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Abstract. We present a framework for formal refutational completeness
proofs of abstract provers that implement saturation calculi, such as
ordered resolution or superposition. The framework relies on modular
extensions of lifted redundancy criteria. It allows us to extend
redundancy criteria so that they cover subsumption, and also to model
entire prover architectures in such a way that the static refutational
completeness of a calculus immediately implies the dynamic refuta-
tional completeness of a prover implementing the calculus, for instance
within an Otter or DISCOUNT loop. Our framework is mechanized in
Isabelle/HOL.

1 Introduction

In their Handbook chapter [5, Sect. 4], Bachmair and Ganzinger remark that
“unfortunately, comparatively little effort has been devoted to a formal analysis
of redundancy and other fundamental concepts of theorem proving strategies,
while more emphasis has been placed on investigating the refutational com-
pleteness of a variety of modifications of inference rules, such as resolution.” As
a remedy, they present an abstract framework for saturation up to redundancy.
Briefly, theorem proving derivations take the form N0�N1�· · · , where N0 is the
initial clause set and each step either adds inferred clauses or deletes redundant
clauses. Given a suitable notion of fairness, the limit N∗ of a fair derivation is
saturated up to redundancy. If the calculus is refutationally complete and N∗
does not contain the false clause ⊥, then N0 has a model.

Bachmair and Ganzinger also define a concrete prover, RP, based on a first-
order ordered resolution calculus and the given clause procedure. However, like
all realistic resolution provers, RP implements subsumption deletion. This opera-
tion is not covered by the standard definition of redundancy, according to which
a clause C is redundant w.r.t. a clause set N if all its ground instances Cθ
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are entailed by strictly smaller ground instances of clauses belonging to N .
As a result, RP-derivations are not �-derivations, and the framework is not
applicable.

There are two ways to address this problem. In the Handbook, Bachmair and
Ganzinger start from scratch and prove the dynamic refutational completeness of
RP by relating nonground derivations to ground derivations. This proof, though,
turns out to be rather nonmodular—it refers simultaneously to properties of
the calculus, to properties of the prover, and to the fairness of the derivations.
Extending it to other calculi or prover architectures would be costly. As a result,
most authors stop after proving static refutational completeness of their calculi.

An alternative approach is to extend the redundancy criterion so that sub-
sumed clauses become redundant. As demonstrated by Bachmair and Ganzinger
in 1990 [3], this is possible by redefining redundancy in terms of closures (C, θ)
instead of ground instances Cθ. We show that this approach can be generalized
and modularized: First, any redundancy criterion that is obtained by lifting a
ground criterion can be extended to a redundancy criterion that supports sub-
sumption without affecting static refutational completeness (Sect. 3). Second, by
applying this property to labeled formulas, it becomes possible to give generic
completeness proofs for prover architectures in a straightforward way.

Most saturation provers implement a variant of the given clause procedure.
We present an abstract version of the procedure (Sect. 4) that can be refined to
obtain an Otter [18] or DISCOUNT [1] loop and prove it refutationally complete.
We also present a generalization that decouples scheduling and computation of
inferences, to support orphan deletion [16,25] and dovetailing [9].

When these prover architectures are instantiated with a concrete saturation
calculus, the dynamic refutational completeness of the combination follows in a
modular way from the properties of the prover architecture and the static refuta-
tional completeness proof for the calculus. Thus, the framework is applicable to
a wide range of calculi, including ordered resolution [5], unfailing completion [2],
standard superposition [4], constraint superposition [19], theory superposition
[28], hierarchic superposition [7], and clausal λ-superposition [9].

Detailed proofs are included in a technical report [29], together with more
explanations, examples, and discussions. When Schlichtkrull, Blanchette, Tray-
tel, and Waldmann [24] mechanized Bachmair and Ganzinger’s chapter using
the Isabelle/HOL proof assistant [21], they found quite a few mistakes, including
one that compromised RP’s dynamic refutational completeness. This motivated
us to mechanize our framework as well (Sect. 5).

2 Preliminaries

Inferences and Redundancy. Let A be a set. An A-sequence is a finite
sequence (ai)k

i=0 = a0, a1, . . . , ak or an infinite sequence (ai)∞
i=0 = a0, a1, . . .

with ai ∈ A for all i. We write (ai)i≥0 or (ai)i for both finite and infinite
sequences. Nonempty sequences can be split into a head a0 and a tail (ai)i≥1.
Given � ⊆ A × A, a �-derivation is a nonempty A-sequence such that ai � ai+1

for all i.
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A set F of formulas is a set with a nonempty subset F⊥ ⊆ F. Elements of
F⊥ represent false. Typically, F⊥ := {⊥}. In Sect. 4, different elements of F⊥
will represent different situations in which a contradiction has been derived.

A consequence relation |= over F is a relation |= ⊆ P(F) × P(F) with the
following properties for all N1, N2, N3 ⊆ F:

(C1) {⊥} |= N1 for every ⊥ ∈ F⊥;
(C2) N2 ⊆ N1 implies N1 |= N2;
(C3) if N1 |= {C} for every C ∈ N2, then N1 |= N2;
(C4) if N1 |= N2 and N2 |= N3, then N1 |= N3.

Consequence relations are used to discuss soundness (and the addition of
formulas) and to discuss refutational completeness (and the deletion of formulas).
An example that requires this distinction is constraint superposition [19], where
one uses entailment w.r.t. the set of all ground instances, |≈, for soundness, but
entailment w.r.t. a subset of those instances, |=, for refutational completeness.
Some calculus-dependent argument is then necessary to show that refutational
completeness w.r.t. |= implies refutational completeness w.r.t. |≈.

An F-inference ι is a tuple (Cn, . . . , C0) ∈ Fn+1, n ≥ 0. The formulas
Cn, . . . , C1 are called premises of ι; C0 is called the conclusion of ι, denoted
by concl(ι). An F-inference system Inf is a set of F-inferences. If N ⊆ F, we
write Inf (N) for the set of all inferences in Inf whose premises are contained
in N , and Inf (N,M) := Inf (N ∪ M) \ Inf (N \ M) for the set of all inferences in
Inf such that one premise is in M and the other premises are contained in N∪M .

