesses to analyse user interactions, draw patterns and
conclusions. IoT devices have also created significant challenges in many indus-
tries and enabled the development of new business models. However, one of the
main challenges associated with these repositories is automatically understand-
ing the underlying structures and patterns of the data. Such an understanding
is a prerequisite to the application of advanced analytics to the retrieved data
[143]. Examples of Open Data Sources from different domains are:

http://dx.doi.org/10.1007/978-3-030-53199-7_4
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Fig. 1. From data to applications

– Facebook Graph API, curated by Facebook, is the primary way for apps to
read and write to the Facebook social graph. It is essentially a representation
of all information on Facebook now and in the past. For more info see here1.

– Open Corporates is one of the largest open databases of companies in the
world and holds hundreds of millions of datasets in essentially any country.
For more info, see here2.

– Global Financial Data’s API is recommended for analysts who require
large amounts of data for broad research needs. It enables researchers to study
the interaction between different data series, sectors, and genres of data. The
API supports R and Python so that the data can be directly uploaded to the
target application. For more info, see here3.

– Open Street Map is a map of the world, created by people free to use under
an open license. It powers map data on thousands of websites, mobile apps,
and hardware devices. For more info, see here4.

– The National Centers for Environmental Information (NCEI) is
responsible for hosting and providing access to one of the most significant
archives on Earth, with comprehensive oceanic, atmospheric, and geophysi-
cal data. For more info about the data access, see here5.

1 https://developers.facebook.com/docs/graph-api.
2 https://opencorporates.com/.
3 https://www.globalfinancialdata.com/.
4 https://www.openstreetmap.org/.
5 https://www.ncdc.noaa.gov/data-access.

https://developers.facebook.com/docs/graph-api
https://opencorporates.com/
https://www.globalfinancialdata.com/
https://www.openstreetmap.org/
https://www.ncdc.noaa.gov/data-access
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– DBPedia is a semantic version of Wikipedia. It has helped companies like
Apple, Google, and IBM to support artificial intelligence projects. DBpedia is
in the center of the Linked Data cloud presented in Fig. 2, top-right quadrant6.
For more info, see here7.

Data Management. As data become increasingly available (from social media,
web logs, IoT sensors etc.), the challenge of managing (selecting, combining, stor-
ing) and analyzing large and growing data sets is growing more urgent. From a
data analytics point of view, that means that data processing has to be designed
taking into consideration the diversity and scalability requirements of targeted
data analytics applications. In modern settings, data acquisition via near real-
time data streams in addition to batch loads is managed by different automated
processes (see Fig. 2, top-left quadrant presents an example of monitoring and
control of electric power facilities with the Supervisory, Control and Data Acqui-
sition Systems8 developed by the Mihajlo Pupin Institute. The novel architec-
ture [471] is ’flexible enough to support different service levels as well as optimal
algorithms and techniques for the different query workloads’ [426].

Over the last two decades, the emerging challenges in the design of end-to-
end data processing pipelines were addressed by computer scientists and software
providers in the following ways:

– In addition to operational database management systems (present on the
market since 1970s), different NoSQL stores appeared that lack adherence
to the time-honored SQL principles of ACID (atomicity, consistency, isolation,
durability), see Table 3.

– Cloud computing emerged as a paradigm that focuses on sharing data and
computations over a scalable network of nodes including end user computers,
data centers (see Fig. 2, bottom-left quadrant), and web services [23].

– The Data Lake concept as a new storage architecture was promoted where
raw data can be stored regardless of source, structure and (usually) size. The
data warehousing approach (based on a repository of structured, filtered data
that has already been processed for a specific purpose) is thus perceived as
outdated as it creates certain issues with respect to data integration and the
addition of new data sources.

The wide availability of big data also means that there are many quality
issues that need to be dealt with before using such data. For instance, data
inherently contains a lot of noise and uncertainty or is compromised because of
sensor malfunctioning or interferences, which may result in missing or conflicting
data. Therefore, quality assessment approaches and methods applicable in open
big data ecosystems have been developed [481].

