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1 Introduction

Continuous technology scaling necessitates to design today’s embedded systems
from electronic components with growing inherent unreliability. This unreliability
arises from susceptibility to neutron-induced soft errors, negative-bias temperature
instability, short-channel effect, gate leakage, etc. Therefore, it is vital to analyze
system reliability at design time and employ appropriate reliability-improving
techniques if necessary. A variety of reliability analysis techniques have been
proposed for both the relatively low levels of abstraction that focus on technology as
well as the system level that considers the interplay of hardware and software. But,
there exists a gap between the levels where the faults originate, e. g., transistor level,
and the system level for which the analysis is required. To close this gap and tame the
ever increasing system complexity, cross-level analysis methodologies are required.
These collect knowledge at lower levels by combining different analysis techniques
and provide proper data for the analysis at higher levels of abstraction [24].

Evaluating the reliability of a system at design time, proper reliability-improving
techniques can be explored and integrated into the system. However, these tech-
niques typically come with higher monetary costs, latency, energy consumption,
etc. This necessitates a multi-objective DSE! (DSE!) which maximizes reliability
without deteriorating other design objectives. Usually, DSE! explores and evaluates
millions of possible design alternatives (also called implementations) to find the
Pareto-optimal ones. Herein, the efficiency of the reliability evaluation and explo-
ration algorithm are the main challenging issues [2]. In [3], we propose an efficient
and scalable reliability analysis technique based on Success Trees (STs) which is
integrated into a DSE! framework to automatically evaluate an implementation’s
reliability. Most existing analysis techniques quantify a system’s reliability without
giving any hint on what to change to improve it, such that exploration algorithms
basically perform random changes, e.g., through genetic operators in case of
EA!s (EA!s). In [4, 6, 7, 11], we propose to employ the notion of component
importance to rank components based on their contribution to the system reliability.
Later, to improve the reliability of a system with limited budgets, we only need to
improve the reliability of highly important components. In [5, 28], we show this
guides the DSE! towards highly reliable, yet affordable implementations. So far,
most existing analysis approaches assume that the reliabilities of components—
or their lower bound—are more or less known precisely. Due to shrinking cell
geometries, semiconductor devices encounter higher susceptibility to environmental
changes and manufacturing tolerances such that a component’s reliability has to be
considered uncertain. An overview of the most important types of uncertainties for
system design is given in Fig. 1.

Effects of unreliability and the associated uncertainty of components can propa-
gate to the system level and become a challenge for system-level design method-
ologies. Even worse, destructive effects such as extreme temperature can affect
several components simultaneously, resulting in correlated uncertainties. Neglecting
such correlations can impose an intolerable inaccuracy to reliability analysis.
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Fig. 1 Uncertainties that influence a system’s response and its characteristics: Uncertain environ-
mental influences Ae like cosmic rays may cause soft errors. Manufacturing tolerances Am may
lead to changing system behavior and permanent defects. Finally, uncertainty may also be present
in case the inputs to a system may vary (Ax) or might not be known at design time
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Fig. 2 Impact of uncertainty correlation among the reliability functions of different components
on the uncertainty of the system MTTF! for an implementation candidate of an H.264 encoder/de-
coder. (a) Correlated component uncertainty. (b) Non-correlated component uncertainty

As an example, Fig.2 depicts the distribution of system MTTF! (MTTF!) for
an H.264 encoder/decoder implementation with and without the consideration of
uncertainty correlations. While considering these correlations shows a good match
between the simulated cases and the bounds, neglecting them may result in huge
deviations from those bounds. This motivates the consideration of uncertainties
and especially their correlations in cross-level reliability analysis. In this realm,
this chapter introduces a methodology for CRA! (CRA!) that combines various
reliability analysis techniques across different levels of abstraction while being
aware of existing uncertainties and their correlations.

Considering uncertainty, system reliability is no longer a single value, but instead
represented by a set of samples, upper and lower bound curves, or distribution
functions which requires that a DSE! can consider implementations with uncertain
objectives. Therefore, this chapter focuses on (a) the explicit modeling of uncer-
tainties and their correlations in reliability analysis and (b) the integration of such
an analysis into a framework for system-level DSE!. The techniques proposed are
not tailored to a specific abstraction layer, but can be best classified as combining
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architecture and application layers according to the embedded system abstraction
layers as depicted in Fig. 3.

