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1 Introduction

The broad deployment, as well as the increasingly difficult manufacturing of in-
spec semiconductors long make reliable operation and failures across the lifetime of
an embedded system one of the industry’s main concerns. Since ever-increasing
demands do no longer allow us to resort to “robust” technologies, other means
than semiconductor technology have to fill the gap left by cutting-edge technologies
without resorting to unrealistic mainframe like protection mechanisms. As the oper-
ation scenarios become ever more challenging as well (edge computing, intelligent
IoT nodes), hardware architects are faced with ever tighter power budgets for
continuously increasing compute demands. We, therefore, proposed to exploit the
architectural redundancies provided by potent, yet energy efficient massively par-
allel architectures, modeled using Dynamically Reconfigurable Processors (DRP).
Using DRPs, we built an extensive cross-layer approach inspired by the overall
project’s approach as laid out in [1]. Following the idea of cross-layer reliability
approaches, we built interfaces reaching from software layers right down to the
transistor level mainly through computer architecture, allowing us to address both
the varying reliability requirements and the significant computational demands of
prospective workloads.

Figure 1 shows an overview of the layers this project targeted as described
in the previous paragraph. While a strong focus has been on architecture, the
project’s aim was to use computer architecture to connect to the layers above and
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Fig. 1 Main abstraction layers of embedded systems and this chapter’s major (green, solid) and
minor (yellow, dashed) cross-layer contributions

below. We show how DRP architectures can leverage their inherent architectural
redundancies to realize various degrees of reliable computing. On one end of the
spectrum, we highlight how triple modular redundancy (TMR) and duplication with
comparison (DWC) compute modes can be realized to actively secure computations
without permanently binding hardware resources and with only slight hardware
overheads. On the other end of the spectrum, we show how fault-free operation
can be passively ascertained by periodically testing SoC components. Both, active
and passive concepts together with the architectural redundancies allow for graceful
degradation by pinpoint failure detection and subsequently dynamically remapping
applications. Once established, both graceful degradation and low-cost TMR for
critical parts of applications can be used to make specific operations in processor
cores reliable by using the DRP or the demonstrated concepts as a reliable pipeline
within a processor core.

A central point of the proposed methods is an overarching cross-layer approach
[1], tying together these methods from the software layers (Application, Operating
System) to all hardware layers below down to the semiconductor through the
concepts introduced by our DRP architecture. To enable a reach down to the
circuit level, we exemplarily used the extensive Body Biasing capabilities of Fully
Depleted Silicon on Insulator (FDSOI) processes as a means for transistor-level
testing and manipulation. This access down to the transistor level enables continuous
monitoring of the precise hardware health and thereby not only reactive measures
in case of hardware failure but also proactive measures to prevent system failure
and prolong system lifetime if the hardware starts exhibiting signs of wear. Access
to the device state also multiplies the reliability and system health options on
the software layer. With previously having the choice of using TMR/DWC to
minimize the error probability, we also show how DVFS with Body Biasing can
offer both high power but highly reliable over spec versus ultra-low-power but
risky computing modes. These modes’ long-term effects further multiply the set of
operation modes, e.g., slowing down or speeding up degenerative effects such as Hot
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Carrier Injection (HCI) or Negative Bias Temperature Instability (NBTI). However,
with access to actual transistor parameters, the proposed approach also indicates
that even permanent degeneration such as HCI can be temporarily overcome [2]
to prolong system lifetime long enough to extend the graceful degradation period
beyond conventional physical limits. Or to put it in the spirit of the parallel NSF
effort [3], by opportunistically filling the technology gap using cross-layer methods,
there are more means to approach and exploit the hardware’s sheer physical limits.

Within this project, we also faced the challenge of how such cross-layer
approaches can be realistically validated and evaluated. While Software layers down
to the RTL level allow, e.g., fault injection through instrumentation or emulation, the
computational effort quickly becomes too large for realistically sized test samples.
Furthermore, going below the gate level offers an entirely new set of challenges,
both calling for appropriate solutions. For the layers from Software to RTL, we
chose to implement the entire system as a prototype on an FPGA. For this FPGA,
in turn, we developed a precise fault-injection mechanism so we could emulate the
entire SoC with specific faults present. For the gate level and below, we devised
a mix of SPICE simulations, and for body bias effect evaluation we ran in-silicon
evaluations at the laboratory of Professor Amano at Keio University.