6 www.lod-cloud.net.
7 https://wiki.dbpedia.org/.
8 http://www.pupin.rs/en/products-services/process-management/.

www.lod-cloud.net
https://wiki.dbpedia.org/
http://www.pupin.rs/en/products-services/process-management/
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Furthermore, in order to ensure interoperability between different processes
and interconnected systems, the semantic representation of data sources/processes
was introduced where a knowledge graph, from one side, meaningfully describes the
data pipeline, and from the other, is used to generate new knowledge (see Chap. 4).

Fig. 2. Components of big data ecosystem

Data Analytics. Data analytics refers to technologies that are grounded mostly
in data mining and statistical analysis [76]. The selection of an appropriate pro-
cessing model and analytical solution is a challenging problem and depends on
the business issues of the targeted domain [221], for instance e-commerce [416],
market intelligence, e-government [220], healthcare, energy efficiency [47], emer-
gency management [309], production management, and/or security (see Fig. 2,
bottom-right quadrant, example of Simulators and training aids developed by the
Mihajlo Pupin Institute). Depending on the class of problem that is being solved
(e.g. risk assessment in banks and the financial sector, predictive maintenance
of wind farms, sensing and cognition in production plants, automatic response
in control rooms, etc.), the data analytics solution also relies on text/web/net-
work/mobile analytical services. Here various machine learning techniques such
as association rule mining, decision trees, regression, support vector machines,
and others are used.

While simple reporting and business intelligence applications that generate
aggregated measurements across different predefined dimensions based on the
data-warehousing concept were enough in 1990s, since 1995 the focus has been
on introducing parallelism into machine learning [435].

http://dx.doi.org/10.1007/978-3-030-53199-7_4
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4 Using Semantics in Big Data Processing

Variety of Data Sources. In order to design and implement an adequate
big data processing architecture, as well as volume and velocity companies also
have to consider their ability to intercept the various available data sources. In
addition to the existing enterprise resource management systems, data produced
by a multitude of sources like sensors, smart devices and social media in raw,
semi-structured, unstructured and rich media formats further complicate the
processing and storage of data. Hence, different solutions for distributed stor-
age, cloud computing, and data fusion are needed [286]. In order to make the
data useful for data analysis, companies use different methods to reduce com-
plexity, downsize the data scale (e.g. dimensional reduction, sampling, coding)
and pre-process the data (data extraction, data cleaning, data integration, data
transformation) [456]. The heterogeneity of data can thus be characterized across
several dimensions:

– Structural variety refers to data representation; for instance, the satellite
images format is very different from the format used to store tweets generated
on the web;

– Media variety refers to the medium in which data gets delivered; for
instance, the audio of a speech versus the transcript of the speech may rep-
resent the same information in two different media;

– Semantic variety refers to the meaning of the units (terms) used to measure
or describe the data that are needed to interpret or operate on the data; for
instance, a ‘high’ salary from a service in Ethiopia is very different from a
‘high’ salary from a similar service in the United States;

– Availability variations mean that the data can be accessed continuously;
for instance, from traffic cameras, or intermediately, for instance, only when
the satellite is over the region of interest.

Semantic Variety and the Need for Standards. Attempts to explain the
uses of semantics in logic and computing date from the middle of the last cen-
tury. In the information processing domain, semantics refers to the “meaning
and meaningful use of data” [472], i.e., the effective use of a data object for
representing a concept or object in the real world. Since 1980, the Artificial
Intelligence community has been promoting the idea of feeding intelligent sys-
tems and agents with general, formalized knowledge of the world (see also the
panel report from 1997 Data Semantics: what, where and how? ) [398]. In 2001,
Sir Tim Berners-Lee, the Director of the Wide Web Consortium, outlined his
vision for the Semantic Web as an extension of the conventional Web and as a
world-wide distributed architecture where data and services easily interoperate.
Additionally, in 2006, Berners-Lee proposed the basic (Linked Data) principles
for interlinking linking datasets on the Web through references to common con-
cepts [51]. The standard for the representation of the information that describes
the concepts is RDF (Resource Description Framework). In parallel, the wider
adoption of standards for representing and querying semantic information, such
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as RDF(s) and SPARQL, along with increased functionalities and improved
robustness of modern RDF stores, have established Linked Data and seman-
tic technologies in the areas of data and knowledge management. As part of
the EC’Interoperability Solutions for European Public Administrations’ (ISA)9

program, with cooperation with W3C, core vocabularies have been adopted to
represent high-value datasets relevant for boosting innovative services.

