
Description Logics with Concrete
Domains and General Concept Inclusions

Revisited

Franz Baader(B) and Jakub Rydval

Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
{franz.baader,jakub.rydval}@tu-dresden.de

Abstract. Concrete domains have been introduced in the area of
Description Logic to enable reference to concrete objects (such as num-
bers) and predefined predicates on these objects (such as numerical
comparisons) when defining concepts. Unfortunately, in the presence of
general concept inclusions (GCIs), which are supported by all modern
DL systems, adding concrete domains may easily lead to undecidability.
One contribution of this paper is to strengthen the existing undecidabil-
ity results further by showing that concrete domains even weaker than
the ones considered in the previous proofs may cause undecidability. To
regain decidability in the presence of GCIs, quite strong restrictions, in
sum called ω-admissibility, need to be imposed on the concrete domain.
On the one hand, we generalize the notion of ω-admissibility from con-
crete domains with only binary predicates to concrete domains with pred-
icates of arbitrary arity. On the other hand, we relate ω-admissibility
to well-known notions from model theory. In particular, we show that
finitely bounded, homogeneous structures yield ω-admissible concrete
domains. This allows us to show ω-admissibility of concrete domains
using existing results from model theory.

Keywords: Description logic · Concrete domains · GCIs ·
ω-admissibility · Homogeneity · Finite boundedness · Decidability ·
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1 Introduction

Description Logics (DLs) [3,7] are a well-investigated family of logic-based
knowledge representation languages, which are frequently used to formalize
ontologies for application domains such as the Semantic Web [27] or biology and
medicine [26]. To define the important notions of such an application domain
as formal concepts, DLs state necessary and sufficient conditions for an individ-
ual to belong to a concept. These conditions can be Boolean combinations of
atomic properties required for the individual (expressed by concept names) or
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properties that refer to relationships with other individuals and their properties
(expressed as role restrictions). For example, the concept of a father that has
only daughters can be formalized by the concept description

C := ¬Female � ∃child.Human � ∀child.Female,

which uses the concept names Female and Human and the role name child as well
as the concept constructors negation (¬), conjunction (�), existential restriction
(∃r.D), and value restriction (∀r.D). The GCIs

Human � ∀child.Human and ∃child.Human � Human

say that humans have only human children, and they are the only ones that can
have human children.

DL systems provide their users with reasoning services that allow them to
derive implicit knowledge from the explicitly represented one. In our example,
the above GCIs imply that elements of our concept C also belong to the con-
cept D := Human � ∀child.Human, i.e., C is subsumed by D w.r.t. these GCIs.
A specific DL is determined by which kind of concept constructors are avail-
able. A major goal of DL research was and still is to find a good compromise
between expressiveness and the complexity of reasoning, i.e., to locate DLs that
are expressive enough for interesting applications, but still have inference prob-
lems (like subsumption) that are decidable and preferably of a low complexity.
For the DL ALC, in which all the concept descriptions used in the above example
can be expressed, the subsumption problem w.r.t. GCIs is ExpTime-complete [7].

Classical DLs like ALC cannot refer to concrete objects and predefined rela-
tions over these objects when defining concepts. For example, a constraint stating
that parents are strictly older than their children cannot be expressed in ALC.
To overcome this deficit, a scheme for integrating certain well-behaved concrete
domains, called admissible, into ALC was introduced in [4], and it was shown
that this integration leaves the relevant inference problems (such as subsump-
tion) decidable. Basically, admissibility requires that the set of predicates of the
concrete domain is closed under negation and that the constraint satisfaction
problem (CSP) for the concrete domain is decidable. However, in this setting,
GCIs were not considered since they were not a standard feature of DLs then,1

though a combination of concrete domains and GCIs would be useful in many
applications. For example, using the syntax employed in [33] and also in the
present paper, the above constraint regarding the age of parents and their chil-
dren could be expressed by the GCI Human � ∃child age, age.[>] � ⊥, which
says that there cannot be a human whose age is smaller than the age of one of
his or her children. Here ⊥ is the bottom concept, which is always interpreted
as the empty set, age is a concrete feature that maps from the abstract domain
populating concepts into the concrete domain of natural numbers, and > is the
usual greater predicate on the natural numbers.

1 Actually, they were introduced (with a different name) at about the same time as
concrete domains [2,38].
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A first indication that concrete domains might be harmful for decidability
was given in [6], where it was shown that adding transitive closure of roles to
ALC(R), the extension of ALC by an admissible concrete domain R based on
real arithmetics, renders the subsumption problem undecidable. The proof of
this result uses a reduction from the Post Correspondence Problem (PCP). It
was shown in [31] that this proof can be adapted to the case where transitive
closure of roles is replaced by GCIs, and it actually works for considerably weaker
concrete domain, such as the rational numbers Q or the natural numbers N with
a unary predicate =0 for equality with zero, a binary equality predicate =, and a
unary predicate +1 for incrementation. In [7] it is shown, by a reduction from the
halting problem of two-register machines, that undecidability even holds without
binary equality. In the present paper, we will improve on this result by showing
that, even if =0 is removed as well, undecidability still holds, and that the same
is true if we replace +1 with +.

To regain decidability, one can either impose syntactic restriction on how
the DL can interact with the concrete domain [22,36]. The main idea is here to
disallow paths (such as child age in our example), which has the effect that con-
crete domain predicates cannot compare properties (such as the age) of different
individuals. The other option is to impose stronger restrictions than admissi-
bility on the concrete domain. After first positive results for specific concrete
domains (e.g., a concrete domain over the rational numbers with order and
equality [30,32]), the notion of ω-admissible concrete domains was introduced in
[33], and it was shown (by designing a tableau-based decision procedure) that
integrating such a concrete domain into ALC leaves reasoning decidable also
in the presence of GCIs. In the present paper, we generalize the notion of ω-
admissibility and the decidability result from concrete domains with only binary
predicates as in [33] to concrete domains with predicates of arbitrary arity. But
the main contribution of this paper is to show that there is a close relationship
between ω-admissibility and well-known notions from model theory. In particu-
lar, we show that finitely bounded, homogeneous structures yield ω-admissible
concrete domains. This allows us to locate new ω-admissible concrete domains
using existing results from model theory. Due to space constraints, we cannot
prove all our results in detail here. Complete proofs and more examples of ω-
admissible concrete domains can be found in [8].