This chapter is structured as follows. Since reliability threats and how such
threats surface has been covered in the general introduction, Dynamically Recon-
figurable Processors are briefly introduced. The next section directly dives into how
the inherent architectural redundancy can be put to use to increase the reliability of
computations, as well as how to test these techniques. In the following two sections,
the focus then shifts to both ends of the abstraction layers by focussing on how
to infer the device state at the transistor level and potentially also recovering from
a faulty state using body biasing together with how decisions on the software or
operating system level affect the transistor level. The last technical section before
wrapping up then brings all levels together by highlighting the interplay between
each layer and the synergistic gain thereby achieved.

2 Dynamically Reconfigurable Processors

Dynamically reconfigurable architectures, or short DRP, are a sub-category of
so-called coarse-grained reconfigurable architectures (CGRA). Similar to Field
Programmable Gate Arrays (FPGA), CGRAs are reconfigurable architectures;
however, in contrast to FPGAs, CGRAs are reconfigurable on a far coarser level.
That is, while FPGAs can efficiently map per-bit configurability, CGRAs only
allow reconfigurability on word-sized units. While this restriction makes CGRAs
unfavorable for random bit logic, CGRAs possess a far greater area and energy
efficiency as the logic overhead for reconfigurability per bit is far lower. DRPs add
the concept of dynamic reconfiguration to CGRAs by having on-chip memories for
multiple configurations, or contexts, as instructions are often called in DRPs. As the
keyword instruction already hints, DRPs resemble much more simple processors
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Fig. 2 Exemplary DRP
instance with additional
controllers and I/O buffers

than classical reconfigurable architectures, hence this reconfiguration mechanism is
also often referred to processor-like reconfiguration.

DRPs at the point of writing date back more than 25 years which makes an
exhaustive overview unfeasible. Instead, three different cited surveys shall give
both a historical, functional, and up-to-date introduction to the field. De Sutter
et al. [4] take a processor-centric view on CGRA architectures using the concept
of instruction slots, that is logic where instructions can be executed. These units
are connected using a simple form of interconnect like, e.g., nearest neighbor
interconnect, and all have shared, or as De Sutter et al. describe them, distributed
register files.

On the other hand, Hideharu Amano defines CGRAs and DRPs from a general
hardware perspective. In [5], he defines a DRP to be an array of coarse-grained
cells as depicted in Fig. 2, so-called PEs, consisting of one or multiple ALU and/or
functional units (FU), a register file and a data manipulator [5]. The third and
last survey cited for the purpose of an encompassing definition takes a similar
approach as the authors of this chapter. In [6], Kiyoung Choi characterizes CGRA
and by extension also DRPs via configuration granularity. All authors’ definitions
encompass an array of PEs and possess dynamic reconfiguration or processor-like
execution and thus DRPs as architectural concept range from small reconfigurable
DSP like blocks to many-core processors.

In theory, this allows the generalization of findings obtained in DRPs to be
extended to far more complex brethren. In practice, however, the definition is
restricted by precisely the architectural complexity as DRPs aim to be more energy
efficient in more specialized fields other than, e.g., GPGPUs. This becomes also
apparent in the general lack of complex caches and big register files, as well as
simplistic, spatial interconnects that reduces both register file accesses and long
and energy inefficient data transfers [4, 5]. For the purpose of this research project,
this minimalism was a welcome attribute as it allowed an abstraction of far more
complex architectures while maintaining generality. For this reason, we refer to the
cited surveys [4–6] for comprehensive coverage of concrete DRP architectures.
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3 Exploiting Architectural Redundancy for Increased
Reliability

3.1 Realizing Low-Cost TMR Using PE Clusters

Among the most apparent aspects of DRPs is their regular structure. One of the first
investigations published in [7] therefore sought to utilize the structural redundancy
to increase DRPs’ reliability by implementing the quasi-gold standard of fault-
tolerance, triple modular redundancy (TMR). The biggest issue of TMR and also
the reason why it is only used in critical systems is the prohibitively high cost,
i.e., everything that is secured through TMR is triplicated. These triplicated copies
then have to perform the exact same operation, and at given checkpoints or most
commonly at the block level of the covered component, the outputs are compared. If
an error surfaced, the correct result, as well as the faulty component, are determined
through a majority vote. The big drawback of this technique is the high cost, both
in circuit size since three copies are required, as well as in power consumption
as all have to perform the same operation all the time. This makes TMR unviable
for all but the most critical applications. With reconfigurable hardware, such as
DRPs, however, hardware resource can be dynamically allocated. Given the addition
of error detection components, the penalty of TMR can be severely reduced as
resources do not have to be committed in a hard-wired fashion, but can be reassigned
temporally, or, TMR could be dynamically used for specially flagged parts of a
program only.