The rest of this chapter is organized as follows: Sect. 2 reviews related work and
introduces required fundamentals. Section 3 introduces a formal CRA! framework
and its application using a case study. An explicit modeling of uncertainty in
reliability analysis and optimization is given in Sect. 4. Finally, Sect.5 concludes
the chapter.

2 Related Work and Fundamentals

2.1 Reliability Analysis and Optimization

Reliability analysis and optimization are thoroughly studied research topics that are
of great importance fornearly every safety-critical system [12], especially embedded
systems [36]. However, one can observe that the different areas raise significantly
diverse needs for the applied analysis techniques. An overview of well-known
reliability analysis techniques can be found in [35].

Up to now, several approaches have been presented for analyzing the reliability
of embedded systems at system level which are typically integrated into system-
level DSE!. In [16], fault-tolerant schedules are synthesized using task re-execution,
rollback recovery, and active replication. The authors of [47] try to maximize
reliability by selectively introducing redundancy while treating area consumption
and latency as constraints. Reliability is introduced as an objective into system-
level design in [13]. However, the employed reliability analysis techniques are
restricted to series-parallel system structures which render them infeasible for
typical embedded systems where processing and communication resources have to
be shared. On the other hand, reliability analysis at low levels of abstraction has been
studied thoroughly, e. g., transistor level [42] or for prospective switching devices
like carbon nanotubes [32].
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So far, few systematic approaches have been proposed to upscale the knowledge
gathered at low abstraction levels to the system level. The work in [1] proposes a
system-level dynamic temperature management scheme to prevent thermal hot spots
through a run-time application re-mapping, and to efficiently mitigate aging effects
in a many-core architecture. In [23], thermal effects in a Multiprocessor System-
on-Chip (MPSoC) on its reliability are propagated into a scheduling and binding
optimization at system level. Their analysis is based on a simulation of the MPSoC
and given relations between the temperature profile and the resulting reliability.
Similar reliability analysis techniques are used in [34] in order to optimize the
lifetime of MPSoCs using the so-called slack allocation. However, these techniques
are able to capture thermal effects only, without investigating the possibility to
include and propagate these effects into a more holistic analysis that also takes into
account, e. g., soft errors or a complex system structure like a networked embedded
system consisting of several interconnected processors or MPSoCs.

2.2 Compositional Approaches to Reliability Analysis

A first attempt to close the gap on accurate power models for reliability analysis
between the ESL! (ESL!) and the gate level is presented in [40]. While the approach
sounds promising in modeling thermal effects on the component reliability, it fails to
offer a formal framework that allows to integrate different analysis techniques cross
level. Herkersdorf et al. [24] [RAP-Chap.] propose a framework for probabilistic
fault abstraction and error propagation and show that all physically induced faults
manifest in higher abstraction levels as a single or multiple bit flip(s). Similarly, the
proposed CRA! model aims to propagate the effects of uncertainty and the resulting
faults originating from lower levels of abstraction into the system-level analysis
by incorporating appropriate reliability analysis techniques for each relevant error
model at a specific level of abstraction. As a result, the developed concepts become
independent of an actual error model since it abstracts from the actual source
of unreliability during upscaling, i.e., the propagation of data from lower levels
to higher levels by means of abstraction and data conversion. CRA! approaches
that consider component-based software are presented in [37]. Although these
approaches try to develop a more general compositional analysis scheme, they miss
a well-defined mathematical underpinning and do not focus on automatic analysis
as needed during DSE!.

The use of composition and decomposition in well-defined formal models that
allow abstraction to avoid state space explosion has been addressed in, e.g., [25].
An especially interesting and formally sound approach can be found in [9]. In this
chapter, we develop a formal approach, inspired by techniques from the verification
area, for CRA!. A particular challenge will be the consideration and explicit
modeling of uncertainties in the formal model where there is no similar technique
or need in the area of verification given.
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2.3 Uncertainty Considerations

There exist intense studies on the effect of uncertainties on the system reliability for
general engineering problems, cf. [38], as well as circuits and microarchitectures,
cf. [27]. However, few studies focus on the cross-level reliability analysis of
embedded systems in the presence of uncertainty arising from manufacturing
tolerances, etc.