A redundancy criterion for an inference system Inf and a consequence rela-
tion |= is a pair Red = (Red I,RedF), where Red I : P(F) → P(Inf ) and
RedF : P(F) → P(F) are mappings that satisfy the following conditions for
all N,N ′:

(R1) if N |= {⊥} for some ⊥ ∈ F⊥, then N \ RedF(N) |= {⊥};
(R2) if N ⊆ N ′, then RedF(N) ⊆ RedF(N ′) and Red I(N) ⊆ Red I(N ′);
(R3) if N ′ ⊆ RedF(N), then RedF(N) ⊆ RedF(N \ N ′) and Red I(N) ⊆

Red I(N \ N ′);
(R4) if ι ∈ Inf and concl(ι) ∈ N , then ι ∈ Red I(N).

Inferences in Red I(N) and formulas in RedF(N) are called redundant w.r.t. N .1

Intuitively, (R1) states that deleting redundant formulas preserves inconsistency.
(R2) and (R3) state that formulas or inferences that are redundant w.r.t. a set N
remain redundant if arbitrary formulas are added to N or redundant formulas are
deleted from N . (R4) ensures that computing an inference makes it redundant.

We define the relation such that if and only
if .

1 One can find several slightly differing definitions for redundancy criteria, fairness, and
saturation in the literature [5,7,28]. However, as shown in the technical report [29],
the differences are typically insignificant as far as static or dynamic refutational
completeness is concerned. Here we mostly follow Waldmann [28].
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Refutational Completeness. Let |= be a consequence relation, let Inf be an
inference system, and let Red be a redundancy criterion for |= and Inf .

A set N ⊆ F is called saturated w.r.t. Inf and Red if Inf (N) ⊆ Red I(N).
The pair (Inf ,Red) is called statically refutationally complete w.r.t. |= if for
every saturated set N ⊆ F such that N |= {⊥} for some ⊥ ∈ F⊥, there exists a
⊥′ ∈ F⊥ such that ⊥′ ∈ N .

Let (Ni)i be a P(F)-sequence. Its limit is the set N∗ :=
⋃

i

⋂
j≥i Nj . Its union

is the set N∞ :=
⋃

i Ni. A sequence is called fair if Inf (N∗) ⊆ ⋃
i Red I(Ni). The

pair (Inf ,Red) is called dynamically refutationally complete w.r.t. |= if for every
fair derivation (Ni)i such that N0 |= {⊥} for some ⊥ ∈ F⊥, we have
⊥′ ∈ Ni for some i and some ⊥′ ∈ F⊥. Properties (R1)–(R3) allow the passage
from a static set of formulas to a dynamic prover:

Lemma 1. (Inf ,Red) is dynamically refutationally complete w.r.t. |= if and only
if it is statically refutationally complete w.r.t. |=.

Intersections of Redundancy Criteria. In the sequel, it will be useful to
define consequence relations and redundancy criteria as intersections of previ-
ously defined consequence relations or redundancy criteria.

Let Q be an arbitrary set, and let (|=q)q∈Q be a Q-indexed family of con-
sequence relations over F. Then |=∩ :=

⋂
q∈Q |=q qualifies as a consequence

relation. Moreover, let Inf be an inference system, and let (Redq)q∈Q be a
Q-indexed family of redundancy criteria, where each Redq = (Redq

I ,Red
q
F) is

a redundancy criterion for Inf and |=q. Let Red∩
I (N) :=

⋂
q∈Q Redq

I (N) and
Red∩

F(N) :=
⋂

q∈Q Redq
F(N). Then Red∩ := (Red∩

I ,Red∩
F) qualifies as a redun-

dancy criterion for |=∩ and Inf .

Lemma 2. A set N ⊆ F is saturated w.r.t. Inf and Red∩ if and only if it is
saturated w.r.t. Inf and Redq for every q ∈ Q.

Often, the consequence relations |=q agree for all q ∈ Q. For calculi where they
disagree, such as constraint superposition [19], one can typically demonstrate the
static refutational completeness of (Inf ,Red∩) in the following form:

Lemma 3. If for every set N ⊆ F that is saturated w.r.t. Inf and Red∩ and
does not contain any ⊥′ ∈ F⊥ there exists some q ∈ Q such that N 	|=q {⊥} for
some ⊥ ∈ F⊥, then (Inf ,Red∩) is statically refutationally complete w.r.t. |=∩.

3 Lifting

A standard approach for establishing the refutational completeness of a calculus is
to first concentrate on the ground case and then lift the results to the nonground
case. In this section, we show how to perform this lifting abstractly, given a suitable
grounding function G. The function maps every formula C ∈ F to a set G(C) of
formulas from a set of formulas G. Depending on the logic and the calculus, G(C)
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maybe, forexample, thesetofallgroundinstancesofC orasubsetthereof.Similarly,
G maps FInf -inferences to sets ofGInf -inferences.

TherearecalculiwheresomeFInf -inferences ιdonothaveacounterpart inGInf ,
such as the PosExt inferences of higher-order superposition calculi [9]. In these
cases, we set G(ι) = undef .

StandardLifting.Giventwosetsof formulasFandG,anF-inferencesystemFInf ,
a G-inference system GInf , and a redundancy criterion Red for GInf , let G be a
function that maps every formula in F to a subset of G and every F-inference in
FInf to undef or to a subset ofGInf . G is called a grounding function if

(G1) for every ⊥ ∈ F⊥, ∅ 	= G(⊥) ⊆ G⊥;
(G2) for every C ∈ F, if ⊥ ∈ G(C) and ⊥ ∈ G⊥ then C ∈ F⊥;
(G3) for every ι ∈ FInf , if G(ι) 	= undef , then G(ι) ⊆ Red I(G(concl(ι))).

G is extended to sets N ⊆ F by defining G(N) :=
⋃

C∈N G(C). Analogously, for a
set I ⊆ FInf , G(I) :=

⋃
ι∈I, G(ι) 
=undef G(ι).

Example 4. In standard superposition, F is the set of all universally quantified
first-order clausesover somesignatureΣ,G is the setof all groundfirst-order clauses
over Σ, and G maps every clause C to the set of its ground instances Cθ and every
superposition inference ι to the set of its ground instances ιθ.