Figure 3 depicts a simplified representation of the Flexible Error Handling
Module. It consists of an actual data error detection module, containing a three-
input comparator. The comparator results are fed to the voter and the timing error
detection. The voter determines the correct results through a majority vote and feeds
the correct channel selection to the multiplexer which then forwards the result that

Fig. 3 The flexible error
handling module (FEHM)
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is now presumed to be correct to the next PE or out of the DRP. The timing error
detection samples the comparison results in a double buffer on Clk the clock signal
as well as on a slightly delayed clock signal. If the double buffer’s contents on each
sample are not the same, a timing error occurred and will be appropriately signaled.
Similarly, if not all comparison results are equal in the first place, it will raise a
data error signal. The entire module’s functionality is controlled using the Mode
signal. Using this signal, the FEHM can be turned off, to Duplicate with Comparison
(DWC) mode or to full TMR mode.

This switch is central to the original goal of attaining TMR at lower cost: By
making the mode signal part of the instruction word, not only does this free up
TMR resources when TMR is not required, but it also allows for some degradation
to DWC. Evaluations of this low-cost TMR evaluation showed that even if it is
used in relatively primitive DRP architectures with very fine-grained data words, the
additional hardware amounts for approximately a 6% increase in area. The power
consumption, on the other hand, increased by about 7.5% which can be attributed
to the constantly used XOR-OR trees and double buffers used for comparison and
timing error detection.

3.2 DRPs as Redundancy for CPU Pipelines

CPUs as central control units in SoCs take a vital role and thus are of great
interest for reliability. However, at the same time, they are among the most difficult
components to harden against any type of fault if blunt and costly instruments
such as TMR are avoided. The extreme degree of dynamism and control involved
in CPUs make static redundancy schemes like TMR virtually mandatory if an
error-free operation needs to be guaranteed. But if some tradeoffs are permissible,
dynamic redundancy schemes can be alternatively used. Such tradeoffs can be
for example an absolute time limit until recovery has to complete. In both cases,
however, some form of spare component is required.

While DRPs will not be able to take over a CPU’s main functions, they certainly
could serve as spare compute pipeline [8], thus reducing the parts that need to be
hardened using conventional methods. Placing a DRP into a processor’s pipeline
is not a novel idea such as [9] or [10] demonstrated and makes much sense from
an acceleration point of view. However, as this chapter shall highlight, they might
be a good pick concerning reliability as well. When used as a static redundancy
as depicted in Fig. 4 (left), DRPs can make use of their structural redundancies
to provide for additional samples computed in parallel to realize true TMR. The
low-cost TMR method proposed in the previous section, on the other hand, can
add an additional level of reliability so that the DRP’s results can be trusted and
false-positives effectively prevented. As dynamic redundancy or as a spare, the
DRP can take over functionality if an error has been detected using other means
as depicted in Fig. 4 (right). The viability of this approach has been validated in a
model implementation inspired by ARM’s Cortex-M3 microcontroller. This serves
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Fig. 4 DRP serving as static redundancy (left) and as dynamic redundancy (right)

as an interesting choice as ARM has its line of cores for safety-critical applications,
the so-called ARM Cortex-R series with support for dual-core lock-step [11]. The
results of this study as published in [8] showed that as long as support for division
units is omitted in the DRP, the area overhead is far lower than the 100% overhead
of an additional core, however, while of course leaving out other components to be
secured separately. In this particular study, a 2 by 2 PE array, that is 4 PEs have
been integrated into the CPU pipeline. Additionally, instructions and infrastructure
to utilize the DRP have been added. Comparing the incurred overheads to a single-
core implementation without any reliability measures, the area overhead for an
implementation without hardware implemented division amounted to 20%. While
this might not be an entirely fair comparison, division implementations in DRPs
have a greater impact due to the far greater number of processing elements.