Uncertainty-Aware Analysis One example is a cross-level adaptive reliability
prediction technique proposed in [17] that derives information from different levels
of abstraction and allows to consider the simultaneous effects of process, voltage,
temperature and aging variations, and soft errors on a processor. The authors of [18]
propose a cross-level framework to analyze the combined impact of aging and
process variation on the SER! (SER!) and static noise margin of memory arrays
in near threshold voltage regimes. This framework enables to explore workload, as
instruction per second, and cache configuration, as cache size and associativity, in
order to minimize SER! and its variations for 6T and 8T SRAM cells. Contrary
to all mentioned approaches, this chapter explicitly treats each effect of uncertainty
during reliability analysis of a system. Proposed is an analysis technique that obtains
the range of reliability that is achievable for a system given its configuration and the
uncertainties of its components.

Uncertainty-Aware Optimization Optimization problems may be affected by var-
ious sources of uncertainty including perturbation of decision variables as well
as effects of noise and approximation on objective functions [26]. In this work,
uncertainty is explicitly modeled as variations in component failure rates and
costs. The uncertainty propagates through reliability analysis and cost evaluation at
system level and renders design objectives to be uncertain as well. To make correct
decisions when comparing and discriminating implementations during DSE!, the
employed optimization algorithm needs to take the uncertainty of the design
objectives into account as well. The work in [44] proposes a mathematical approach
to calculate the probability of an implementation dominating another, given all
uncertain objectives follow either uniform or any discrete distributions. However,
extending this approach to consider diversely distributed uncertain objectives
requires solving difficult integrals demanding a huge computational effort. To this
end, approximate simulation-based approaches, e.g., in [30], provide trade-offs
between execution time and accuracy of calculating this probability. In [33], it is
proposed to compare uncertain objectives with respect to their lower and upper
bounds. However, this approach fails to distinguish largely overlapping intervals
with even significantly different distributions. A lot of work has been proposed
for problems with continuous search spaces and linear objective functions, see
e. g.,[15]. However, typical embedded system design problems have discrete search
spaces, non-linear and often not differentiable objective functions, and have to cope
with stringent constraints. Thus, these optimization techniques cannot be applied
without further investigation and modification. In [39], an approach based on an
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uncertainty-aware MOEA! (MOEA!) that targets reliability as one design objective
is presented. The approach takes into account the uncertainty of the reliability of
each system component and tries to maximize the robustness of the system. This
chapter presents a novel uncertainty-aware multi-objective optimization approach
applicable for DSE! of reliable systems at system level, see Sect. 4.

2.4 System-Level Design Fundamentals

This chapter targets the system-level design of embedded MPSoCs, typically
specified by an application graph, a resource graph, and a set of possible task-to-
resource mappings. The application graph includes a set of tasks to be executed and
specifies the data and control flow among them. The resource graph consists of hard-
ware resources, namely, processors and accelerators connected by communication
infrastructures such as buses or networks-on-a-chip. The mappings specify which
tasks can be executed on which resources. Figure 4 shows an example specification
with three tasks #;, 7 € [0...2], five resources 7, j € [0...4], and eight mappings
m; j fromt; tor;.

Implementation candidates are derived via system-level synthesis [10] perform-
ing the steps: (a) Resource allocation selects a subset of resources that are part of
the implementation. (b) Task binding associates at least one instance of each task
to an allocated resource by activating the respective task-to-resource mapping. (c)
Scheduling determines a feasible start time for each task instance. An implementa-
tion is feasible if and only if all constraints regarding, e. g., communication, timing,
or utilization are fulfilled. Figure 4 highlights a possible feasible implementation
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application graph mapping edges resource graph

Fig. 4 A specification comprising (a) an application graph where edges indicate data dependen-
cies of tasks, (b) a resource graph with edges representing dedicated communication between
resources, and (c) a set of task-to-resource mappings which model possible execution of tasks
on resources. A possible implementation candidate obtained by system-level synthesis is depicted
with non-allocated resources and non-active bindings being grayed out
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with non-allocated resources and non-activated mappings being grayed out. More
details of the underlying system synthesis and DSE! in the context of reliability
analysis and optimization can be found in [22, 43].