Let G be a grounding function from F and FInf to G and GInf , and let |= be a
consequence relation overG. We define the relation |=G ⊆ P(F) × P(F) such that
N1 |=G N2 if and only if G(N1) |= G(N2). We call |=G the G-lifting of |=. It qualifies
as a consequence relation overF and corresponds to Herbrand entailment. If Tarski
entailment (i.e., N1 |=T N2 if and only if any model of N1 is also a model of N2) is
desired, themismatchcanbe repairedby showing that the twonotionsof entailment
are equivalent as far as refutations are concerned.

Let Red = (Red I,RedF) be a redundancy criterion for |= and GInf . We define
functionsRedG

I : P(F) → P(FInf ) andRedG
F : P(F) → P(F) by

ι ∈ RedG
I (N) if and only if

G(ι) 	= undef and G(ι) ⊆ Red I(G(N))
or G(ι) = undef and G(concl(ι)) ⊆ G(N) ∪ RedF(G(N));

C ∈ RedG
F(N) if and only if

G(C) ⊆ RedF(G(N)).

We call RedG := (RedG
I ,RedG

F) the G-lifting of Red . It qualifies as a redundancy
criterion for |=G and FInf . We get the following folklore theorem:

Theorem 5. If (GInf ,Red) is statically refutationally complete w.r.t. |=, and if we
have GInf (G(N)) ⊆ G(FInf (N)) ∪ Red I(G(N)) for every N ⊆ F that is saturated
w.r.t. FInf and RedG, then (FInf ,RedG) is statically refutationally complete w.r.t.
|=G.

AddingTiebreakerOrderings.We now strengthen the G-lifting of redundancy
criteria to also support subsumption deletion. Let�be awell-founded strict partial
ordering onF. We defineRedG,�

F : P(F) → P(F) as follows:
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C ∈ RedG,�
F (N) if and only if

for every D ∈ G(C),
D ∈ RedF(G(N)) or there exists C ′ ∈ N such that C � C ′and D ∈ G(C ′).

Notice how� is used to break ties betweenC andC ′, possiblymakingC redundant.
We callRedG,� := (RedG

I ,RedG,�
F ) the (G,�)-lifting ofRed . We get the previously

definedRedG as a special case ofRedG,� by setting � := ∅.
We obtain our first main result:

Theorem 6. LetRed bea redundancycriterion for |=andGInf , letG beagrounding
function from F and FInf toG and GInf , and let � be a well-founded strict partial
ordering on F. Then the (G,�)-lifting RedG,� of Red is a redundancy criterion for
|=G and FInf .

Observe that � appears only in the second component of RedG,� =
(RedG

I ,RedG,�
F ) and that the definitions of a saturated set and of static refu-

tational completeness do not depend on the second component of a redun-
dancy criterion. The following lemmas are immediate consequences of these
observations:

Lemma 7. A set N ⊆ F is saturated w.r.t. FInf and RedG,� if and only if it is sat-
urated w.r.t. FInf and RedG,∅.

Lemma 8. (FInf ,RedG,�) is statically refutationallycompletew.r.t. |=G if andonly
if (FInf ,RedG,∅) is statically refutationally complete w.r.t. |=G.

Combining Lemmas 1 and 8, we obtain our second main result:

Theorem 9. LetRed bea redundancycriterion for |=andGInf , letG beagrounding
function from F and FInf toG and GInf , and let � be a well-founded strict partial
ordering onF. If (FInf ,RedG,∅) is statically refutationally complete w.r.t. |=G, then
(FInf ,RedG,�) is dynamically refutationally complete w.r.t. |=G.

Example 10. For resolution or superposition in standard first-order logic, we can
definethesubsumptionquasi-ordering ·≥onclausesbyC ·≥ C ′ ifandonly ifC = C ′σ
for some substitution σ. The subsumption ordering ·> := ·≥ \ ·≤ is well founded. By
choosing � := ·>, we obtain a criterionRedG,� that includes standard redundancy
andalso supports subsumptiondeletion.Similarly, forproof calculimoduloassocia-
tivity and commutativity, we can let C ·≥ C ′ be true if there exists a substitution σ
such that C equals C ′σ up to the equational theory.

Example 11. Constraint superposition with ordering constraints [19] is an exam-
ple of a calculus where the subsumption ordering ·> is not well founded: A ground
instance of a constrained clauseC [[K]] is a ground clauseCθ forwhichKθ evaluates
totrue.Define ·≥bystatingthatC [[K]] ·≥ C ′ [[K ′]] ifandonly ifeverygroundinstance
of C [[K]] is a ground instance of C ′ [[K ′]], and define ·> := ·≥ \ ·≤. If � is a simplifica-
tion ordering, then P(x) [[x ≺ b ]] ·> P(x) [[x ≺ f(b) ]] ·> P(x) [[x ≺ f(f(b)) ]] ·> · · ·
is an infinite chain.
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Example 12. For higher-order calculi such as higher-order resolution [17] and
clausal λ-superposition [9], subsumption is also not well founded, as witnessed by
the chain p x x ·> p (x a) (x b1) ·> p (x a a) (x b1 b2) ·> · · ·.

Even if the subsumption ordering for some logic is not well founded, as in the
two examples above, we can always define � as the intersection of the subsumption
ordering and an appropriate ordering based on formula sizes or weights.

Conversely, the � relation can be more general than subsumption. In Sect. 4,
we will use it to justify the movement of formulas between sets in the given clause
procedure.

Example 13. Forsomesuperposition-baseddecisionprocedures[6],onewouldlike
todefine�asthereversesubsumptionordering ·<onfirst-orderclauses.Eventhough
·< is notwell founded in general, it is well founded on {C ∈ F | D ∈ G(C)} for every
D ∈ G. As shown in the technical report [29], our framework can be extended to
support this case by defining RedG,�

F using a G-indexed family (�D)D∈G of well-
founded strict partial orderings instead of a single �.

IntersectionsofLiftings.Theabove results canbe extended in a straightforward
waytointersectionsof liftedredundancycriteria.Asbefore, letFandGbetwosetsof
formulas, and letFInf beanF-inference system. Inaddition, letQbea set.For every
q ∈ Q, let |=q beaconsequencerelationoverG, letGInf q beaG-inferencesystem, let
Redq bearedundancycriterion for |=q andGInf q, and letGq beagrounding function
fromF andFInf toG andGInf q. Let � be a well-founded strict partial ordering on
F.