3.3 Dynamic Testing

In contrast to critical applications, SoCs often also accommodate non-essential
functionality. For these applications, running all parts in TMR mode might be
wasteful, yet a certain temporal assurance would be desirable. For example, in case
of infotainment, brief dysfunction might be tolerable, but if functionality cannot be
restored within a given amount of time, actual damage ensues. To avoid TMR or
DWC for all applications and to implement time and probability based levels of
reliability, we proposed a dynamic testing scheme for reconfigurable hardware.

Dynamic testing or also often called online testing as defined by Gao et al. [12]
describes a testing method where for a known algorithm implemented in a certain
component, input samples, and associated output samples are obtained and then
recomputed separately. If the recomputation’s results match the output samples, no
error is present. If there is a mismatch, an error of the tested component is assumed.

Specifically using DRPs for dynamic testing has a big advantage: the choice
between utilizing the temporal and spatial domains. Instead of competing with
applications for resources on the DRP, dynamic testing resources can be allocated
temporally and inserted interleaved with applications’ instructions to be executed
in a time-multiplexed fashion. By moving and interleaving into the time domain,
testing becomes slower. However, for most non-critical applications, a couple of
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seconds before a system returns to a functioning state can be tolerated. Furthermore,
the spatial domain allows alternating the compute units used to recompute the
samples, further making false-positives less likely apart from the error checking
conducted during TMR usage.

While these two aspects make DRPs appealing for such testing schemes, time-
multiplexing restricting testing to time-windows TT W and further mapping into the
temporal domain slowing down testing by a scaling factor s in combination with the
probabilistic nature of error occurrence and detection make any estimation rather
difficult. Therefore, Monte Carlo simulations can be used to estimate the behavior of
dynamic testing accounting for all DRP specific aspects. For example, aspects such
as reconfiguration overhead TOV which has to be deducted from time-windows TT W

as well as scaling factors which reduces the number of samples that can be computed
within one TT W to detect a fault with an observation probability of q.

Consider Fig. 5, depicting a feasibility plot to detect a fault with an observation
probability of q = 10−5 and a reconfiguration overhead of 1ms. The goal in this
experiment was to detect such a fault within 2 s. The red striped regions indicate
that here, it would take more than 2 s to detect the fault, whereas shades from white
(fastest) to black indicate increasing detection latency DL. This result shows that
even if the temporal domain is massively utilized at e.g. s = 77, the deadline of 2 s is
still met at DL = 1.7 s with a time-window of 2ms for computations thus allowing
to use spatially extremely compact mappings for fault detection. This compaction
also allows to further share the DRPs resources to conduct periodic checks of the
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Fig. 5 Dynamic testing feasibility for a detection latency DL of 2 s by scaling factor s and time-
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entire surrounding SoC, expanding the reach of a reliable DRP to other system
components as well.

3.4 Dynamic Remapping

Having various reliable ways to detect errors is vital as any reaction to a false-
positive would just turn any reliability mechanism against itself. With low-cost TMR
and dynamic testing, we have ways to detect errors and in the TMR case even to
mask them. However, once a permanent fault is present and errors surface, TMR
degrades to DWC, and dynamic testing is also limited to reasserting the error’s
presence over and over again. As DRPs are a class of reconfigurable hardware,
to restore proper functionality, the applications have to be mapped anew avoiding
faulty components. To do this, however, the remapping method and sufficient
mapping resources are required.

In case of the FEHM equipped DRP used for our studies, two dimensions of
redundancies can be utilized to run the application on unaffected PEs of the DRP.
(1) spatially moving the application part of one faulty PE to a fault-free unused
PE and (2) temporally adding the application part to an unaffected PE which is
used for other application parts but still has the capacity to accommodate this part.
As in DRPs the amount of instructions that can be stored and executed without
external reconfiguration is limited, compensating for one or more faulty PEs can be
a challenge in highly utilized scenarios. However, even if utilization is not critical,
just moving parts around on the DRPwill yield sub-optimal results, which is why the
application mapping, that is resource allocation and scheduling needs to be rerun.
This task, however, needs to be run on the SoCs CPU without obstructing normal
operation.

To reduce the work-load of the SoC’s CPU, we proposed an incremental
remapping algorithm in [13]. First, the architecture graph is adjusted by removing
the faulty components. Then, from this architecture graph, we extract a subgraph
containing the affected PE and its vicinity. Similarly, the application graph is used
to extract a subgraph containing only the application nodes mapped to the affected
nodes in the architecture subgraph. With these two subgraphs, the mapping is
then attempted as exemplarily depicted in Fig. 6. The mapping algorithm will try
to first utilize the spatial dimension before resorting to the temporal dimension,
i.e. prolonging execution time. If both dimensions do not have the resources to
accommodate the application subgraph on the nodes of the pruned architecture
subgraph, the architecture subgraph is enlarged by adding further neighboring nodes
and remapping is retried until a new mapping has been found or the process fails
altogether. If the process succeeds, the application now can run again without any
errors occurring, even in non-TMR modes.