Knowledge Engineering. Additionally, the scientific community has put a
great deal of effort into showcasing how knowledge engineering [26,92,221] can
take advantages from semantics-aware methods [222], which exploit knowledge
kept in (big) data to better reasoning on data beyond the possibilities offered by
more traditional data-instance-oriented approaches. With the announcement of
the Google Knowledge Graph in 2012, representations of general world knowl-
edge as graphs have drawn a lot of attention again [347].

To summarize, semantics principles can be used in big data processing for

– Representing (schema and schema-less) data;
– Representing metadata (about documentation, provenance, trust, accuracy,

and other quality properties);
– Modeling data processes and flows, i.e., representing the entire pipeline mak-

ing data representation shareable and verifiable.

The semantic representation of data in knowledge graphs (see Chap. 2), the
semantic processing pipeline (see Chap. 3, Chap. 5, Chap. 8), reasoning in knowl-
edge graphs (Chap. 6) and the semantic analysis of big data (Chap. 7) are the
main topics of this book and will be explained in more detail in the subsequent
chapters.

5 Big Data, Standards and Interoperability

Interoperability remains a major burden for the developers of the big data ecosys-
tem. In its EU 2030 vision, the European Union has set out the creation of an
internal single market through a standardised system of laws that apply in all
member states and a single European data [85] space – a genuine single mar-
ket for data where businesses have easy access to an almost infinite amount of
high-quality industrial data. The vision is also supported by the EU Rolling
Plan for ICT Standardisation [86] that identifies 170 actions organised around
five priority domains—5G, cloud, cybersecurity, big data and Internet of Things.
In order to enable broad data integration, data exchange and interoperability
with the overall goal of fostering innovation based on data, standardisation at
different levels (such as metadata schemata, data representation formats and
licensing conditions of open data) is needed. This refers to all types of (multi-
lingual) data, including both structured and unstructured data, and data from

9 https://ec.europa.eu/isa2/.

http://dx.doi.org/10.1007/978-3-030-53199-7_2
http://dx.doi.org/10.1007/978-3-030-53199-7_3
http://dx.doi.org/10.1007/978-3-030-53199-7_5
http://dx.doi.org/10.1007/978-3-030-53199-7_8
http://dx.doi.org/10.1007/978-3-030-53199-7_6
http://dx.doi.org/10.1007/978-3-030-53199-7_7
https://ec.europa.eu/isa2/
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different domains as diverse as geospatial data, statistical data, weather data,
public sector information (PSI) and research data, to name just a few.

In the domain of big data, five different actions have been requested that also
involve the following standardization organizations:

– CEN, the European Committee for Standardization, to support and assist
the standardisation process and to coordinate with the relevant W3C groups
on preventing incompatible changes and on the conditions for availability of
the standard(s). The work will be in particular focused on the interoperability
needs of data portals in Europe while providing semantic interoperability with
other applications on the basis of reuse of established controlled vocabularies
(e.g. EuroVoc) and mappings to existing metadata vocabularies (e.g. SDMX,
INSPIRE metadata, Dublin Core, etc.);

– CENELEC (the European Committee for Electrotechnical Standardization)
in particular in relation to personal data management and the protection of
individuals’ fundamental rights;

– ETSI (the European Telecommunications Standards Institute) to coordinate
stakeholders and produce a detailed map of the necessary standards (e.g.
for security, interoperability, data portability and reversibility) and together
with CEN to work on various standardisation deliverables needed for the
completion of the rationalised framework of e-signatures standards;

– IEEE has a series of new standards projects related to big data (mobile
health, energy-efficient processing, personal agency and privacy) as well as
pre-standardisation activities on big data and open data;