For each q ∈ Q, we know by Theorem 6 that the (Gq, ∅)-lifting Redq,Gq,∅ =
(Redq,Gq

I ,Redq,Gq,∅
F ) and the (Gq,�)-lifting Redq,Gq,� = (Redq,Gq

I ,Redq,Gq,�
F ) of

Redq are redundancy criteria for |=q
Gq and FInf . Consequently, the intersections

Red∩G,� := (Red∩G,�
I ,Red∩G,�

F ) :=
(⋂

q∈Q
Redq,Gq

I ,
⋂

q∈Q
Redq,Gq,∅

F

)
and

Red∩G,� := (Red∩G,�
I ,Red∩G,�

F ) :=
(⋂

q∈Q
Redq,Gq

I ,
⋂

q∈Q
Redq,Gq,�

F

)

are redundancy criteria for |=∩
G :=

⋂
q∈Q |=q

Gq and FInf .

Theorem 14. If (GInf q,Redq) is statically refutationally complete w.r.t. |=q for
every q ∈ Q, and if for every N ⊆ F that is saturated w.r.t. FInf and Red∩G

there exists a q such that GInf q(Gq(N)) ⊆ Gq(FInf (N)) ∪ Redq
I (Gq(N)), then

(FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩
G .

Lemma 15. A set N ⊆ F is saturated w.r.t. FInf and Red∩G,� if and only if it is
saturated w.r.t. FInf and Red∩G.

Lemma 16. (FInf ,Red∩G,�) is statically refutationally complete w.r.t. |=∩
G if and

only if (FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩
G .

Theorem 17. If (FInf ,Red∩G) is statically refutationallycompletew.r.t. |=∩
G , then

(FInf ,Red∩G,�) is dynamically refutationally complete w.r.t. |=∩
G .
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Example 18. Intersections of liftings are needed to support selection functions in
superposition[4].ThecalculusFInf isparameterizedbyafunction fsel onthesetFof
first-order clauses that selects a subset of the negative literals in each C ∈ F. There
are several ways to extend fsel to a selection function gsel on the set G of ground
clauses such that for everyD ∈ G there exists someC ∈ F such thatD = Cθ andD
and C have corresponding selected literals. For every such gsel , |=gsel is first-order
entailment, GInf gsel is the set of ground inferences satisfying gsel , and Redgsel is
the redundancy criterion for GInf gsel . The grounding function Ggsel maps C ∈ F
to {Cθ ∈ G | θ is a substitution} and ι ∈ FInf to the set of ground instances
of ι in GInf gsel with corresponding literals selected in the premises. In the static
refutational completeness proof, only one gsel is needed, but this gsel is not known
during a derivation, so fairness must be guaranteed w.r.t.Redgsel,Ggsel

I for every pos-
sible extension gsel of fsel . Thus, checkingRed∩G

I amounts to a worst-case analysis,
where we must assume that every ground instance Cθ of a premise C ∈ F inherits
the selection of C.

Example 19. Intersections of liftings are also necessary for constraint super-
position calculi [19]. Here the calculus FInf operates on the set F of first-order
clauses with constraints. For a convergent rewrite system R, |=R is first-order
entailment up to R on the set G of unconstrained ground clauses, GInfR is the
set of ground superposition inferences, and RedR is redundancy up to R. The
grounding function GR maps C [[K]] ∈ F to {D ∈ G | D = Cθ, Kθ =
true, xθ is R-irreducible for all x}2 and ι ∈ FInf to the set of ground instances of
ι where the premises and conclusion of GR(ι) are the GR-ground instances of the
premises and conclusion of ι. In the static refutational completeness proof, only one
particular R is needed, but this R is not known during a derivation, so fairness must
be guaranteed w.r.t.RedR,GR

I for every convergent rewrite system R.

Almost every redundancy criterion for a nonground inference systemFInf that
can be found in the literature can be written asRedG,∅ for some grounding function
G fromF andFInf toG andGInf , and some redundancy criterionRed forGInf , or
as an intersection Red∩G of such criteria. By Theorem 17, every static refutational
completeness result forFInf andRed∩G—whichdoesnotpermit thedeletionof sub-
sumedformulasduringarun—yields immediatelyadynamicrefutationalcomplete-
ness result forFInf andRed∩G,�—whichpermits thedeletionof subsumed formulas
during a run, provided that they are larger w.r.t. �.

AddingLabels. In practice, the ordering�used in (G,�)-lifting often depends on
meta-information about a formula, such as its age or the way in which it has been
processed so far during a derivation. To capture this meta-information, we extend
formulas and inference systems in a rather trivial way with labels. As before, let F

2 For a variable x that occurs only in positive literals x ≈ t, the condition is slightly more
complicated.
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and G be two sets of formulas, let FInf be an F-inference system, let GInf be a G-
inference system, let |= ⊆ P(G) × P(G) be a consequence relation overG, letRed
be a redundancy criterion for |= and GInf , and let G be a grounding function from
F and FInf toG andGInf .

LetL be a nonempty set of labels. DefineFL := F × L andFL⊥ := F⊥ × L.
Notice that there are at least as many false values inFL as there are labels inL. We
use M,N to denote labeled formula sets. Given a set N ⊆ FL, let �N� := {C |
(C, l) ∈ N }denote the set of formulaswithout their labels.We call anFL-inference
system FLInf a labeled version of FInf if it has the following properties:

(L1) for every inference (Cn, . . . , C0) ∈ FInf and every tuple (l1, . . . , ln) ∈ Ln,
there exists an l0 ∈ L and an inference ((Cn, ln), . . . , (C0, l0)) ∈ FLInf ;

(L2) if ι = ((Cn, ln), . . . , (C0, l0)) is an inference inFLInf , then (Cn, . . . , C0) is an
inference in FInf , denoted by �ι�.

LetFLInf bea labeledversionofFInf .DefineGL byGL((C, l)) := G(C) for every
(C, l) ∈ FL and by GL(ι) := G(�ι�) for every ι ∈ FLInf . It qualifies as a grounding
function from FL and FLInf to G and GInf . Let |=GL

be the GL-lifting of |=. Let
RedGL,∅ be the (GL, ∅)-lifting ofRed . The following lemmas are obvious:

Lemma 20. If a setN ⊆ FL is saturated w.r.t. FLInf andRedGL,∅, then �N� ⊆ F
is saturated w.r.t. FInf and RedG,∅.