2 Preliminaries

We write [n] for the set {1, . . . , n}. Given a set A, the diagonal on A is defined as
the binary relation �A := {(a, a) | a ∈ A}. The kernel of a mapping f : A → B,
denoted by ker f , is the equivalence relation {(a, a′) ∈ A × A | f(a) = f(a′)}.

From a mathematical point of view, concrete domains are relational struc-
tures. A (relational) signature τ is a set of predicate symbols, each with an asso-
ciated natural number called its arity. A relational τ -structure A consists of
a set A (the domain) together with relations RA ⊆ Ak for each k-ary symbol
R ∈ τ . We often describe structures by listing their domain and relations, e.g.,



416 F. Baader and J. Rydval

we write Q = (Q;<) for the relational structure whose domain is the set of
rational numbers Q, and which has the usual smaller relation < on Q as its only
relation.2 An expansion of the τ -structure A is a σ-structure B with A = B,
τ ⊆ σ, and RB = RA for each relation symbol R ∈ τ . Conversely, we call A a
reduct of B.

One possibility to obtain an expansion of a τ -structure is to use formulas
of first-order logic (FO) over the signature τ to define new predicates, where a
formula with k free variables defines a k-ary predicate in the obvious way. We
assume that equality = as well as the symbol false for falsity is always avail-
able. Thus, atomic formulas are of the form false, xi = xj , and R(x1, . . . , xk)
for some k-ary R ∈ τ and variables x1, . . . , xk. The FO theory of a structure
is the set of all FO sentences that are true in the structure. In addition to full
FO, we also use standard fragments of FO such as the existential positive (∃+),
the quantifier-free (qf), and the primitive positive (pp) fragment. The existential
positive fragment consists of formulas built using conjunction, disjunction, and
existential quantification only. The quantifier-free fragment consists of Boolean
combinations of atomic formulas, and the primitive positive fragment of existen-
tially quantified conjunctions of atomic formulas. Let Σ be a set of FO formulas
and D a structure. We say that a relation over D has a Σ definition in D if it
is of the form {t ∈ Dk | D |= φ(t)} for some φ ∈ Σ. We refer to this relation by
φD. For example, the formula y < x ∨ x = y is an existential positive formula
and, interpreted in the structure Q, it clearly defines the binary relation ≥ on
Q. This shows that ≥ is ∃+ definable in Q. An example of a pp formula is the
formula ∃y. x = y, which defines the unary relation interpreted as the whole
domain Q.

A homomorphism h : A → B for τ -structures A,B is a mapping h : A →
B that preserves each relation of A, i.e., (a1, . . . , ak) ∈ RA for some k-ary
relation symbol R ∈ τ implies (h(a1), . . . , h(ak)) ∈ RB. We write A → B if
A homomorphically maps to B and A 
→ B otherwise. We say that A and B
are homomorphically equivalent if A → B and B → A. An endomorphism is a
homomorphism from a structure to itself. By an embedding we mean an injective
homomorphism that additionally satisfies the only if direction in the definition
of a homomorphism, i.e., it also preserves the complements of relations. We
write A ↪→ B if A embeds into B. A substructure of A is a structure B over
B ⊆ A such that the natural inclusion map i : A → B is an embedding. We
call A an extension of B. An isomorphism is a surjective embedding. We say
that two structures A and B are isomorphic and write A ∼= B if there exists an
isomorphism from A to B. An automorphism is an isomorphism from a structure
into itself.

The definition of admissibility of a concrete domain in [4] requires that the
constraint satisfaction problem for this structure is decidable. Let D be a struc-
ture with a finite relational signature τ . The constraint satisfaction problem of
D, short CSP(D), is the following decision problem:

2 By a slight abuse of notation, we use < instead of <Q to denote also the interpreta-
tion of the predicate symbol < in Q.
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INPUT: A finite τ -structure A.
QUESTION: Does A homomorphically map to D?

Formally, CSP(D) is the class of all finite τ -structures that homomorphically
map to D. We call D the template of CSP(D). A solution for an instance A of
the CSP is a homomorphism h : A → D.

It is easy to see that deciding whether a CSP instance admits a solution
amounts to evaluating a pp sentences in the template and vice versa [10]. For
example, verifying whether the structure A = ({a1, a2, a3};<A) with <A :=
{(a1, a2), (a2, a3), (a3, a1)} homomorphically maps into Q is the same as checking
whether the pp sentence ∃x1.∃x2.∃x3.(x1 < x2 ∧x2 < x3 ∧x3 < x1) is true in Q.

The CSP for Q is in P since a structure A = (A,<A) can homomorphically
be mapped into Q iff it does not contain a <-cycle, i.e., there are is no n ≥ 1 and
elements a0, . . . , an−1 ∈ A such that a0 <A . . . <A an−1 <A a0. Testing whether
such a cycle exists can be done in logarithmic space since it requires solving the
reachability problem in a directed graph (digraph). In the example above, we
obviously have a cycle, and thus this instance of CSP(Q) has no solution.

The definition of admissibility in [4] actually also requires that the predicates
are closed under negation and that there is a predicate for the whole domain.
We have already seen that the negation ≥ of < is ∃+ definable in Q and that the
predicate for the whole domain is pp definable. The negation of this predicate
has the pp definition x < x. The following lemma implies that the expansion of
Q by these predicates still has a decidable CSP.3

Lemma 1 ([10]). Let C,D be structures over the same domain with finite
signatures. If the relations of C have a pp definition in D, then CSP(C) ≤PTime

CSP(D); if they have an ∃+ definition in D, then CSP(C) ≤NPTime CSP(D).