– ISO/IEC JTC1, WG 9—Big Data, formed at the November 2014 in relation
to requirements, use cases, vocabulary and a reference architecture for big
data;

– OASIS, in relation to querying and sharing data across disparate applications
and multiple stakeholders for reuse in enterprise, cloud, and mobile devices.
Specification development in the OASIS OData TC builds on the core OData
Protocol V4 released in 2014 and addresses additional requirements identified
as extensions in four directional white papers: data aggregation, temporal
data, JSON documents, and XML documents as streams;

– OGC, the Open Geospatial Consortium defines and maintains standards for
location-based, spatio-temporal data and services. The work includes, for
instance, schema allowing descriptions of spatio-temporal sensors, images,
simulations, and statistics data (such as “datacubes”), a modular suite of
standards for Web services allowing ingestion, extraction, fusion, and (with
the web coverage processing service (WCPS) component standard) analytics
of massive spatio-temporal data like satellite and climate archives. OGC also
contributes to the INSPIRE project;

– W3C, the W3C Semantic Web Activity Group has accepted numerous Web
technologies as standards or recommendations for building semantic applica-
tions including RDF (Resource Description Framework) as a general-purpose
language; RDF Schema as a meta-language or vocabulary to define properties
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and classes of RDF resources; SPARQL as a standard language for querying
RDF data: OWL, Web Ontology Language for effective reasoning. More about
semantic standards can be found in [223].

Table 3. History of big data

Year Description

1911 Computing-Tabulating-Recording Company was founded and renamed “International Business

Machines” (IBM) in 1924

1929 The term “Super Computing” was first used in the New York World to refer to large

custom-built tabulators that IBM had made for Columbia University

1937 Social security was introduced in the United States of America and the requirement arose for

data management of 26 million residents

1945 John Von Neumann published a paper on the Electronic Discrete Variable Automatic Computer

(EDVAC), the first “documented” discussion on program storage, and laid the foundations of

computer architecture today

1957 A group of engineers established the Control Data Corporation (CDC) in Minneapolis,

Minnesota

1960 Seymour Cray (CDC) completed the CDC 1604, one of the first solid-state computers, and the

fastest computer in the world at a time when vacuum tubes were found in most large computers