Lemma 21. If (FInf ,RedG,∅) is statically refutationally complete w.r.t. |=G, then
(FLInf ,RedGL,∅) is statically refutationally complete w.r.t. |=GL

.

Theextensionto intersectionsof redundancycriteria isalso straightforward.Let
F and G be two sets of formulas, and let FInf be an F-inference system. Let Q be
a set. For every q ∈ Q, let |=q be a consequence relation over G, let GInf q be a G-
inference system, let Redq be a redundancy criterion for |=q and GInf q, and let Gq

be a grounding function from F and FInf to G and GInf q. Then for every q ∈ Q,
the (Gq, ∅)-lifting Redq,Gq,∅ is a redundancy criterion for the Gq-lifting |=q

Gq , and so
Red∩G is a redundancy criterion for |=∩

G and FInf .
Now letLbe a nonempty set of labels, and defineFL,FL⊥, andFLInf as above.

For every q ∈ Q, define the functionGq
L byGq

L((C, l)) := Gq(C) for every (C, l) ∈ FL
andbyGq

L(ι) := Gq(�ι�) forevery ι ∈ FLInf .Thenforeveryq ∈ Q, the(Gq
L, ∅)-lifting

Redq,Gq
L = (Redq,Gq

L

I ,Redq,Gq
L,∅

F ) ofRedq is a redundancy criterion for the Gq
L-lifting

|=q
Gq
L

of |=q and FLInf , and so

Red∩GL := (Red∩GL

I ,Red∩GL

F ) :=
(⋂

q∈Q
Redq,Gq

L

I ,
⋂

q∈Q
Redq,Gq

L,∅
F

)

is a redundancy criterion for |=∩
GL

:=
⋂

q∈Q |=q
Gq
L

and FLInf .

Lemma 22. If a setN ⊆ FL is saturated w.r.t. FLInf and Red∩GL , then �N� ⊆ F
is saturated w.r.t. FInf and Red∩G.

Theorem 23. If (FInf ,Red∩G) is statically refutationallycompletew.r.t. |=∩
G , then

(FLInf ,Red∩GL) is statically refutationally complete w.r.t. |=∩
GL

.
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4 ProverArchitectures

We now use the above results to prove the refutational completeness of a popular
prover architecture: the given clause procedure [18]. The architecture is parame-
terized by an inference system and a redundancy criterion. A generalization of the
architecture decouples scheduling and computation of inferences.

GivenClauseProcedure.LetFandGbe two sets of formulas, and letFInf bean
F-inference systemwithoutpremise-free inferences. LetQbea set.For every q ∈ Q,
let |=q be a consequence relation overG, letGInf q be aG-inference system, letRedq

be a redundancy criterion for |=q and GInf q, and let Gq be a grounding function
fromF andFInf toG andGInf q. Assume (FInf ,Red∩G) is statically refutationally
completew.r.t. |=∩

G .Furthermore, letLbeanonempty setof labels, letFL := F×L,
and let theFL-inference systemFLInf be a labeled version ofFInf . ByTheorem23,
(FLInf ,Red∩GL) is statically refutationally complete w.r.t. |=∩

GL
.

Let ·=beanequivalencerelationonF, let·�beawell-foundedstrictpartialorder-
ing on F such that ·� is compatible with ·= (i.e., C ·� D, C ·= C ′, D ·= D′ implies
C ′ ·� D′), such that C ·= D implies Gq(C) = Gq(D) for all q ∈ Q, and such that
C ·� D implies Gq(C) ⊆ Gq(D) for all q ∈ Q. We define ·� := ·� ∪ ·=. In practice,·= is typically α-renaming, ·� is either the subsumption ordering ·> (provided it is
well founded) or some well-founded ordering included in ·>, and for every q ∈ Q, Gq

mapsevery formulaC ∈ F to the setof ground instancesofC, possiblymodulo some
theory.

Let��beawell-founded strict partial ordering onL.Wedefine the ordering�on
FLby (C, l) � (C ′, l′) if eitherC ·� C ′ or elseC ·= C ′ and l �� l′. ByLemma16, the
static refutational completeness of (FLInf ,Red∩GL) w.r.t. |=∩

GL
implies the static

refutational completeness of (FLInf ,Red∩GL,�), which by Lemma 1 implies the
dynamic refutational completeness of (FLInf ,Red∩GL,�).

This result may look intimidating, so let us unroll it. The FL-inference system
FLInf is a labeled version of FInf , which means that we get an FLInf -inference by
first omitting the labels of the premises (Cn, ln), . . . , (C1, l1), then performing an
FInf -inference (Cn, . . . , C0), and finally attaching an arbitrary label l0 to the con-
clusion C0. Since Gq

L differs from Gq only by the omission of the labels and the first
components ofRed∩GL,� andRed∩GL agree, we get this result:

Lemma 24. An FLInf -inference ι is redundant w.r.t. Red∩GL,� andN if and only
if the underlying FInf -inference �ι� is redundant w.r.t. Red∩G and �N�.
Lemma 25. Let N ⊆ FL, and let (C, l) be a labeled formula. Then (C, l) ∈
Red∩GL,�

F (N ) if (i) C ∈ Red∩G
F (�N�), or (ii) C ·� C ′ for some C ′ ∈ �N�, or

(iii) C ·� C ′ for some (C ′, l′) ∈ N with l �� l′.

The given clause procedure that lies at the heart of saturation provers can be
presented and studied abstractly. We assume that the set of labels L contains at
least two values, including a distinguished ��-smallest value denoted by active, and
that the labeled version FLInf of FInf never assigns active to a conclusion.
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The state of aprover is a set of labeled formulas.The label identifies towhich for-
mula set each formulabelongs.The active label identifies the active formula set from
the familiar given clause procedure. The other, unspecified formula sets are consid-
ered passive. Given a set N and a label l, we define the projection N↓l as consisting
only of the formulas labeled by l.