This prioritization of subgraph size over runtime, i.e., increasing subgraph size
only if both dimensions cannot accommodate the application subgraph is arbitrary
and other tradeoffs might be preferable. In this specific case, the priority was CPU
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Fig. 6 Incremental remapping flow on architecture and application subgraphs to avoid faulty
components. Starting on the direct neighborhood first, expanding if resources do not suffice

usage minimization, and therefore runtime and memory usage were prioritized
by using the smallest subgraphs first at the expense of increased runtimes of the
new mappings. For real-world applications, this needs to be carefully weighted as
increased runtimes might not be viable.

3.5 Testing Reliability Schemes in Hardware

One of the big challenges of hardware manufacturing and particularly of implement-
ing hardware-based countermeasures to reliability issues is testing and verification.
Given the enormous number of input vectors and states, exhaustive testing via
simulation is entirely unfeasible. While big commercial hardware emulators allow
for a much greater design size and ease of use, they are also very costly. For small
to medium-sized designs, FPGAs offer a sweet spot for prototype implementations.
While simulations allow for easy fault injection but very slow simulation speeds,
FPGAs offer speeds close to ASIC implementations but fault injection was virtually
unfeasible.

To develop a prototyping platform, the Gaisler LEON3 SoC [14] served as a
template into which the hardened DRP has been integrated. Parallel to this effort,
different techniques for FPGA fault injection have been studied [15], culminating
in the Static Mapping Library (StML) approach [16]. While instrumentation, i.e.
RTL level insertion of faulty behavior allows unlimited choice in fault type and
temporal behavior, it also requires for the RTL to be recompiled after each change.
As the entire compilation and mapping process of our SoC took more than 4 h, this
approach was abandoned. On the other hand, directly inserting faults into FPGA
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Fig. 7 StML GUI view of a sample logical AND component with fault injectable ports in each
module

mappings or even the bitstream offers a simplistic way to create faulty versions of an
FPGAmapping, but it offers no control over the type or location of the injected fault.
This approach would not even guarantee that the FPGA mapping would behave
in a faulty manner. Ideally, the exact fault location should be specifiable on RTL
level to fully qualify the efficiency of the proposed architectural methods. To realize
this, different intermediate results were utilized, primarily the FPGA’s simulation
netlist containing both RTL level structural information and FPGA mapping names
in combination with the Xilinx Design Language (XDL) file containing the concrete
FPGA mapping. By establishing a bidirectional link between the simulation netlist
and the XDL file, StML enabled to pinpoint ports of module’s implementation right
down to the logic level to insert a stuck-at-zero or stuck-at-one fault. As the placed
and routed XDL file can be directly altered, the only remaining step after fault
injection is bitstream generation. A user-friendly GUI (Fig. 7) offering graphical
representations of the implementation as well as a powerful command line interface
allowed for both smooth experiment and extensive testing. Using this approach, we
were able to reduce the fault-injection experiment time from hours to below 5min,
with most experiments done in below 2min.

To showcase the viability of the proposed techniques, low-cost TMR, dynamic
testing, dynamic remapping, and the FPGA prototype combined with the fault
injection techniques have been successfully demonstrated at ICFPT in 2013 [17].

4 Device-Level State and Countermeasures

Below the architectural level, we studied opportunities to determine the state
of semiconductor devices. Additionally, we also considered specific device-level
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Fig. 8 Transient simulation for a single switching NMOS (upper left) and a single PMOS (upper
right), as well as DC sweep of IDS over VDD = VGS for a NMOS (bottom left) as well as a PMOS
transistor (bottom right), all using a medium degeneration model

countermeasures and their effects to put hardware into a more reliable state for tasks
that require higher levels of reliability.