3 Compositional Reliability Analysis (CRA)

This section introduces models and methods for CRA! as proposed in [21]. Figure 5
shows a schematic view of CRA! and its required mechanisms. To realize a cross-
level analysis, it encapsulates existing reliability analysis techniques in CRN!s
(CRN!s) at multiple RAL!s (RAL!s). It tames analysis complexity within a certain
RAL! using composition and decomposition and connects different RAL!s through
adapters. Each CRN! applies an analysis step V(1) = X(S) at a specific RAL!
where X is a concrete analysis technique and S is a (sub)system. A CRN! derives
a specific measure ) over time . A RAL! in CRA! may combine several (design)
abstraction levels where the same errors and, especially, their causes are significant.
Adjacent RAL!s are connected by the concept of adapters that have to perform
three tasks: (a) refinement provides the data required for the analysis in the lower
RAL!, (b) data conversion transforms the output measures from the lower RAL! to
the input required at the higher RAL!, and (c) abstraction during both refinement
and data conversion tames analysis complexity. A concrete example of CRA!
describing a temperature-reliability adapter for MPSoCs is presented in Sect. 3.1.

RAL i
Yi(t)

I time t
adapter; ;

AO)

composition /
decomposition

RAL j

AO)

time t time t

Fig. 5 A schematic view of CRA!
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Another important aspect of CRA! concerns the feasibility of composition and
decomposition with respect to reliability analysis. While, of course, composition
and decomposition should reduce the complexity of the analysis, errors caused by
approximation or abstraction should be bounded. For example, a rule to bound the
approximation error of a decomposition D of a given system S into n subsystems
S1, ..., S, is as follows:

D(S) ={S), ..., Sy} is feasible, if Je : |X(S) — (X(S1)o...0 X(Sp))| <€

with o being an analysis-dependent operator, e. g., multiplication, and € being the
maximum approximation error. A special focus of these investigations is the proper
handling of decomposed nodes that influence each other. Nowadays, hardly any
subsystem of an embedded system is truly independent of all other subsystems.
Thus, this rule should be extended as follows to consider both the truly independent
individual properties of the decomposed nodes and their dependencies during
composition C:

D(S) = {81, ..., S,} is feasible, if Je :
1X(8) = C(X(S1)o...0X(Sn), PUS1.....S)) < e. (1)

In this case, the composition C not only takes into account the parts of the subsystem
that can be analyzed independently, but also performs a corrective postprocessing P
to take into account their interactions.

Similarly, we have developed rules for the connection of different RAL!s. The
task of an adapter is to convert the measure ) used at the lower RAL! into the
measure )’ used at the higher RALL!Ss, for example, )’ = A())). Especially because
of the models and methods needed for converting from one RAL! to another, a
thorough analysis of the function A needs to be carried out. In most cases, this
function will not provide an exact result, but will require an abstraction such as by
the determination of tight upper and lower bounds. Thus, the developed rules will
define requirements for the functions in the adapter used for abstraction and data
conversion.

3.1 CRA Case Study and Uncertainty Investigations

In [21], a concrete application of CRA! to realize a temperature-aware redundant
task mapping approach is presented. In the following, a brief summary of the case
study is given with focus being put on the aspect of uncertainty introduced due to
the application of composition and decomposition. This further motivates the need
to develop techniques to explicitly model and consider uncertainty during analysis
and optimization as is presented in Sect. 4.
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3.1.1 CRA Case Study

In the context of system-level design and especially the design of reliable embedded
systems as introduced in Sect.2, deploying redundant (software) tasks can be
considered a rather cost-efficient technique to enhance system reliability. However,
the resulting additional workload may lead to increased temperature and, thus, a
reliability degradation of the (hardware) components executing the tasks. The case
study in [21] combines three different techniques on three RAL!s: At the highest
RAL!, a reliability analysis based on BDD! (BDD!), see, e. g.,[20], computes the
system reliability of a complete 8-core MPSoC and requires the reliability function
of each component (core) in the system. To determine the latter, an intermediate
RAL! uses the behavioral analysis approach RTC! (RTC!) [45] to derive the upper
bound for the workload of each core over time. This workload is passed to the
lowest RAL! where this information is used to carry out a temperature simulation
based on HotSpot [41] to deliver a temperature profile of each core. Using these
temperature profiles and assuming electromigration as a fault model, [21] proposes
an adapter that—based on the works in [14, 46]—delivers a temperature-aware
reliability function for each core back to the highest RAL! in order to complete
the system analysis.