The given clause prover GC is defined as the following transition system:

Process N � M =⇒GC N ∪ M′

where M ⊆ Red∩GL,�
F (N ∪ M′) and M′↓active = ∅

Infer N � {(C, l)} =⇒GC N ∪ {(C, active)} ∪ M
where l 	= active, M↓active = ∅, and
FInf (�N↓active�, {C}) ⊆ Red∩G

I (�N� ∪ {C} ∪ �M�)
The Process rule covers most operations performed in a theorem prover. By

Lemma 25, this includes deleting Red∩G
F -redundant formulas with arbitrary labels

and adding formulas that make other formulas Red∩G
F -redundant (i.e., simplifying

w.r.t.Red∩G
F ),by (i);deleting formulas thatare·�-subsumedbyother formulaswith

arbitrary labels, by (ii); deleting formulas that are ·�-subsumed by other formulas
with smaller labels, by (iii); and replacing the label of a formula by a smaller label
different from active, also by (iii).

Infer is the only rule that puts a formula in the active set. It relabels a
passive formula C to active and ensures that all inferences between C and the
active formulas, including C itself, become redundant. Recall that by Lemma 24,
FLInf (N↓active, {(C, active)}) ⊆ Red∩GL

I (N ∪ {(C, active)} ∪ M) if and only if
FInf (�N↓active�, {C}) ⊆ Red∩G

I (�N� ∪ {C} ∪ �M�). By property (R4), every
inference is redundant if its conclusion is contained in the set of formulas, and typ-
ically, inferences are in fact made redundant by adding their conclusions to any of
the passive sets. Then, �M� equals concl(FInf (�N↓active�, {C})).

Since every =⇒GC-derivation is also a �Red∩GL,� -derivation and (FLInf ,
Red∩GL,�) is dynamically refutationally complete, it now suffices to show fairness
to prove the refutational completeness ofGC.

Lemma 26. Let (Ni)i be a =⇒GC-derivation. IfN0↓active = ∅ and N∗↓l = ∅ for all
l 	= active, then (Ni)i is a fair�Red∩GL,�-derivation.

Theorem 27. Let (Ni)i be a =⇒GC-derivation, where N0↓active = ∅ and N∗↓l = ∅
for all l 	= active. If �N0� |=∩

G {⊥} for some ⊥ ∈ F⊥, then some Ni contains (⊥′, l)
for some⊥′ ∈ F⊥ and l ∈ L.

Example 28. The following Otter loop [18, Sect. 2.3.1] prover OL is an instance
of the given clause prover GC. This loop design is inspired by Weidenbach’s prover
without splitting from his Handbook chapter [30, Tables 4–6]. The prover’s state is
a five-tuple N | X | P | Y | A of formula sets. The N , P , and A sets store the new,
passive, andactive formulas.TheX andY sets are subsingletons (i.e., sets of atmost
one element) that can store a chosen new or passive formula. Initial states are of the
form N | ∅ | ∅ | ∅ | ∅.

ChooseN N � {C} | ∅ | P | ∅ | A =⇒OL N | {C} | P | ∅ | A
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DeleteFwd N | {C} | P | ∅ | A =⇒OL N | ∅ | P | ∅ | A
if C ∈ Red∩G

F (P ∪ A) or C ·� C ′ for some C ′ ∈ P ∪ A

SimplifyFwd N | {C} | P | ∅ | A =⇒OL N | {C ′} | P | ∅ | A
if C ∈ Red∩G

F (P ∪ A ∪ {C ′})

DeleteBwdP N | {C} | P � {C ′} | ∅ | A =⇒OL N | {C} | P | ∅ | A
if C ′ ∈ Red∩G

F ({C}) or C ′ ·� C

SimplifyBwdP N | {C} | P � {C ′} | ∅ | A =⇒OL N ∪ {C ′′} | {C} | P | ∅ | A
if C ′ ∈ Red∩G

F ({C,C ′′})

DeleteBwdA N | {C} | P | ∅ | A � {C ′} =⇒OL N | {C} | P | ∅ | A
if C ′ ∈ Red∩G

F ({C}) or C ′ ·� C

SimplifyBwdA N | {C} | P | ∅ | A � {C ′} =⇒OL N ∪ {C ′′} | {C} | P | ∅ | A
if C ′ ∈ Red∩G

F ({C,C ′′})

Transfer N | {C} | P | ∅ | A =⇒OL N | ∅ | P ∪ {C} | ∅ | A

ChooseP ∅ | ∅ | P � {C} | ∅ | A =⇒OL ∅ | ∅ | P | {C} | A

Infer ∅ | ∅ | P | {C} | A =⇒OL M | ∅ | P | ∅ | A ∪ {C}
if FInf (A, {C}) ⊆ Red∩G

I (A ∪ {C} ∪ M)

A reasonable strategy for applying the OL rules is presented below. It relies
on a well-founded ordering � on formulas to ensure that the backward simpli-
fication rules actually “simplify” their target, preventing nontermination of the
inner loop. It also assumes that FInf (N, {C}) is finite if N is finite. Briefly, the
strategy corresponds to the regular expression

((
ChooseN; SimplifyFwd∗;

(DeleteFwd | (DeleteBwdP∗; DeleteBwdA∗; SimplifyBwdP∗; Simpli-
fyBwdA∗; Transfer))

)∗; (ChooseP; Infer)?
)∗, where ; denotes concatena-

tion and ∗ and ? are given an eager semantics. Simplifications are applicable only
if the result is �-smaller than the original formula. Moreover, ChooseC always
chooses the oldest formula in N , and the choice of C inChoosePmust be fair.

The instantiation of GC relies on five labels l1 �� · · · �� l5 = active representing
N,X,P, Y,A. Let (Ni |Xi |Pi |Yi |Ai)i be a derivation following the strategy,where
N0 is finite and X0 = P0 = Y0 = A0 = ∅. We can show that N∗ = X∗ = P∗ = Y∗ = ∅.
Therefore, by Theorem 27,OL is dynamically refutationally complete.

In most calculi,Red is defined in terms of some total and well-founded ordering
�G on G. We can then define � so that C � C ′ if the smallest element of Gq(C) is
greaterthanthesmallestelementofGq(C ′)w.r.t.�G, forsomearbitraryfixedq ∈ Q.
This allows a wide range of simplifications typically implemented in superposition
provers. To ensure fairness when applying ChooseP, one approach is to use an N-
valued weight function that is strictly antimonotone in the age of the formula [22,
Sect.4].Anotheroptionistoalternatebetweenheuristicallychoosingn formulasand
taking the oldest formula [18, Sect. 2.3.1]. To guarantee soundness, we can require
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that the formulas addedby simplification and Infer are |≈-entailedby the formulas
in the state before the transition. This can be relaxed to consistency-preservation,
e.g., for calculi that perform skolemization.