When considering how to obtain information on the state at the device level, a
transistors’ threshold voltage VT H is a central variable [18] to consider. While of
course, not all reliability phenomena manifest as an actual shift in VT H , they can
be modeled as such. For example, stuck-at faults are either a reduction to 0V or
∞V of VT H or even changes in the drive current and subsequent timing faults can
be viewed as such. With the semiconductor world moving either towards FinFET
or FDSOI technologies, we investigated the options of FDSOI processes such as
ST Microelectronics Ultra Thin Body and Box Fully Depleted Semiconductor on
Insulator (UTBB-FDSOI) technology [19]. While being a planar technology, it is
manufactured in a triple well process, shielding the transistor body against the
substrate using a diode in reverse direction. The transistor is manufactured using
a fully depleted channel which allows for further scaling to compete with FinFET
processes. One of the main advantages of FDSOI technologies is that the insulated
transistor body allows for very high biasing voltages previously unfeasible as it
would have shorted the transistor to the substrate. As this thin body with the thin
box construction equipped with a separate body electrode acts as a second gate, it is
ideal to adjust VT H dynamically after manufacturing. The adjustment of a transistor
via this second gate is also called body biasing.

To study the possibilities to use body biasing to detect faults or even faults
building up, SPICE level models have been considered. Figure 8 depicts the
transient and DC analysis of a medium degeneration transistor-level model. The left
side in Fig. 8 depicts an NMOS transistor whereas the right side depicts a PMOS
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transistor. In each graph, there are several plots: std 0.0V VBB , that is a perfectly
functioning transistor without any body bias applied, med 0.0V VBB transistor
with a medium VT H increase and no body biasing, and then several variants of
the defective transistor with increasing levels of body biasing. When comparing
std 0.0V VBB to med 0.0V VBB , it immediately becomes apparent that there is a
significant gap in the rate at which the signal rises (top two graphs) and signal level,
as well as a strong difference in drive current (bottom two graphs). The effects of a
VT H (about 45mVNMOS and 40mV PMOS) shift of this magnitude are, of course,
relative to the operating conditions. If e.g. a couple of such transistors would be used
somewhere on a critical path within a high-performance circuit, it would surely fail.
On the other hand, if the circuit is used far from timing limits or if only a single
transistor is considered, the effect might be barely noticeable. Given an on-chip test
circuit or a known critical path, they can be used in conjunction with body biasing
to measure degenerative effects. To perform such post-manufacturing bias, ideally
each chip should be tested after production with a sweep over body bias levels as
described in [20], with the minimum body bias, that is the maximum reverse body
bias (the circuit’s timing is intentionally slowed down), at which the circuit checked
out functional written to a non-volatile memory. Later on, this minimum bias point
can be used as a reference, i.e., if the chip or the tested component needs a higher
level of body bias corrected for temperature, then some degeneration occurred. If the
circuit is designed with reasonable margins, a build-up until an actual fault occurs
can be thereby detected.

Similarly, body bias also allows pushing the circuit back conforming to specifi-
cation. The effect depicted in Fig. 8 would be catastrophic for any performance-
oriented component. However, this medium degeneration case has been chosen
specifically so that corrective measures can be taken without special electrical
precautions, which is up to a VBB of 1.3V in most processes. However, it should
be noted that this also leads to significantly increased leakage levels and would
be unfeasible for an entire chip. This being said, it neatly complements DRPs’
architectural granularity, i.e. one PE would be coarse enough to mitigate the
overheads of an individual body bias domain, yet it is small enough to keep the
leakage overhead of strong forward biases down [21]. Additionally, finer steps of,
e.g., 100mV should be used to detect shifts in VT H early on.

5 Synergistic Effects of Cross-Layer Approaches

The question following from the previous section is whether to use architectural
approaches or device-level countermeasures to achieve a certain reliability objective
is an extremely complex and multivariate problem. Beyond the question whether or
not to use a specific technique, there are additional variables such as time, i.e. when
to use these techniques, extend, that is in what parts to use them and also in regard
to criticality, what techniques and with which parameters could be used at all and to
what end?
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In a very insightful collaboration with the FEHLER project (chapter “Soft
Error Handling for Embedded Systems using Compiler-OS Interaction”), their
static analysis of program criticality provided powerful means to determine key
portions for reliable execution at the application level [22]. By annotating source
code with keywords indicating the respective criticality, only those parts marked
as critical will be additionally secured using reliability techniques. It thus was not
only a great fit for selective low-cost TMR on the hardened DRP, but beyond that
offered a proof-of-concept of mixed-criticality applications along with the means to
identify portions critical for reliability. In [22], the targeted application was an h264
decoder. As an entertainment application, the primary metric is whether the service
is provided at a certain perceived quality level above which actually occurring errors
are irrelevant as they are imperceivable.

