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Abstract. A key issue in mathematics education is supporting students in
developing general problem-solving skills that can be applied to novel, non-
routine situations. However, typical mathematics instruction in the U.S. too
often is dominated by rote learning, without exposing students to the underlying
reasoning or alternate ways to solve problems. As a first step in addressing this
problem, we present a cognitive task analysis study that investigates how stu-
dents without a mathematics-related background solve novel non-routine
problems. We found that most students were able to identify the underlying
pattern that yields the final solution in each problem. Furthermore, they tended
to use various forms of visualization in their draft work, but occasionally made
computational mistakes. Based on these results, we propose our plan for
developing an instructional platform that leverages learning science principles to
train students in problem-solving abilities.
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1 Introduction

The ability to tackle non-routine problems – those that cannot be solved with a known
method or formula and require analysis and synthesis as well as creativity [9] – is
becoming increasingly important in the 21st century [5]. However, when faced with a
non-routine problem, U.S. students tend to apply memorized procedures incorrectly
rather than modify them or develop new solutions [8]. One possible source for this
difficulty is the typical instructional focus in U.S. schools on memorization and
application of routine procedures [2, 6, 7]. Such an approach makes students proficient
at executing rote procedures, but it does little to help them understand the conceptual
basis for the procedures or to think creatively about novel problems - both of which are
essential for developing problem-solving flexibility.

An important first step in addressing this issue is to assess how students currently
approach non-routine problem solving, so that we can design the appropriate learning
interventions. In this work, we present an empirical cognitive task analysis where
participants were asked to think aloud while solving a series of non-routine problems
from discrete mathematics. We chose this domain because discrete math problems can
often be tackled from multiple perspectives while not requiring any advanced back-
ground beyond the high school curriculum [3]. Based on the findings from this study,
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we propose our plan for developing a tutoring system for non-routine problem-solving
ability. Then, we discuss the system’s broader implications and the challenges we need
to address in deploying this system at scale.

2 Assessing Students’ Problem-Solving Skills

We conducted interview sessions with three students at a private university in a
midwest US city. None of the students had a mathematics-related background. The
participants were asked to solve three non-routine mathematics problems on paper in
one hour. They were also encouraged to think aloud and write down their draft work.
The three problems in our study, taken from [3], and a brief summary of their sample
solutions, are as follows.

Problem 1: In an air show there are twenty rows. The first row contains one seat, the
second three seats, the third five seats, the fourth seventh seats, and so on. How many
seats are there in total?

Sample solution: In the first row there is 1 seat. In the first two rows there are
1 + 3 = 4 seats. In the first three rows there are 1 + 3 + 5 = 9 seats. In the first four
rows there are 1 + 3 + 5 + 7 = 16 seats. In the first five rows there are
1 + 3 + 5 + 7 + 9 = 25 seats. Based on this pattern, in the first k rows there are k2

seats. In our case, there are 20 rows and therefore 400 seats in total.

Problem 2: Find all integers between 1 and 99 (inclusive) with all distinct digits.
Sample solution: there are 99 integers between 1 and 99 in total, and 9 of them have

non-distinct digits, namely 11, 22, 33, …, 88, 99. Hence, the remaining 90 integers
have distinct digits.

Problem 3: What is the digit in the ones place of 257?
Sample solution: Looking at the sequence of powers of 2–2, 4, 8, 16, 32, 64, 128,

256, 512, 1024, … – we see that the corresponding sequence of digits in the ones
places is 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, … In other words, this sequence is a cycle of length
4. Therefore the last digit of 257 is that of 253, which is that of 249, …, which is that of
21, which is 2.

We then analyzed recordings of the participants’ think-aloud and their draftwork,
from which we derived the following insights:

Pattern Identification. Participants were aware that they had to find a pattern or
formula to solve the problems, because it was not feasible to directly compute the final
answer. All participants were able to identify the expected pattern for each problem as
outlined above, except for one student who failed to do so for Problem 1. While this
participant realized that the number of seats on row k is the k-th positive odd number,
this pattern alone was insufficient to solve the problem.

Visualization. Participants tended to visualize the problem by drawing examples and
making lists or tables (Fig. 1). They expressed that these visualizations were crucial in
helping them identify the correct pattern and solve the problem.
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Computation. Participants occasionally made computational mistakes while calcu-
lating the initial sequence values, especially in Problem 3. As a consequence, they
could not identify any pattern based on the wrong values, and took some time to realize
the mistake. All students who corrected their mistakes were able to subsequently solve
the problem.

In summary, we found that participants were aware of the idea behind identifying
patterns, and they all did so via some kind of visualization. On the other hand, com-
putational mistakes, while not directly related to our learning objectives, can be
detrimental to the overall problem-solving process. From these insights, we propose the
following next steps.

3 Developing a Tutoring System for Flexible
Problem-Solving

Moving forward, our plan is to iteratively conduct more cognitive task analysis
interviews and develop a prototype of the system. Our initial conceptualization of how
the system will work is as follows. A single round of exercise in the system incor-
porates four learning stages, all of which are built on established learning principles: 1)
Reviewing a worked example of a non-routine mathematics problem, 2) Explaining the
worked example to a partner, 3) Solving a new problem which is isomorphic to the
worked example problem, and 4) Explaining the isomorphic solution to a partner.
Between rounds, the student can review previous solutions, look at materials related to
the problem space, or practice basic math skills. This design is intended to (1) formally

Fig. 1. Participants’ attempts at visualizing the problem in their draftworks.
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introduce students to a complete solution through worked examples, (2) reinforce their
understanding of the worked example through self-explanation, and (3) assess students’
learning through an isomorphic problem. Our hypothesis is that through the learning
system, students will get a better sense of how to approach a novel non-routine
problem, so that in case they have not yet found the solution – for example, like the
participant in our study who did not identify the true pattern in Problem 1 – they can
still adopt a different viewpoint and explore other strategies.

We have already begun mapping the problem space by developing a non-routine
problem-solving flowchart and identifying sets of potential non-routine problem
solutions. Once we have tested our solution space, we will develop and pilot a low
fidelity paper prototype version of the system with college students to further refine the
mathematical content and identify areas for revision to the design. We are also looking
at which technological features could be useful for students learning in this domain. As
a first step, our system will include a canvas for students to perform their draftwork on,
as well as a simple calculator interface with basic arithmetic operations to help students
avoid computational mistakes. An important follow-up question is whether students’
draftwork can be analyzed to infer their thinking process, which could in turn guide the
design of appropriate feedback mechanics. While this task has previously been per-
formed manually by domain experts [1], employing a machine learning technique to
automate it to some extent would greatly enhance the system’s adaptive support
functionality and scalability.

4 Conclusion

This research will provide concrete, generalizable evidence about the utility and
implementation of worked examples, multiple solutions, and self-explanation to pro-
mote skills in non-routine problem solving. Results will inform future tutoring system
design by identifying how and when the instructional features are most beneficial for
developing problem-solving skills. We also intend to have a practical impact by dis-
tributing a tutoring system that is accessible to a wide range of students, including
lower-performing students who would typically not be exposed to these types of
problems and strategies [1, 4]. In addition, we will provide a teacher’s guide to support
educators in using the system adaptively to support their instructional goals.
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