3 DLs with Concrete Domains

As in [4] and [33], we extend the well-known DL ALC with concrete domains.
We assume that the reader is familiar with the syntax and semantics of ALC
(as, e.g., defined in [7]), and thus only show how both need to be extended to
accommodate a concrete domain D. In the general definition, we allow reference
to Σ definable predicates for a fragment Σ of FO rather than just the elements
of τ . For technical reasons, we must, however, restrict the arities of definable
predicates by a fixed upper bound d. Given a τ -structure D with finite relational
signature τ , a set Σ of FO formulas over the signature τ , and a bound d ≥ 1 on
the arity of the Σ-definable predicates, we obtain a DL ALCd

Σ(D), which extends
ALC as follows.

From a syntactic point of view, we assume that the set of role names NR

contains a set of functional roles NfR ⊆ NR, and that in addition we have a set of

3 The lemma actually only yields an NP decision procedure for this CSP, but it is
easy to see that the above polynomial-time cycle-checking algorithm can be adapted
such that it also works for the expanded structure.
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feature names NF, which provide the connection between the abstract and the
concrete domain. A path is of the form r f or f where r ∈ NR and f ∈ NF. In
our example in the introduction, age is a feature name and child age is a path.
The DL ALCd

Σ(D) extends ALC with two new concept constructors:

∃p1, . . . , pk. [φ(x1, . . . , xk)] and ∀p1, . . . , pk. [φ(x1, . . . , xk)],

where k ≤ d, p1, . . . , pk are paths, and φ(x1, . . . , xk) is a formula in Σ with k
free variables, defining a k-ary predicate on D. As usual, a TBox is defined to
be a finite set of GCIs C � D, where C,D are ALCd

Σ(D) concept descriptions.
Regarding the semantics, we consider interpretations I = (ΔI , ·I), consisting

of a non-empty set ΔI and an interpretation function ·I , which interprets concept
names A as subsets AI of ΔI and role names r as binary relations rI on ΔI , with
the restriction that rI is functional for r ∈ NfR, i.e., (d, e) ∈ rI and (d, e′) ∈ rI

imply e = e′. In addition, features f ∈ NF are interpreted as functional binary
relations fI ⊆ ΔI × D. We extend the interpretation function to paths of the
form p = r f by setting

pI = {(d, d′) | there is d′′ ∈ ΔI such that (d, d′′) ∈ rI and (d′′, d′) ∈ fI}.

For the concept constructors of ALC, the extension of the interpretation func-
tion to complex concepts is defined in the usual way. The new concrete domain
constructors are interpreted as follows:

(∃p1, . . . , pk. [φ(x1, . . . , xk)])I = {d ∈ ΔI | there exist d1, . . . , dk ∈ D such that
(d, di) ∈ pI

i for all i ∈ [k] and D |= φ(d1, . . . , dk)},

(∀p1, . . . , pk. [φ(x1, . . . , xk)])I = {d ∈ ΔI | for all d1, . . . , dk ∈ D we have that
(d, di) ∈ pI

i for all i ∈ [k] implies D |= φ(d1, . . . , dk)}.

As usual, an interpretation I is a model a TBox T if it satisfies all the GCIs in
T , where I satisfies the GCI C � D if CI ⊆ DI holds. The ALCd

Σ(D) concept
description C is satisfiable w.r.t. T if there is a model I of T such that CI 
= ∅.
Since all Boolean operators are available in ALCd

Σ(D), the subsumption problem
mentioned in the introduction and the satisfiability problem are inter-reducible
in polynomial time [7].

As a convention, we write ALC(D) instead of ALCd
Σ(D) if d is the maximal

arity of the predicates in τ and Σ consists of all atomic τ -formulas not using the
equality predicate.

3.1 Undecidable DLs with Concrete Domains

We show by a reduction from the halting problem of two-register machines that
concept satisfiability in ALC(D) is undecidable if D is a structure with domain
Q, Z, or N whose only predicate is the binary predicate +1, which is interpreted
as incrementation (i.e., it consists of the tuples (m,m+1) for numbers m in the
respective domain).

Our proof is an adaptation of the undecidability proof in [7] to the case where
no zero test =0 is available.4 A two-register machine (2RM) is a pair (Q,P )
4 A similar trick for zero test elimination is used in the proof of Proposition 1 in [16].
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with states Q = {q0, . . . , q�} and a sequence of instructions P = I0, . . . , I�−1.
By definition, q0 is the initial state and q� the halting state. In state qi (i <
	) the instruction Ii must be applied. Instructions come in two varieties. An
incrementation instruction is of the form I = +(p, q) where p ∈ {1, 2} is the
register number and q is a state. This instruction increments (the content of)
register p and then goes to state q. A decrementation instruction is of the form
I = −(p, q, q′) where p ∈ {1, 2} and q, q′ are states. This instruction decrements
register p and goes to state q if the content of register p is not zero; otherwise, it
leaves register p as it is and goes to state q′. It is well-known that the problem
of deciding whether a given 2RM halts on input (0, 0) is undecidable [35].

Proposition 1. If D is (Q,+1), (Z,+1), or (N,+1), then concept satisfiability
in ALC(D) w.r.t. TBoxes is undecidable.

Proof. Let (Q,P ) be an arbitrary 2RM. We define a concept C and a TBox
T in such a way that every model of T in which C is non-empty represents
the computation of (Q,P ) on the input (0, 0). For every state qi we introduce
a concept name Qi. We also introduce two concept names Z1, Z2 to indicate
a positive zero test for the first and second register, respectively. In addition,
we introduce a functional role g ∈ NfR representing the transitions between
configurations of the 2RM. For p ∈ {1, 2}, we have features rp ∈ NF representing
the content of register p. However, since our concrete domain does not have
the predicate =0, we cannot enforce that, in our representation of the initial
configuration, r1 and r2 have value zero. What we can ensure, though, is that
their value is the same number, which we can store in a concrete feature z ∈ NF.
The idea is now that register p of the machine actually contain the value of rp

offset with the value of z. We also need auxiliary concrete features s1, s2, s ∈ NF,
which respectively refer to the successor values of r1, r2, z. They are needed to
express equality using +1.