On the other end of the scale, device state monitoring allows to assess the
physical state of a SoC and also its progression over time. On the architectural
level, low-cost TMR or DWC allows for continuous checking, whereas dynamic
testing makes sure that errors are not left undetected indefinitely, both providing
vital information to potential agents. However, as shall be explored below, reactive
measures cannot be determined on one layer alone.

Once the device-level state is known, this information can be used on every
abstraction layer above. If for example degradation has been detected, this infor-
mation can be used to minimize physical stresses by using a combination of supply
voltage VDD and body bias VBB [2]. As proposed in the previous subsection, a
concrete proposal is to counter VT H drift, that is usually VT H becoming larger, by
using a forward body bias. As, however, Federspiel et al. found in [2], this will also
increase effects like Hot Carrier Injection (HCI) stress which in turn can cause a
decrease in drive current. This could lead to a feedback loop as with the method
described in Sect. 4, this would appear like a VT H increase and cause more forward
bias to be applied, further increasing HCI stress. Thus, such action needs to be a
concerted effort on the operating system level with a full view of the system state
and the resources available.

For this reason, countermeasures could encompass several different options
from the set of available countermeasures with the primary distinction on lifetime
extension or securing error-free functionality in the presence of faults. In both cases,
it should be noted that both distinctions are only two different takes on graceful
degradation. In case the primary goal of reactive measures is lifetime extension,
measures which incur less physical stress should be taken. If e.g. the application
allows for some degeneration of the service level such as the aforementioned h264
decoding, less effort can be spent on uncritical parts of an application or it could
be mapped alongside another application on a DRP. If error-free functionality is
the primary goal because, e.g., the application is critical and does not allow for
any degeneration, there is a two-step cascade. If the application can be remapped
to fault-free components, this should be prioritized. If the resources do not permit
remapping or if no resources are left, the SoC can attempt to mitigate the fault
through, e.g., a forward body bias at the expense of a potentially shortened lifetime.

In all cases, however, it is clear that information from the application layer,
the operating system, i.e. knowledge about what else is running on the SoC, the
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Fig. 9 Using information of all abstraction layers to realize more reliable and efficient SoC

architectural layer, what resources are available, which resources are inoperable,
etc., as well as the device level, are all key to determine the optimal response. In the
specific example visualized in Fig. 9, we start at the application layer by assuming
reliability annotated source code. Using this source code, an appropriate mapping
for example with low-cost TMR onto the DRP can be determined. Additionally,
the OS might then go ahead to issue its execution without any special circuit-
level tuning, i.e. increasing supply voltage or forward bias to add timing margins.
Similarly, a mapping onto the CPU pipeline could be more suitable where the OS
then might opt for extra forward bias as some degradation has been previously
detected and the application is realizing important functionality. Not only does
such a cross-layer approach as visualized in Fig. 9 help to achieve the reliability
objectives, but it also is capable of more than what can be achieved on one layer at a
time [23]. In this concrete example, the incorporation of multiple layers and multiple
methods at specific layers allows to tailor reliability measures to requirements.
Device-level information enables the system to act proactively as many phenomena
can be detected at this layer in the build-up phase. Once the device layer degenerates,
actors such as body biasing allow a system to restore or prolong functionality in the
presence of faults.

6 Conclusion

Over a generous 6-year period in which this project was funded, the possibilities
to use DRPs for increased reliability were extensively studied and also tested in
prototype implementations at a functional level. This research revealed that DRPs
are not only well suited for tasks that require TMR like reliability, but they can
be used in numerous ways to improve the reliability of entire SoCs as well. Their
simple and efficient structure allowed to research new and efficient concepts such as
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dynamic remapping or body biasing for device-level sensing and countermeasures.
While DRPs are still undeservingly viewed as a kind of fringe architecture concept,
most of the insights gained through such architectures are easily transferable to
multi- or many-core SoCs. This project showed that far more can be done in regard
to reliability if multiple abstraction layers are considered in a cross-layer approach.
While common wisdom still is to use TMR whenever software people use terms
such as error-free or fault-tolerant, this project showed multiple options how to
incorporate more specific application requirements and how to translate this into
adequate reliability measures. Or in simpler terms, just-safe-enough responses to
the reliability threats.
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
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