3.1.2 Uncertainty Investigations

As given in Eq. 1, composition/decomposition may result in an imprecision €, of an
output measure o € O. In [19], we present techniques for formal decomposition
and composition for CRN!s that describe the system via Boolean formulas,
typically used by BDD!s, Fault Trees, etc. Here, functional correlations between
components are fully captured in the Boolean formulas, and we propose an exact
composition/decomposition scheme on the basis of early quantification. However,
correlations are typically non-functional, with heat dissipation between adjacent
cores being a prominent one. Consider again the case study described before and
Fig. 6: Not decomposing the system into individual cores results in a temperature
simulation of all cores at the lowest level, implicitly including the effect of heat
dissipation in-between cores, see Fig.6 (top-left). A naive decomposition could
decompose the system into independent cores such that the workload of each core is
determined and a reliability function would be gathered by per-core temperature
simulations on the lowest level, see Fig.6 (middle-left). This, however, would
completely neglect the effect of heat dissipation between cores. As a third option,
[21] investigates a corrective postprocessing within the adapter between the lower
levels where the workload of cores and the temperature simulation are analyzed
independently, while a simple model that considers the distance and steady-state
temperature of each core is used to approximate the respective heat flow, see Fig. 6
(bottom-left).

The imprecision resulting from the three discussed decomposition variants is
given in Fig.6 (right), derived from ~8000 different system implementations
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Fig. 6 A simulation of two cores captures heat dissipation (exact, top) while a decomposition
(naive, middle) is unable to capture heat dissipation between cores. A corrective postprocessing (P,
bottom) enables to reduce analysis complexity while providing a basic notion of heat dissipation.
The resulting imprecisions in percentage on system-wide MTTF! are depicted on the right

analyzed as part of a DSE!: While no decomposition is treated as an exact
base value—with respect to heat dissipation being considered and not the overall
exactness of the simulation—the naive decomposition constantly overestimates the
system-wide MTTF! by ~26%. On the other hand, the corrective postprocessing
delivers results with a rather good match in terms of the median and average error,
but also shows that the correction may come at errors of up to &10%. At the same
time, compared to the complete simulation, the decomposition including corrective
postprocessing achieves a &2 x average speed-up. These results further motivate the
need for analysis and optimization techniques—as presented in the next section—
that can explicitly model uncertainty such as the shown imprecision.

4 Uncertainty in Reliability Analysis and Optimization

To design and optimize systems for reliability, existing uncertainties in their envi-
ronment and internal states, see Fig. 1, must be explicitly integrated into reliability
analysis techniques. Implicit uncertainty modeling hides the effects of controllable
and non-controllable uncertainties, e. g., into a single reliability function, and fails
to distinguish between them. On the other hand, explicit modeling determines the
range of achievable reliability of a component or subsystem, e. g., using upper and
lower bound functions.

We introduce two solutions for uncertainty modeling: (a) using upper and
lower bounding curves for the achievable reliability and (b) abstracting various
uncertainties into a finite set of typical use cases and providing a system reliability
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reliability R(t)

Fig. 7 Reliability functions R(¢) that result from uncertainties in the internal heat dissipation of
a silicon system that arise from, e.g., changing task binding on a processing unit. Shown is a
range that is determined by an upper R"(¢) and a lower bound R (1) reliability function and the
reliability functions for 5 use cases, e. g., 5 favored task schedules that show a distribution within
the range

function for each case, see Fig. 7. While the former offers a range and abstracts
from the distributions in between bounds, the latter variant explicitly determines
important cases in that range, but of course, comes with an increased complexity.
This section covers both approaches and assumes that uncertainty obtained from
lower abstraction levels is available at higher levels as known distributions or
sampled data.

As introduced earlier, incorporating reliability-increasing techniques into a sys-
tem at design time may deteriorate other design objectives. Due to the explicit mod-
eling of uncertainties, a multi-objective uncertainty-aware optimization becomes
necessary. Given that the system reliability is no more a single value, optimization
algorithms must be able to handle uncertain objectives given as probability distribu-
tions, a set of samples or upper and lower bound curves, and allow for a quantitative
comparison of different designs.

4.1 Uncertainty-Aware Reliability Analysis

The uncertainty-aware reliability analysis technique introduced in the following
is originally proposed in [29]. It models the reliability of a component r with
uncertain characteristics U/, using reliability functions R, (¢) that are distributed
within given lower and upper bound reliability functions, i. e., U, = [’er ), RY (t)].
A sampler is used to take U, as input and deliver a sampled reliability function
R;(t) with er(t) < Ri(t) < R(t). It ensures that the sampled reliability
functions follow the intended distribution within the given bounds, and enables
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Fig. 8 An overview of the proposed uncertainty-aware reliability analysis

the consideration of arbitrary distributions, in particular well-known discrete and
continuous distributions.