The following GCI ensures that the elements of C represent the initial con-
figuration together with appropriate values for the auxiliary features:

C � Q0 � ∃r1, s1. [+1] � ∃r2, s2. [+1] � ∃z, s1. [+1] � ∃z, s2. [+1] � ∃z, s. [+1].

Next, the GCI � � ∃gz, s. [+1] � ∃gz, gs. [+1] guarantees that the value z of an
individual carries over to its g-successor. We denote the second value in {1, 2}
beside p by p̂, i.e., p̂ = 3−p. To enforce that the incrementation instructions are
executed correctly, for every instruction Ii = +(p, qj), we include in T the GCI

Qi � ∃rp, grp. [+1] � ∃grp̂, sp̂. [+1] � ∃sp, gsp. [+1] � ∃rp̂, gsp̂. [+1] � ∃g.Qj

The GCIs Zp � ∃z, sp. [+1], ∃z, sp. [+1] � Zp ensure that Zp represents a positive
zero test for register p. Note that, for individuals for which values for s, z, sp, rp

are defined, the negation of Zp is semantically equivalent to a negative zero test
for register p. To enforce that decrementation is executed correctly, for every
instruction Ii = −(p, qj , qk), we include in T the GCIs

Qi � Zp � ∃grp, sp. [+1] � ∃grp̂, sp̂. [+1] � ∃rp, gsp. [+1] � ∃rp̂, gsp̂. [+1] � ∃g.Qk,

Qi � ¬Zp � ∃grp, rp. [+1] � ∃grp̂, sp̂. [+1] � ∃gsp, sp. [+1] � ∃rp̂, gsp̂. [+1] � ∃g.Qj .
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Finally, we include the GCI Q� � ⊥, which states that the halting state is never
reached. It is now easy to see that the computation of (Q,P ) on (0, 0) does not
reach the halting state iff C is satisfiable w.r.t. T . ��

Note that, even though our proof of Proposition 1 uses a functional role g to
represent the transitions between configurations of a given two-register machine,
the reduction also works if g is assumed to be an arbitrary role. One simply
must use additional universal quantification to ensure that all the g-successors
of an individual behave the same (i.e., for every existential quantification in the
current proof we add the corresponding universal quantification).

It turns out that undecidability also holds if we use the ternary predicate +
rather than the binary predicate +1. Intuitively, with + we can easily test for
0 since m is 0 iff m + m = m. Instead of incrementation by 1, we can then use
addition of a fixed non-zero number (see [8] for a detailed proof).

Proposition 2. If D is (Q,+), (Z,+), or (N,+), then concept satisfiability in
ALC(D) w.r.t. TBoxes is undecidable.

3.2 ω-admissible Concrete Domains

To regain decidability in the presence of GCIs and concrete domains, the notion
of ω-admissible concrete domains was introduced in [33]. We generalize this
notion and the decidability result from concrete domains with only binary pred-
icates as in [33] to concrete domains with predicates of arbitrary arity.

We say that a countable structure D has homomorphism compactness if, for
every countable structure B, it holds that B → D iff A → D for every finite
structure A with A ↪→ B. A relational τ -structure D satisfies

(JE) if, for some d ≥ 2,
⋃ {

RD
∣

∣ R ∈ τ, RD ⊆ Dk
}

= Dk if k ≤ d and ∅ else;
(PD) if RD ∩ R′D = ∅ for all pairwise distinct R,R′ ∈ τ ;
(JD) if

⋃

{RD
∣

∣ R ∈ τ, RD ⊆ �D} = �D.

Here JE stands for “jointly exhaustive,” PD for “pairwise disjoint,” and JD for
“jointly diagonal.” Note that JD was not considered in [33]. We include it here
since it makes the comparison with known notions from model theory easier. In
addition, all the ω-admissible concrete domains considered in [33] satisfy JD.

A relational τ -structure D is a patchwork if it is JDJEPD, and for all finite
JEPD τ -structures A,B1,B2 with e1 : A ↪→ B1, e2 : A ↪→ B2, B1 → D and
B2 → D, there exist f1 : B1 → D and f2 : B2 → D with f1 ◦ e1 = f2 ◦ e2.

Definition 1. The relational structure D is ω-admissible if CSP(D) is decid-
able, D has homomorphism compactness, and D is a patchwork.

The idea is now that one can use disjunctions of atomic formulas of the same
arity within concrete domain restrictions. We refer to the set of all FO τ -formulas
of the form R1(x1, . . . , xk)∨· · ·∨Rm(x1, . . . , xk) for R1, . . . , Rm k-ary predicates
in τ by∨+. The following theorem is proved in [8] by extending the tableau-based
decision procedure given in [33] to our more general definition of ω-admissibility.
Note that the proof of correctness of this procedure does not depend on JD.
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Theorem 1. Let D be an ω-admissible τ -structure with at most d-ary rela-
tions for some d ≥ 2. Then concept satisfiability in ALCd

∨+(D) w.r.t. TBoxes is
decidable.

The main motivation for the definition of ω-admissible concrete domains in
[33] was that they can capture qualitative calculi of time and space. In particular,
it was shown in [33] that Allen’s interval logic [1] as well as the region connection
calculus RCC8 [37] can be represented as ω-admissible concrete domains. To
the best of our knowledge, no other ω-admissible concrete domains have been
exhibited in the literature since then.