1965 The first data center in the world was planned

1969 ARPANET set a message was sent from UCLA’s host computer to Stanford’s host computer

1970 Edgar Frank Codd invented the relational model for database management

1976 SAS Institute delivered the first version of the “Statistical Analysis System”

1977 Oracle Corporation was founded in Santa Clara, California, U.S

1998 Google was founded at the Stanford University in California

1999 Apache software foundation was established

1989 The invention of the World Wide Web at CERN

2003 Google File System was invented

2004 World Wide Web Consortium (W3C), the main international standards organization for the

Web was founded

2005 The start of development on Apache Hadoop which came into production in 2008

2007 The first publicly available dataset on DBpedia was published by the Free University of Berlin

and the Leipzig University

2009 Yahoo released Pig and Facebook created Hive

2011 Start of real-time processing as opposed to batch processing with Apache Storm and Spark

2012 Creation of Kafka by LinkedIn, Google introduced its Knowledge Graph project

2013 The definition of the Lambda architecture for efficient big data processing

2014 The definition of the Kappa architecture and the beginning of hybrid data processing

6 Big Data Analytics

6.1 The Evolution of Analytics

Over the last 50 years, Data Analytics has emerged as an important area of
study for both practitioners and researchers. The Analytics 1.0 era began in
the 1950s and lasted roughly 50 years. As a software approach, this field evolved
significantly with the invention of Relational Databases in the 1970s by Edgar
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F. Codd, the development of artificial intelligence as a separate scientific disci-
pline, and the invention of the Web by Sir Tim Berners-Lee in 1989. With the
development of Web 2.0-based social and crowd-sourcing systems in the 2000s,
the Analytics 2.0 era started. While the business solutions were tied to relational
and multi-dimensional database models in the Analytics 1.0 era, the Analytics
2.0 era brought NOSQL and big data database models that opened up new pri-
orities and technical possibilities for analyzing large amounts of semi-structured
and unstructured data. Companies and data scientists refer to these two peri-
ods in time as before big data (BBD) and after big data (ABD) [100]. The
main limitations observed during the first era were that the potential capabili-
ties of data were only utilised within organisations, i.e. the business intelligence
activities addressed only what had happened in the past and offered no predic-
tions about its future trends. The new generation of tools with fast-processing
engines and NoSQL stores made possible the integration of internal data with
externally sourced data coming from the internet, sensors of various types, pub-
lic data initiatives (such as the human genome project), and captures of audio
and video recordings. Also significantly developed in this period was the Data
Science field (multifocal field consisting of an intersection of Mathematics &
Statistics, Computer Science, and Domain Specific Knowledge), which delivered
scientific methods, exploratory processes, algorithms and tools that can be easily
leveraged to extract knowledge and insights from data in various forms.

The Analytics 3.0 era started [23] with the development of the “Inter-
net of Things” and cloud computing, which created possibilities for establishing
hybrid technology environments for data storage, real-time analysis and intelli-
gent customer-oriented services. Analytics 3.0 is also named the Era of Impact
or the Era of Data-enriched offerings after the endless opportunities for capital-
izing on analytics services. For creating value in the data economy, Davenport
[100] suggests that the following factors need to be properly addressed:

– combining multiple types of data
– adoption of a new set of data management tools
– introduction of new “agile” analytical methods and machine-learning tech-

niques to produce insights at a much faster rate
– embedding analytical and machine learning models into operational and deci-

sion processes
– requisite skills and processes to work with innovative discovery tools for data

exploration
– requisite skills and processes to develop prescriptive models that involve large-

scale testing and optimization and are a means of embedding analytics into
key processes

– leveraging new approaches to decision making and management.

Nowadays, being in the Analytics 4.0 era or the Era of Consumer-controled
data, the goal is to enable the customers to have full or partial control over data.
Also aligned with the Industry 4.0 movement, there are different possibilities for
automating and augmenting human/computer communications by combining
machine translation, smart reply, chat-bots, and virtual assistants.
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6.2 Different Types of Data Analytics

In general, analytic problems and techniques can be classified into

– Descriptive - What happened?
– Diagnostic - Why did it happen?
– Predictive - What is likely to happen?
– Prescriptive - What should be done about it?
– Cognitive - What don’t we know?

Descriptive analytics focus on analyzing historic data for the purpose of
identifying patterns (hindsights) or trends. While statistical theory and descrip-
tive methodologies [7] are well documented in scientific literature, that is not
the case for other types of analytics, especially observing the big data and cloud
computing context.

Diagnostic analytics [364] discloses the root causes of a problem and gives
insight. The methods are treated as an extension to descriptive analytics that
provide an explanation to the question “Why did it happen?”.

Predictive analytics-based services apply forecasting and statistical mod-
elling to give insight into “what is likely to happen” in the future (foresight)
based on supervised, unsupervised, and semi-supervised learning models.

Prescriptive analytics-based services [281] answers the question “What
should I do?”. In order to provide automated, time-dependent and optimal deci-
sions based on the provided constraints and context, the software tools utilize
artificial intelligence, optimization algorithms and expert systems approaches.

Cognitive analytics is a term introduced recently in the context of cognitive
computing (see also Deloitte Tech Trends 2019 ). Motivated by the capability of
the human mind, and other factors such as changing technologies, smart devices,
sensors, and cloud computing capabilities, the goal is to develop “AI-based ser-
vices that are able to interact with humans like a fellow human, interpret the
contextual meaning, analyze the past record of the user and draw deductions
based on that interactive session” [174,176].

7 Challenges for Exploiting the Potential of Big Data

In order to exploit the full potential, big data professionals and researchers have
to address different data and infrastructure management challenges that cannot
be resolved with traditional approaches [72]. Hence, in the last decade, different
techniques have emerged for acquisition, storing, processing and information
derivation in the big data value chains.