Example 29. Bachmair and Ganzinger’s resolution prover RP [5, Sect. 4.3] is
another instance ofGC. It embodies both a concrete prover architecture and a con-
crete inference system: ordered resolution with selection (O�

S ). States are triples
N | P | O of finite clause sets. The instantiation relies on three labels l1 �� l2 ��
l3 = active. Subsumption can be supported as described in Example 10.

Delayed Inferences. An orphan is a passive formula that was generated by an
inference for which at least one premise is no longer active. The given clause prover
GC presented above is sufficient to describe a prover based on an Otter loop as well
as a basic DISCOUNT loop prover, but to describe a DISCOUNT loop prover with
orphan deletion, we need to decouple the scheduling of inferences and their compu-
tation. The same scheme can be used for inference systems that contain premise-
free inferences or that may generate infinitely many conclusions from finitely many
premises. Yet another use of the scheme is to save memory: A delayed inference can
be stored more compactly than a new formula, as a tuple of premises together with
instructions on how to compute the conclusion.

The lazy given clause prover LGC generalizes GC. It is defined as the following
transition system on pairs (T,N ), where T (“to do”) is a set of inferences and N
is a set of labeled formulas. We use the same assumptions as for GC except that we
now permit premise-free inferences in FInf . Initially, T consists of all premise-free
inferences of FInf .

Process (T,N � M) =⇒LGC (T,N ∪ M′)
where M ⊆ Red∩GL,�

F (N ∪ M′) and M′↓active = ∅
ScheduleInfer (T,N � {(C, l)}) =⇒LGC (T ∪ T ′,N ∪ {(C, active)})

where l 	= active and T ′ = FInf (�N↓active�, {C})

ComputeInfer (T � {ι},N ) =⇒LGC (T,N ∪ M)
where M↓active = ∅ and ι ∈ Red∩G

I (�N ∪ M�)
DeleteOrphans (T � T ′,N ) =⇒LGC (T,N )

where T ′ ∩ FInf (�N↓active�) = ∅
ScheduleInfer relabels a passive formula C to active and puts all inferences

between C and the active formulas, including C itself, into the set T . Compute-
Infer removes an inference from T and makes it redundant by adding appropriate
labeled formulas toN (typically the conclusionof the inference).DeleteOrphans
can delete scheduled inferences from T if some of their premises have been deleted
from N↓active in the meantime. Note that the rule cannot delete premise-free infer-
ences, since the side condition is then vacuously false.

Abstractly, theT component of the state is a set of inferences (Cn, . . . , C0). In an
actual implementation, it can be represented in differentways: as a set of compactly
encoded recipes for computing the conclusion C0 from the premises (Cn, . . . , C1) as
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in Waldmeister [16], or as a set of explicit formulas C0 with information about their
parents (Cn, . . . , C1) as in E [25]. In the latter case, some presimplifications may be
performedonC0; this couldbemodeledmore faithfullybydefiningT asa set ofpairs
(ι, simp(C0)).

Lemma 30. If (Ti,Ni)i is a=⇒LGC-derivation, then (Ni)i is a�Red∩GL,�- deriva-
tion.

Lemma 31. Let (Ti,Ni)i be a=⇒LGC-derivation. IfN0↓active = ∅,N∗↓l = ∅ for all
l 	= active, T0 is the set of all premise-free inferences of FInf , and T∗ = ∅, then (Ni)i

is a fair�Red∩GL,�-derivation.

Theorem 32. Let (Ti,Ni)i be a=⇒LGC-derivation, whereN0↓active = ∅,N∗↓l = ∅
for all l 	= active, T0 is the set of all premise-free inferences of FInf , and T∗ = ∅. If
�N0� |=∩

G {⊥} for some ⊥ ∈ F⊥, then some Ni contains (⊥′, l) for some ⊥′ ∈ F⊥
and l ∈ L.

Example 33. ThefollowingDISCOUNTloop[1]proverDL isaninstanceofthelazy
givenclauseproverLGC.This loopdesign is inspiredbythedescriptionofE [25].The
prover’s state is a four-tuple T | P | Y | A, where T is a set of inferences and P , Y ,
A are sets of formulas. The T , P , and A sets correspond to the scheduled inferences,
the passive formulas, and the active formulas. The Y set is a subsingleton that can
store a chosen passive formula. Initial states have the form T | P | ∅ | ∅, where T is
the set of all premise-free inferences of FInf .

ComputeInfer T � {ι} | P | ∅ | A =⇒DL T | P | {C} | A
if ι ∈ Red∩G

I (A ∪ {C})

ChooseP T | P � {C} | ∅ | A =⇒DL T | P | {C} | A

DeleteFwd T | P | {C} | A =⇒DL T | P | ∅ | A
if C ∈ Red∩G

F (A) or C ·� C ′ for some C ′ ∈ A

SimplifyFwd T | P | {C} | A =⇒DL T | P | {C ′} | A
if C ∈ Red∩G

F (A ∪ {C ′})

DeleteBwd T | P | {C} | A � {C ′} =⇒DL T | P | {C} | A
if C ′ ∈ Red∩G

F ({C}) or C ′ ·� C

SimplifyBwd T | P | {C} | A � {C ′} =⇒DL T | P ∪ {C ′′} | {C} | A
if C ′ ∈ Red∩G

F ({C,C ′′})

ScheduleInfer T | P | {C} | A =⇒DL T ∪ T ′ | P | ∅ | A ∪ {C}
if T ′ = FInf (A, {C})

DeleteOrphans T � T ′ | P | Y | A =⇒DL T | P | Y | A
if T ′ ∩ FInf (A) = ∅

A reasonable strategy for applying the DL rules along the lines of that for
OL and with the same assumptions follows:

(
(ComputeInfer | ChooseP);
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SimplifyFwd∗; (DeleteFwd | (DeleteBwd∗; SimplifyBwd∗; Delete-
Orphans; ScheduleInfer))

)∗. InComputeInfer, thefirst formula fromT ∪P ,
organized as a single queue, is chosen.The instantiation ofLGC relies on three labels
l1 �� · · · �� l3 = active corresponding to the sets P, Y,A.