4 A Model-Theoretic Approach Towards ω-admissibility

In this section, we introduce several model-theoretic properties of relational
structures and show their connection to ω-admissibility. This allows us to for-
mulate sufficient conditions for ω-admissibility using well-know notions from
model theory, and thus to employ existing model-theoretic results to find new
ω-admissible concrete domains.

ω-categoricity. We start with introducing ω-categoricity since it gives us homo-
morphism compactness “for free.” A structure is ω-categorical if its first-order
theory has exactly one countable model up to isomorphism. For example, it
is well-known that Q is, up to isomorphism, the only countable dense linear
order without lower or upper bound. This result, which clearly implies that Q
is ω-categorical, is due to Cantor.

For every structure A, the set of all its automorphisms forms a permutation
group, which we denote by Aut(A) (see Theorem 1.2.1 in [25]). Every relation
with an FO definition in A is easily seen to be preserved by Aut(A). For ω-
categorical structures, the other direction holds as well.

Theorem 2 (Engeler, Ryll-Nardzewski, Svenonius [25]). For a countably
infinite structure A with a countable signature, the following are equivalent:

1. A is ω-categorical.
2. For every k ≥ 1, only finitely many k-ary relations are FO definable in A.
3. Every relation over A preserved by Aut(A) is FO definable in A.

The following corollary to this theorem establishes the first link between model
theory and ω-admissibility.

Corollary 1 (Lemma 3.1.5 in [10]). Every ω-categorical structure has homo-
morphism compactness.

In order to obtain JDJEPD, we replace the original relations of a given
ω-categorical τ -structure A with appropriate first-order definable ones, using
the results of Theorem 2. The orbit of a tuple (a1, . . . , ak) ∈ Ak under the
natural action of Aut(A) on Ak is the set

{(

g(a1), . . . , g(an)
)

| g ∈ Aut(A)
}

.
By Theorem 2, the set of all at most k-ary relations FO definable in A is finite
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for every k ∈ N. Since every such set is closed under intersections, it contains
finitely many minimal non-empty relations. Since every relation over A that
is preserved by all automorphisms of A is FO definable in A, these minimal
elements are precisely the orbits of tuples over A under the natural action of
Aut(A).

Definition 2. For a given arity bound d ≥ 2, the d-reduct of the ω-categorical τ -
structure A, denoted by A�d, is the relational structure over A whose relations
are all orbits of at most d-ary tuples over A under Aut(A). We denote the
signature of A�d by τ�d.

It is easy to see that A�d is JDJEPD, and that every at most d-ary relation
over A FO definable in A can be obtained as a disjunction of atomic formu-
las built using the symbols in τ�d. As an example, consider the ω-categorical
structure Q. The orbits of k-tuples of elements of Q can be defined by quantifier-
free formulas that are conjunctions of atoms of the form xi = xj or xi < xj . For
example, the orbit of the tuple (2, 3, 2, 5) consists of all tuples (q1, q2, q3, q4) ∈ Q4

that satisfy the formula x1 < x2 ∧ x1 = x3 ∧ x2 < x4 if xi is replaced by qi for
i = 1, . . . , 4. The FO definable k-ary relations in Q are obtained as unions of
these orbits, where the defining formula is then the disjunction of the formulas
defining the respective orbits. Since these formulas are quantifier-free, this also
shows that Q admits quantifier elimination. Recall that a τ -structure admits
quantifier elimination if for every FO τ -formula there exists a quantifier-free
(qf) τ -formula that defines the same relation over this structure.

Homogeneity. To obtain the patchwork property, we restrict the attention to
homogeneous structures. A structure A is homogeneous if every isomorphism
between finite substructures of A extends to an automorphism of A.

Theorem 3 ([25]). A countable relational structure with a finite signature is
homogeneous iff it is ω-categorical and admits quantifier elimination.

Since Q is ω-categorical and admits quantifier elimination, it is thus homo-
geneous. This can, however, also easily be shown directly without using the
theorem. In fact, given finite substructures B and C of Q and an isomorphism
between them, we know that B consists of finitely many elements p1, . . . , pn

and C of the same number of elements q1, . . . , qn such that p1 < . . . < pn,
q1 < . . . < qn, and the isomorphism maps pi to qi (for i = 1, . . . , n). It is now
easy to see that < is also a dense linear order without lower or upper bound on
the sets {p | p < p1} and {q | q < q1}, and thus there is an order isomorphism
between these sets. The same is true for the pairs of sets {p | pi < p < pi+1} and
{q | qi < q < qi+1}, and for the pair {p | pn < p} and {q | q < qn}. Using the
isomorphisms between these pairs, we can clearly put together an isomorphisms
from Q to Q that extends the original isomorphism from B to C.

Countable homogeneous structures can be obtained as Fräıssé limits of amal-
gamation classes. A class K of relational τ -structures has the amalgamation prop-
erty (AP) if, for every A,B1,B2 ∈ K with e1 : A ↪→ B1 and e2 : A ↪→ B2 there
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exists C ∈ K with f1 : B1 ↪→ C and f2 : B2 ↪→ C such that f1 ◦ e1 = f2 ◦ e2.
A class K of finite relational structures with a countable signature τ is called
an amalgamation class if it has AP, is closed under applying isomorphisms and
taking substructures, and contains only countably many structures up to iso-
morphism. We denote by Age (A) the class of all finite structures that embed
into the structure A.

Theorem 4 (Fräıssé [25]). Let K be an amalgamation class of τ -structures.
Then there exists a homogeneous countable τ -structure A with Age (A) = K.
The structure A is unique up to isomorphism and referred to as the Fräıssé
limit of K. Conversely, Age (A) for a countable homogeneous structure A with
a countable signature is an amalgamation class.

For our running example Q = (Q, <), we have that Age (Q) consists of all
finite linear orders, and thus by Fräıssé’s theorem this class of structures is an
amalgamation class. In addition, Q is the Fräıssé limit of this class. Proposition 3
below shows that there is a close connection between AP and the patchwork
property. Its proof uses the following lemma, whose proof can be found in [8].