In [404], the authors introduced three main categories of challenges as follows:

– Data challenges related to the characteristics of the data itself (e.g. data vol-
ume, variety, velocity, veracity, volatility, quality, discovery and dogmatism);

– Process challenges related to techniques (how to capture data, how to
integrate data, how to transform data, how to select the right model for
analysis and how to provide the results);
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– Management challenges related to organizational aspects such as privacy,
security, governance and ethical aspects.

Data, process and management challenges are interlinked and influence each
other.

7.1 Challenges

The 3 Vs of big data call for the integration of complex data sources (includ-
ing complex types, complex structures, and complex patterns), as previously
discussed. Therefore, scalability is considered to be a crucial bottleneck of big
data solutions. Following the problem with processing, storage management is
another unavoidable barrier regarding big data. Storing the huge quantity of
data between its acquisition, processing and analysis requires gigantic memory
capacity, thus rendering traditional solutions obsolete.

The inherent complexity of big data (data complexity) makes its percep-
tion, representation, understanding and computation far more challenging and
results in sharp increases in the computational complexity required compared to
traditional computing models based on total data. The design of system archi-
tectures, computing frameworks, processing modes, and benchmarks for highly
energy-efficient big data processing platforms is the key issue to be addressed
in system complexity [231]. Contemporary cloud-based solutions are also consid-
ered to be on the edge of feasibility since responsiveness can be a critical issue,
especially in real-time applications, where upload speeds are considered the main
bottleneck.

When simultaneously working with different data sources, the reliability of
collected data will inevitably fluctuate with missed, partial and faulty measure-
ments being unavoidable, resulting in serious potential trouble later on in the
workflow, such as in the analytics stage. Hence, high-quality data management
(i.e. data cleaning, filtering, transforming and other) actions are mandatory at
the beginning of the process. Besides reliability, the correctness of the data is
considered to be a key aspect of big data processing. High volumes, unstructured
forms, the distributed nature of data in NoSQL data management systems and
the necessity of near-to-real-time responses often lead to corrupted results with
no method being able to guarantee their complete validity.

Other quality dimensions, that impact the design of a big data solution are
completeness, consistency, credibility, timeliness and others.

For instance, in real-time applications (e.g. stock market, financial fraud
detection and transactions parsing, traffic management, energy optimization
etc.), quick responses are required and expected immediately because the
retrieved information can be completely useless if it is derived with high latency
with respect to the collected data.

An additional challenge from the human-computer perspective is the visu-
alization of results. Although various ways in which the data can be displayed
do not affect the data processing segment in any way, visualization is stated in
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the literature as a crucial factor because without adequate representation of the
results, the derived knowledge is useless.

Depending on the type of data being processed, security can sometimes be a
crucial component that requires special attention. When considering, for exam-
ple, a weather forecast or public transport management use case, if a data loss or
theft occurs, it can be considered practically irrelevant compared to a situation
where personal information, names, addresses, location history, social security
information or credit card PIN codes are stolen because in the latter case, data
protection must be upheld at the highest possible standard.

7.2 Example: Analysis of Challenges and Solutions for Traffic
Management

Smart transportation is one of the key big data vertical applications, and refers to
the integrated application of modern technologies and management strategies in
transportation systems. Big data platforms available on the market contribute
to a great extent to smart management of cities and the implementation of
intelligent transportation systems. In order to showcase the usage of different
type of data analytics and to strengthen the discussion on challenges, we will
point to the traffic management system used for monitoring highways in Serbia
[366]. Highways and motorways control systems generate a high volume of data
that is relevant for a number of stakeholder’s from traffic and environmental
departments to transport providers, citizens and the police. The Fig. 3 below
points to (a) the European corridors, and (b) the Corridor 10 that is managed in
Serbia by the public enterprise “Roads of Serbia” using a control system provided
by Institute Mihajlo Pupin. Its holistic supervisory function and control includes
(a) toll collection and motorway and highway traffic control, and (b) urban traffic
control and management. The main challenges on EU level are related to:

Fig. 3. Traffic management
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– Interoperability of tolling services on the entire European Union road net-
work because the ones introduced at local and national levels from the early
1990s onwards are still generally non-interoperable;

– Smart mobility and the need of users to be more informed about different
options in real-time;

– the need for efficient and effective approaches for assessment and manage-
ment of air pollution due to improved ambient air quality.