Example 34. Higher-order unification can give rise to infinitely many incompa-
rable unifiers. As a result, in clausal λ-superposition [9], performing all inferences
between two clauses can lead to infinitely many conclusions, which need to be
enumerated fairly. The Zipperposition prover [9] performs this enumeration in an
extended DISCOUNT loop. Another instance of infinitary inferences is the n-ary
Acycl andUniq rules of superposition with (co)datatypes [14].

Abstractly, a Zipperposition loop prover ZL operates on states T | P | Y |
A, where T is organized as a finite set of possibly infinite sequences (ιi)i of infer-
ences, and P, Y,A are as in DL. The ChooseP, DeleteFwd, SimplifyFwd,
DeleteBwd, and SimplifyBwd rules are as inDL. The other rules follow:

ComputeInfer T � {(ιi)i} | P | ∅ | A =⇒ZL T ∪ {(ιi)i≥1} | P ∪ {C} | ∅ | A

if ι0 ∈ Red∩G
I (A ∪ {C})

ScheduleInfer T | P | {C} | A =⇒ZL T ∪ T ′ | P | ∅ | A ∪ {C}
if T ′ is a finite set of sequences (ιji )i of inferences such that the set of all ιji equals
FInf (A, {C})

DeleteOrphan T � {(ιi)i} | P | Y | A =⇒ZL T | P | Y | A
if ιi /∈ FInf (A) for all i

ComputeInferworkson thefirst elementof sequences.ScheduleInferadds
new sequences to T . Typically, these sequences store FInf (A, {C}), which may be
countably infinite, in such a way that all inferences in one sequence have identical
premises and canbe removed together byDeleteOrphan. Toproduce fair deriva-
tions, a prover needs to choose the sequence inComputeInfer fairly and to choose
the formula inChooseP fairly, thereby achieving dovetailing.

Example 35. The prover architectures described above can be instantiated with
saturation calculi that use a redundancy criterion obtained as an intersection of
lifted redundancy criteria. Most calculi are defined in such a way that this require-
ment is obviously satisfied. The outlier is unfailing completion [2].

Although unfailing completion predates the introduction of Bachmair–
Ganzinger-style redundancy, itcanbe incorporated intothat frameworkbydefining
that formulas (i.e., rewrite rules and equations) and inferences (i.e., orientation and
critical pair computation)are redundant if for every rewriteproofusing that rewrite
rule, equation, or critical peak, there exists a smaller rewriteproof.The requirement
that the redundancy criterion must be obtained by lifting (which is necessary to
introduce the labeling) can then be trivially fulfilled by “self-lifting”—i.e., by defin-
ingG := F and ·� := ∅ and by taking G as the function that maps every formula or
inference to the set of its α-renamings.
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5 IsabelleDevelopment

The framework described in the previous sections has been formalized in Isabelle/
HOL[20,21], includingall the theoremsand lemmasandtheproverarchitecturesGC
and LGC but excluding the examples. The Isabelle theory files are available in the
Archive of Formal Proofs [26]. The development is also part of the IsaFoL (Isabelle
Formalization of Logic) [12] effort, which aims at developing a reusable computer-
checked library of results about automated reasoning.

The development relies heavily on Isabelle’s locales [8]. These are contexts that
fix variables and make assumptions about these. With locales, the definitions and
lemmas look similar to how they are stated on paper, but the proofs often become
more complicated: Layers of localesmayhide definitions, and often these need to be
manually unfolded before the desired lemma can be proved.

We chose to represent basic nonempty sets such asF andL by types. It relieved
us from having to thread through nonemptiness conditions. Moreover, objects
are automatically typed, meaning that lemmas could be stated without explicit
hypotheses that given objects are formulas, labels, or indices. On the other hand,
for sets such as F⊥ and FInf that are subsets of other sets, it was natural to use
simply typed sets. Derivations, which are used to describe the dynamic behavior of
a calculus, are represented by the same lazy list codatatype [13] and auxiliary def-
initions that were used in the mechanization of the ordered resolution prover RP
(Example 29) by Schlichtkrull et al. [23,24].

The framework’s design and its mechanization were carried out largely in paral-
lel. This resulted in more work on the mechanization side, but it also helped shape
the theory itself. Inparticular, anattemptatverifyingRP in Isabelleusinganearlier
version of the frameworkmade it clear that the theorywasnot general enoughyet to
support selection functions (Example 18). In ongoing work, we are completing the
RP proof and are developing a verified superposition prover.

6 Conclusion

We presented a formal framework for saturation theorem proving inspired by
Bachmair and Ganzinger’s Handbook chapter [5]. Users can conveniently derive a
dynamic refutational completeness result for a concrete prover based on a statically
refutationally complete calculus. The key was to strengthen the standard redun-
dancy criterion so that all prover operations, including subsumption deletion, can
be justified by inference or redundancy. The framework is mechanized in Isabelle/
HOL, where it can be instantiated to verify concrete provers.

To employ the framework, the starting point is a statically complete satura-
tion calculus that can be expressed as the lifting (FInf ,RedG) or (FInf ,Red∩G) of a
ground calculus (GInf ,Red), where Red qualifies as a redundancy criterion and G
qualifies as a grounding function or grounding function family. The framework can
be used to derive two main results:

1. Afterdefiningawell-foundedordering�thatcapturessubsumption, invokeThe-
orem 17 to show (FInf ,Red∩G,�) dynamically complete.
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2. Based on the previous step, invoke Theorem 27 or 32 to derive the dynamic com-
pleteness of a prover architecture building on the given clause procedure, such as
the Otter loop, the DISCOUNT loop, or the Zipperposition loop.

The framework canalsohelp establish the static completeness of thenongroundcal-
culus.Formanycalculi (with thenotable exceptionsof constraint superpositionand
hierarchic superposition),Theorem5or14canbeusedto lift thestaticcompleteness
of (GInf ,Red) to (FInf ,RedG) or (FInf ,Red∩G).

The main missing piece of the framework is a generic treatment of clause split-
ting. The only formal treatment of splitting we are aware of, by Fietzke and Wei-
denbach [15], hard-codes both the underlying calculus and the splitting strategy.
Voronkov’s AVATAR architecture [27] is more flexible and yields impressive empir-
ical results, but it offers no dynamic completeness guarantees.
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