Lemma 2. Let A,B be two JEPD τ -structures, such that B is JD, and f : A →
B a homomorphism. Then f preserves the complements of all relations of A and
ker f =

⋃

{RA | R ∈ τ and RB ⊆ �B}.

Proposition 3. Let D be a JDJEPD τ -structure. Then D is a patchwork iff
Age (D) has AP.

Proof. For simplification purposes, every statement indexed by i is suppose to
hold for both i ∈ {1, 2}. First, suppose that Age (D) has AP. Let A,B1,B2 be
finite JEPD τ -structures with ei : A ↪→ Bi and hi : Bi → D. We must show
that there exist fi : Bi → D with f1 ◦ e1 = f2 ◦ e2. Let ̂A1 and ̂A2 be the
substructures of D on (h1 ◦ e1)(A) and (h2 ◦ e2)(A), respectively. Clearly both
̂A1 and ̂A2 are JDJEPD, because they are substructures of D. Due to Lemma 2,
we have ̂A1

∼= ̂A2, because both h1 ◦ e1 and h2 ◦ e2 preserve the complements of
all relations of A and ker h1 ◦ e1 =

⋃

{RA | R ∈ τ and RD ⊆ �D} = ker h2 ◦ e2.
However, what we want is an isomorphism that commutes with h1 ◦ e1 and

h2 ◦ e2. Consider the map g : ̂A1 → ̂A2 given by g
(

(h1 ◦ e1)(a)
)

:= (h2 ◦ e2)(a).
It is well defined, because ker h1 ◦ e1 = ker h2 ◦ e2. Now, for every R ∈ τ and
((h1◦e1)(a1), . . . , (h1◦e1)(ak)) ∈ R

̂A1 , we have (a1, . . . , ak) ∈ RA, because h1◦e1
preserves the complements of all relations of A due to Lemma 2. But this implies
((h2 ◦ e2)(a1), . . . , (h2 ◦ e2)(ak)) ∈ R

̂A2 , because h2 ◦ e2 is a homomorphism. By
Lemma 2, g preserves the complements of all relations of ̂A1 and

ker g =
⋃

{

R
̂A1

∣

∣ R ∈ τ and R
̂A2 ⊆ �

̂A2

}

= �
̂A1

.

Hence g is an isomorphism that additionally satisfies g ◦ h1 ◦ e1 = h2 ◦ e2.
Let ̂B1 and ̂B2 be the substructures of D on h1(B1) and h2(B2), respectively.
Now consider the inclusions êi : ̂Ai ↪→ ̂Bi. Since Age (D) has AP, there exists
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C ∈ Age (D) together with ̂fi : ̂Bi ↪→ C and e : C ↪→ D such that ̂f1 ◦ ê1 =
̂f2 ◦ ê2 ◦ g. We define the homomorphisms fi : Bi → D by fi := e ◦ ̂fi ◦ hi. Then,
for every a ∈ A,

f1 ◦ e1(a) = e ◦ ̂f1 ◦ h1 ◦ e1(a) = e ◦ ̂f1 ◦ ê1 ◦ h1 ◦ e1(a)

= e ◦ ̂f2 ◦ ê2 ◦ g ◦ h1 ◦ e1(a) = e ◦ ̂f2 ◦ ê2 ◦ h2 ◦ e2(a)

= e ◦ ̂f2 ◦ h2 ◦ e2(a) = f2 ◦ e2(a).

Hence D is a patchwork. For the other direction, suppose that D is a patchwork.
Let A,B1,B2 be finite τ -structures with ei : A ↪→ Bi and hi : Bi ↪→ D. Since B1

and B2 are isomorphic to substructures of D, they are clearly JEPD. Thus, as
D is a patchwork, there exist homomorphisms fi : Bi → D with f1 ◦e1 = f2 ◦e2.
By Lemma 2, the fi preserve the complements of all relations of Bi, and

ker fi =
⋃

{

RBi
∣

∣ R ∈ τ and RD ⊆ �D

}

= ker hi = �Bi
.

This means that fi are embeddings. We obtain AP for Age (D) by choosing C
to be the substructure of D on f2(B1) ∪ f1(B2). ��

Recall that, to obtain JDJEPD, we actually need to take the d-reduct of
a given ω-categorical structure, rather than the structure itself. Fortunately,
homogeneity transfers from D to D�d (see [8] for the proof).

Lemma 3. Let D be a countable homogeneous structure with a finite relational
signature τ . Then D�d is homogeneous for every d that exceeds or is equal to
the maximal arity of the symbols from τ .

Finite Boundedness. The only property of ω-admissible structures we have
not yet considered in this section is the decidability of the CSP. One possi-
bility to achieve this is to consider finitely bounded structures. For a class N
of τ -structures, we denote by Forbe(N ) the class of all finite τ structures not
embedding any member of N . We say that a structure A is finitely bounded if
its signature is finite and Age (A) = Forbe(N ) for a finite N [14]. Note that A is
finitely bounded iff there exists a universal FO sentence Φ(A) s.t. B ∈ Age (A)
iff B |= Φ(A) [8].

The structure Q is finitely bounded. To show this, we can use the set N
consisting of the four structures depicted in Fig. 1: the self loop, the 2-cycle,
the 3-cycle, and two isolated vertices. We must show that Age (Q) = Forbe(N ).
Clearly, none of the structures in N embeds into a linear order, which shows
Age (Q) ⊆ Forbe(N ). Conversely, assume that A is an element of Forbe(N ).
We must show that <A is a linear order. Since N contains the self loop, we
have (a, a) 
∈ <A for all a ∈ A, which shows that <A is irreflexive. For distinct
elements a, b ∈ A, we must have a <A b or b <A a since otherwise the structure
consisting of two isolated vertices could be embedded into A. This shows that any
two distinct elements are comparable w.r.t. <A. To show that <A is transitive,
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<

>
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>
>

Fig. 1. A set of four forbidden substructures for Q = (Q; <).

assume that a <A b and b <A c holds. Since the 2-cycle does not embed into A,
a and c must be distinct, and are thus comparable. We cannot have c <A a since
then we could embed the 3-cycle into A. Consequently, we must have a <A c,
which proves transitivity. This show that A is a linear order. As formula Φ(Q)
we can take the conjunction of the usual axioms defining linear orders.