In practice, component reliability is typically derived from measurements that are
fitted to closed-form exponential (R, (t) = e~*"") and Weibull (R, (1) = e~ ")
reliability functions with A being the component’s failure rate. The uncertainty
model U, includes a set of uncertain parameters P, distributed within the bounds
[P,’ , P']. The sampler takes a sample from each parameter p, € P, and constructs a
sample reliability function. For example, for an exponential distribution with bounds
AL, 241 = [0.0095, 0.0099], a sample reliability function RS (r) = =098 can be
generated.

The overall flow of the analysis approach is shown in Fig.8 and includes the
following steps: (a) The sampler samples a reliability function R{(¢) from the
uncertainty distribution of each component r, (b) an analysis core uses these samples
and calculates a sample reliability function for the given system implementation
Rfmp (1), and (c) a statistical simulator collects a set of sampled reliability functions
Dimp = U?:l {Rfmp(t)} and constructs the uncertainty distribution of the system
reliability.

The analysis core can be realized by any existing technique that requires a
reliability function of each component and calculates the system reliability function.
In the concrete case, Fig. 8 shows a formal technique based on BDD!s that models
the reliability of a system implementation with two components in series. The
statistical simulator determines the number of required samples n to later obtain
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desired statistics like mean and quantiles from @iy, with a guaranteed confidence
level.! As an example, for each sample Rfmp(t) in Pjmp, the MTTF! can be
calculated using the integration below:

00 AR}, (1)
MTTF!, =/ t- f5(t)dt where f*@t) = -
0

()
Using sample MTTF!s, design objectives such as the best-, worst-, and average-case
MTTF! can be derived.

4.1.1 Uncertainty Correlation

To model any existing correlation between uncertain parameters of system com-
ponents, we investigate whether they are exposed to common uncertainty sources,
and are, thus, subject to correlative variations. Take temperature as an example:
Components that are fabricated in the same package may be exposed to the same
temperature, which means their reliability characteristics can be considered in a
correlation group, whereas components in different packages might be considered
independent. Assuming that the uncertainty sources and the correlation groups are
given, we introduce models for obtaining correlated samples from the uncertainty
distribution of component reliability functions in [29, 31]: To sample from an
uncertain parameter p, we check if it is a member of any correlation group or not.
If p is a member of G, we first generate a random probability g for the group
G at the beginning of each implementation evaluation step and then calculate a
sample from p using the inverse CDF! (CDF!) of the probability distribution of
p at point g. Otherwise, a sample is taken independently from the distribution
of p. Note that since the uncertain parameters in a correlation group might be
differently distributed, returning the same quantile g from their distributions does
not necessarily yield the same value, see Fig.9. Thus, through sampling, the
uncertain parameters in G vary together, and their variations are independent of
those of the parameters outside G.

4.2  Uncertainty-Aware Multi-Objective Optimization

Finally, to enable the optimization of system implementations with multiple uncer-
tain objectives, we propose an uncertainty-aware framework in [29]. It extends a
state-of-the-art DSE! [43] and employs a MOEA! as the optimization core. These
techniques introduce dominance criteria to compare different implementations and
select which one to store in an archive and vary for the next iteration.

IEfficient sampling techniques [8] can be used to reduce the number of required samples.
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To maximize m objectives Oy, ..., Oy, each being a single value, the dominance

of two implementations A and B is defined as follows:

A>B < Vie[l,v]: 043() > Op@i) A Fje[l,v]: 04(j) > Op(j)
3)
Here, A > B means “A dominates B” and O4(j) > Op(j) means “A is better
than B in the j-th objective.” Since this dominance criterion compares each of the
m objectives independently, we refer to O (i) as O for brevity.