The main components of the traffic control system are:

– The toll collection system10, which is hierarchically structured; it is fully
modular, based on PC technology and up-to date real time operation systems,
relational data base system and dedicated encryption of data transmission.
Toll line controllers are based on industrial PC-technology and dedicated elec-
tronic interface boards. The toll plaza subsystem is the supervisory system
for all line controllers. It collects all the data from lane controllers including
financial transactions, digital images of vehicles, technical malfunctions, line
operators’ actions and failures. All data concerning toll collection processes
and equipment status are permanently collected from the plaza computers
and stored in a central system database. The toll collection system also com-
prises features concerning vehicle detection and classification, license plate
recognition and microwave-based dedicated short-range communications.

– The Main Control Centre is connected through an optical communication
link with the Plaza Control Centres. Also, the Control Centre is constantly
exchanging data with various institutions such as: banks, insurance compa-
nies, institutions that handle credit and debit cards, RF tags vendors, etc.
through a computer network. Data analytics is based on data warehouse
architecture enabling optimal performances in near real time for statistical
and historical analysis of large data volumes. Reporting is based on optimized
data structures, allowing both predefined (standardized) reports as well as
ad hoc (dynamic) reports, which are generated efficiently using the Oracle BI
platform. Data analytics includes scenarios, such as
• Predicting and preventing road traffic congestion analytics is used

to improve congestion diagnosis and to enable traffic managers to proac-
tively manage traffic and to organize the activities at toll collection sta-
tions before congestion is reached.

• Strategic environmental impact assessment analytics is used to
study the environmental impact and the effect of highways on adjacent
flora, fauna, air, soil, water, humans, landscape, cultural heritage, etc.
based on historical and real-time analysis. Passive pollution monitoring
involves collecting data about the diffusion of air pollutants, e.g. emis-
sion estimates based on traffic counting. Passive pollution monitoring has
been used to determine trends in long-term pollution levels. Road traffic
pollution monitoring and visualization requires the integration of high
volumes of (historical) traffic data with other parameters such as vehicle

10 http://www.pupin.rs/en/products-services/traffic-control-systems/pay-toll/.

http://www.pupin.rs/en/products-services/traffic-control-systems/pay-toll/
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emission factors, background pollution data, meteorology data, and road
topography.

Here, we have pointed to just one mode of transport and traffic management,
i.e. the control of highways and motorways. However, nowadays, an increasing
number of cities around the world struggle with traffic congestion, optimizing
public transport, planning parking spaces, and planning cycling routes. These
issues call for new approaches for studying human mobility by exploiting machine
learning techniques [406], forecasting models or through the application of com-
plex event processing tools [135].

8 Conclusions

This chapter presents the author’s vision of a Big data ecosystem. It serves as an
introductory chapter to point to a number of aspects that are relevant for this
book. Over the last two decades, advances in hardware and software technolo-
gies, such as the Internet of Things, mobile technologies, data storage and cloud
computing, and parallel machine learning algorithms have resulted in the ability
to easily acquire, analyze and store large amounts of data from different kinds
of quantitative and qualitative domain-specific data sources. The monitored and
collected data presents opportunities and challenges that, as well as focusing on
the three main characteristics of volume, variety, and velocity, require research
of other characteristics such as validity, value and vulnerability. In order to auto-
mate and speed up the processing, interoperable data infrastructure is needed
and standardization of data-related technologies, including developing metadata
standards for big data management. One approach to achieve interoperability
among datasets and services is to adopt data vocabularies and standards as
defined in the W3C Data on the Web Best Practices, which are also applied in
the tools presented in this book (see Chaps. 4, 5, 6, 7, 8 and 9).

In order to elaborate the challenges and point to the potential of big data,
a case study from the traffic sector is presented and discussed in this chapter,
while more big data case studies are set out in Chap. 9 and Chap. 10.
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