Finitely bounded structures are interesting since their CSP and their first-
order theory are decidable. The first result can, e.g., be found in [13] (Theorem 4)
and the second result is stated in [28,29] (see [8] for a detailed proof).

Proposition 4. Let D be finitely bounded homogeneous structure with |D| > 1.
Then CSP(D) is decidable in NP and the FO theory of D is PSpace-complete.

The following proposition, whose proof can be found in [8], implies that
Proposition 4 applies not only to a given finitely bounded homogeneous structure
D, but also to its d-reduct D�d.

Proposition 5. Let A be a finitely bounded homogeneous structure and B a
structure with the same domain and finitely many relations that are FO definable
in A. Then B is a reduct of a finitely bounded homogeneous structure.

We are now ready to formulate our first sufficient condition for ω-
admissibility.

Theorem 5. Let D be a finitely bounded homogeneous relational structure with
at most d-ary relations for some d ≥ 2. Then D�d is ω-admissible.

Proof. It follows directly from its definition that D�d is JEPD. Since d ≥ 2, it is
clearly also JD. By Lemma 3, D�d is homogeneous and ω-categorical. Thus D
has homomorphism compactness by Corollary 1. By Theorem 4, Age (D�d) has
AP. Thus D�d is a patchwork by Proposition 3. By Proposition 5, Lemma 1,
and Proposition 4, CSP(D�d) is in NP. Hence D�d is ω-admissible. ��

This theorem, together with Theorem 1, immediately yields decidability for
ALCd

∨+(D�d). The following corollary shows that we can even allow for arbi-
trary FO definable relations with arity bounded by d in the concrete domain.

Corollary 2. Let D be a finitely bounded homogeneous relational structure with
at most d-ary relations for some d ≥ 2. Then concept satisfiability in ALCd

FO(D)
w.r.t. TBoxes is decidable.
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The idea for proving this result is to reduce concept satisfiability in ALCd
FO(D) to

concept satisfiability in ALCd
∨+(D�d). We know that every at most d-ary relation

over D FO definable in D can be obtained as a disjunction of atomic formulas
built using the signature of D�d. What still needs to be shown is that, given
a first-order formula in the signature of D with at most d free variables, this
disjunction can effectively be computed (see [8] for how this can be proved).

Cores. Finally, we consider the situation where we have a homogeneous rela-
tional structure D with finitely many at most d-ary relations that is not finitely
bounded, but which we know (by some other means) to have a decidable CSP.
In this situation, we can show decidability for ALCd

∃+(D) under one additional
assumption. A structure D is called a core if every endomorphism from D to
itself is an embedding. It was shown in [9] that, if D is a homogeneous core,
then the orbits of tuples over D under Aut(D) are pp definable in D. As an
easy consequence of this result, we obtain our second sufficient condition for
ω-admissibility (see [8] for the proof).

Theorem 6. Let D be a homogeneous relational structure with finitely many at
most d-ary relations for some d ≥ 2 that is a core and has a decidable CSP.
Then D�d is ω-admissible.

By showing that concept satisfiability in ALCd
∃+(D) can effectively be

reduced to concept satisfiability in ALCd
∨+(D�d), we obtain the following decid-

ability result (see [8] for the proof).

Corollary 3. Let D be a homogeneous relational structure with finitely many
at most d-ary relations for some d ≥ 2 that is a core and has a decidable CSP.
Then concept satisfiability in ALCd

∃+(D) w.r.t. TBoxes is decidable.

5 Application and Discussion

In this section, we discuss how the results of Sect. 4 can be used to obtain specific
ω-admissible concrete domains. But let us first start with a caveat.

Finiteness of Signature Matters. In Corollary 2 and Corollary 3, the signature
of the structure D is required to be finite. This restriction is needed to obtain
decidability. For instance, the expansion of the structure (Z; +1) from Sect. 3.1
by all relations +k = {(m,n) ∈ Z2 | m + k = n} for k ∈ Z is homogeneous, and
satisfiability of finite conjunctions of constraints is decidable in this structure.
However, we have seen in Proposition 1 that reasoning with (Z; +1) as a concrete
domain w.r.t. TBoxes is undecidable.

(Un)decidability of the Conditions. If one intends to use Theorem 5 to obtain
an ω-admissible concrete domain, one could start with selecting a finite set N
of bounds, i.e., forbidden τ -substructures, for a finite signature τ . The ques-
tion is then whether N really induces a finitely bounded structure, i.e., whether
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there is a τ -structure D such that Age (D) = Forbe(N ). This question is in gen-
eral undecidable. In fact, it is shown in [17] that the joint embedding property
(JEP) is undecidable for classes of structures that are definable by finitely many
bounds. In addition, it is known that a class of structures definable by finitely
many bounds has JEP iff this class is the age of some countably infinite struc-
ture (see [25], Theorem 6.1.1). However, if one restricts the attention to binary
signatures, then it is decidable whether a class of the form Forbe(N ) has AP
[12]. If this is the case, then the Fräıssé limit D of Forbe(N ) is a finitely bounded
homogeneous structure satisfying Age (D) = Forbe(N ) by Theorem 4.