The proposed uncertainty-aware optimization compares uncertain objectives
using the following three-stage algorithm: (a) If the intervals of O, specified by
the lower bound O and upper bound O, of two implementations A and B do not
overlap, one is trivially better (>) than the other. (b) If the intervals overlap, we
check if one objective is significantly better with respect to an average criterion,
e. g., mean, mode, or median. (c) If the average criterion does not find a preference,
a spread criterion compares objectives based on their deviation, e.g., standard
deviation, variance, or quantile intervals, and judges whether one is considerably
better. In case none of the three stages determines that one objective is better, the
objectives are considered equal. The flow of this comparison operator is illustrated
in Fig. 10.

To find if one uncertain objective has significantly better average O?'® or
deviation 09 compared to the other, we use two configurable threshold values
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Fig. 10 The flow of the proposed three-stage comparison operator

£2€ and 9¢V, respectively. For the average criterion, a configurable threshold value
£%'€ determines if the difference of the considered average-case objective values is
significant with respect to the given objective bounds. This enables to control the
sensitivity of the second stage of the comparison:

avg avg
OA — OB

> ge 4
max(Ox, 0’;3) - min(OfA, 0%) =¢ “®

Here, ¢%8 = 0 always prefers the objective with better average case, while ¢*¥¢ = 1
renders the average criterion ineffective since the left-hand side of Eq. (4) is always
less than one. Thus, the scope of ¢*'® must be carefully selected based on the
objective’s criticality to guarantee a required precision.

The spread criterion prefers the objective value with smaller deviation and uses
a threshold value £9¢" to control the sensitivity of the comparison, i.e.,

dev dev
OB B OA

dev
—— £ > = 0y > Op. 5
04 4 04 B )
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Given €%V = 0, any small difference between Ogev and Ogev is reckoned,

which can lead to crowding in the solution archive. It causes solution A which is
indeed weakly dominated by another solution B to be regarded as non-dominated
because one of its uncertain objectives has a slightly better deviation than the
corresponding objective of B. On the other hand, the spread criterion becomes
ineffective if €4 = 1 and any significant difference between deviations of two
uncertain objectives would be overlooked. Therefore, the value of £V must be
carefully selected.

Note that the statistics of an uncertain objective O required in the proposed
comparison operator are calculated using samples from its distribution. Given a set
of n samples for O, its variance can be calculated as follows:

= Z ® where OM = Z 0/, (6)

l_/ l_J

with O* denoting the mean of the distribution of O. Moreover, to find the ¢'”
quantile of this distribution, we use the inverse empirical distribution function which
traverses the samples in the ascending order and returns the very first sample after
the g % smallest samples.

Figure 11 shows the resulting Pareto fronts for optimizing MTTF! and cost
of an H.264 specification using the proposed comparison operator vs. a common
uncertainty-oblivious approach that compares instances of uncertain objectives with
respect to their mean values. The specification incorporates 15 resources, 66 tasks,
and 275 mappings. The proposed operator uses mean and 95% quantile interval
as the average and spread criteria, respectively. Depicted are the mean values,

T T T I I I I I
o common (bounds) |
common (worst cases) I rmiv
8 common (mean) H' _
_ ——— proposed (bounds) /i
® f
= | | == roposed (worst cases
~ prop (w ) oy
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2 K
6 ], | oo T TS —
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&
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Fig. 11 Pareto fronts when optimizing MTTF! and cost of an H.264 encoder/decoder using a
common uncertainty-oblivious approach vs. the proposed comparison operator
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boxes enclosing the uncertainty distributions, and lines connecting the worst cases.
The results show that the proposed comparison operator enables the DSE! to find
implementation candidates of smaller uncertainty, and yet comparable quality in the
average case.

5 Conclusion

Progressive shrinkage in electronic devices has brought them vulnerabilities to
manufacturing tolerances as well as environmental and operational changes. The
induced uncertainty in component reliability might propagate to system level,
which necessitates uncertainty-aware cross-level reliability analysis. This chapter
presents a cross-level reliability analysis methodology that enables handling the
ever increasing analysis complexity of embedded systems under the impact of
different uncertainties. It combines various reliability analysis techniques across
different abstraction levels by introducing mechanisms for (a) the composition
and decomposition of the system during analysis and (b) converting analysis data
over abstraction levels through adapters. It also provides an explicit modeling of
uncertainties and their correlations. The proposed methodology is incorporated
in an automatic reliability analysis tool that enables the evaluation of reliability-
increasing techniques within a DSE! framework. The DSE! employs meta-heuristic
optimization algorithms and is capable of comparing system implementation candi-
dates with objectives regarded as probability distributions.
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