Reproducing Known Results. The examples for ω-admissible concrete domains
given in [33] were RCC8 and Allen’s interval algebra, for which the patchwork
property is proved “by hand” in [33]. Given Theorem 5, we obtain these results
as a consequence of known results from model theory. It was shown in [15]
that RCC8 has a representation by a homogeneous structure R with a finite
relational signature (Theorem 2 in [15]). Since Age (R) has a finite universal
axiomatization (Definition 3 in [15]), R is finitely bounded. For Allen’s interval
algebra, it was shown in [24] that it has a representation by a homogeneous
structure A with a finite relational signature. Since Age (A) has a finite universal
axiomatization, A is finitely bounded. Our running example Q = (Q, <) also
satisfies the preconditions of Theorem 5, and thus Corollary 2 yields decidability
of ALCd

FO(Q) with TBoxes. For Q extended just with >,≤,≥,=, 
=, decidability
was proved in [30], using an automata-based procedure. Our results show that
there is also a tableau-based decision procedure for this logic.

Expansions, Disjoint Unions, and Products. When modelling concepts in a DL
with concrete domain D, it is often useful to be able to refer to specific elements
d of the domain, i.e., to have unary predicate symbols =d that are interpreted
as {d}. We can show that the class of reducts of finitely bounded homogeneous
structures is closed under expansion by finitely many such relations [8].

It would also be useful to be able to refer to predicates of different concrete
domains (say RCC8 and Allen) when defining concepts. In [5], it was shown that
admissible concrete domains are closed under disjoint union. We can prove the
corresponding result for finitely bounded homogeneous structures [8]. Using dis-
joint union to refer to several concrete domain works well if the paths employed
in concrete domain constructors contain only functional roles, which is the case
considered in [5]. However, if we allow for non-functional roles in paths, then
using disjoint union is not appropriate. In general, if R,R′ are two binary rela-
tions over D and r ∈ NR\NfR, then the situation where an individual x has an
r-successor y with features related through both R and R′ cannot be described
using the disjoint union of (D;R) and (D;R′) as a concrete domain (see [8] for
details).

To overcome this problem, we propose to use the so-called full product [10].
Let A1, . . . ,Ak be finitely many structures with disjoint relational signatures
τ1, . . . , τk. The full product of A1, . . . ,Ak, denoted by A1 � · · · � Ak, has as
its domain the Cartesian product A := A1 × · · · × Ak and as its signature the
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union of the signatures τi. For a ∈ A1 × · · · × Ak and i ∈ [k], we denote the ith
component of the tuple a by a[i]. The relations are defined as follows:

RA1×···×Ak := {(a1, . . . , an) ∈ An | (a1[i], . . . , an[i]) ∈ RAi}

for every i ∈ [k] and every n-ary R ∈ τi. We show in [8] that the full product
preserves homogeneity and finite boundedness, and thus the prerequisites for
Theorem 5 and Corollary 2 are preserved under building the full product.

Proposition 6. Let A1, . . . ,Ak be finitely bounded homogeneous structures with
disjoint relational signatures τ1, . . . , τk such that, for i ∈ [k], τi contains the
symbol =i, which is defined in Ai as �Ai

. Then A1 � · · · � Ak is a finitely
bounded homogeneous structure.

Together with Proposition 4 this also yields a general complexity result for
combinations of constraints over several finitely bounded homogeneous tem-
plates. Such combinations were previously considered in the literature in special
cases; for example, for RCC8 and Allen [21].

Henson Digraphs. A directed graph is a tournament if every two distinct vertices
in it are connected by exactly one directed edge. In [23], Henson proved that there
are uncountably many homogeneous directed graphs by showing that, for any
set N of finite tournaments (plus the loop and the 2-cycle) such that no member
of N is embeddable into any other member of N , Forbe(N ) is an amalgamation
class whose Fräıssé limit is a homogeneous directed graph. Furthermore, the
Fräıssé limits for two distinct sets of such tournaments are distinct as well. In
the literature, such directed graphs are often called Henson digraphs [34]. If G
is a Henson digraph, then Age (G) = CSP(G).5 Clearly, only countably many
Henson digraphs can have a decidable CSP. Beside the finitely bounded ones (see
Proposition 4), there is an interesting example constructed using the infinite set
of non-isomorphic tournaments from Henson’s original proof of uncountability.
Consider the tournaments T1,T2, . . . with domains [2], [3], . . . such that the edge
relation of Tn consists of the edges (i, j) for every j = i + 1 with 0 ≤ i ≤ n,
(0, n + 1), and (j, i) for every j > i + 1 with (i, j) 
= (0, n + 1). It was shown in
[11] that the CSP of the Henson digraph corresponding to N := {T1,T2, . . .} is
coNP-complete. This digraph is a homogeneous core, and its CSP is decidable.
Thus, it satisfies the requirements of Corollary 3. However, it is clearly not finitely
bounded, and thus does not satisfy the requirements of Corollary 2. Conversely,
it is known that the random graph is finitely bounded and homogeneous [25], but
it is not a core [9]. This shows that the class of structures covered by Corollary 3
is incomparable with the one covered by Corollary 2.

6 Conclusion

We have shown that ω-admissibility, which was introduced in the DL community
to obtain decidable extensions of DLs by concrete domains, is closely related to
5 One direction is obvious, the other holds because homomorphisms between directed

graphs cannot contract any edges.
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well-known notions from model theory. Given the fact that a large number of
homogeneous structures are known from the literature [34] and that homoge-
neous and finitely bounded structures play an important rôle in the CSP com-
munity, we believe that our work will turn out to be useful for locating new
ω-admissible concrete domains.

This is not the first model-theoretic description of a sufficient condition for
decidability of reasoning in DLs with concrete domains in the presence of TBoxes.
The existence of homomorphism is definable (EHD) property was used in [19] to
obtain decidability results for DLs with concrete domains. However, the way the
concrete domain is integrated into the DL in [19] is different from the classical
one employed by us and used in all other papers on DLs with concrete domains.
In [19], constraints are always placed along a linear path stemming from a single
individual, which is rather similar to the use of constraints in temporal logics
[18,20]. In contrast, in the classical setting of DLs with concrete domains, one
can compare feature values of siblings of an individual.
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Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 184–196. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70583-3 16
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