Skip to main content

The Usefulness of Biomarkers for Diagnosis

  • Chapter
  • First Online:
  • 254 Accesses

Abstract

Present-day oncology aims at identifying and characterizing malignancies at the molecular level, in order to provide patient-tailored therapies and achieve optimum anti-tumoral effects and minimal side effects. Targeted therapy is designed to inhibit the malignant cell after the identification of genetic and proteomic biomarkers. For an optimum clinical impact of molecular oncology, potent biomarkers are identified before the malignant cell will disseminate. For pineal gland tumor, the best described biomarkers are alpha-fetoprotein and human chorionic gonadotropin, as further presented in the present manuscript.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bruix J, Sherman M, Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology. 2005;42(5):1208–36. http://www.ncbi.nlm.nih.gov/pubmed/16250051.

    Article  PubMed  Google Scholar 

  2. McLeod JF, Cooke NE. The vitamin D-binding protein, alpha-fetoprotein, albumin multigene family: detection of transcripts in multiple tissues. J Biol Chem. 1989;264(36):21760–9. http://www.ncbi.nlm.nih.gov/pubmed/2480956.

    CAS  PubMed  Google Scholar 

  3. Crandall BF. Alpha-fetoprotein: a review. Crit Rev Clin Lab Sci. 1981;15(2):127–85. http://www.ncbi.nlm.nih.gov/pubmed/6169490.

    Article  CAS  PubMed  Google Scholar 

  4. Smith CJ, Kelleher PC. Alpha-fetoprotein molecular heterogeneity. Physiologic correlations with normal growth, carcinogenesis and tumor growth. Biochim Biophys Acta. 1980;605(1):1–32. http://www.ncbi.nlm.nih.gov/pubmed/6154476.

    Article  CAS  PubMed  Google Scholar 

  5. Uriel J. The physiological role of alpha-fetoprotein in cell growth and differentiation. J Nucl Med Allied Sci. 33(3 Suppl):12–7. http://www.ncbi.nlm.nih.gov/pubmed/2480409.

  6. Mizejewski GJ. The phylogeny of alpha-fetoprotein in vertebrates: survey of biochemical and physiological data. Crit Rev Eukaryot Gene Expr. 1995;5(3–4):281–316. http://www.ncbi.nlm.nih.gov/pubmed/8834228.

    Article  CAS  PubMed  Google Scholar 

  7. Carter DC, He XM. Structure of human serum albumin. Science. 1990;249(4966):302–3. http://www.ncbi.nlm.nih.gov/pubmed/2374930.

    Article  CAS  PubMed  Google Scholar 

  8. Luft AJ, Lorscheider FL. Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism. Biochemistry. 1983;22(25):5978–81. http://www.ncbi.nlm.nih.gov/pubmed/6197991.

    Article  CAS  PubMed  Google Scholar 

  9. Nunez EA. Biological role of alpha-fetoprotein in the endocrinological field: data and hypotheses. Tumour Biol. 1994;15(2):63–72. http://www.ncbi.nlm.nih.gov/pubmed/7514312.

    Article  CAS  PubMed  Google Scholar 

  10. Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood). 2001;226(5):377–408. http://www.ncbi.nlm.nih.gov/pubmed/11393167.

    Article  CAS  Google Scholar 

  11. Gonatas JO, Mezitis SG, Stieber A, Fleischer B, Gonatas NK. MG-160. A novel sialoglycoprotein of the medial cisternae of the Golgi apparatus [published erratum appears in J Biol Chem 1989 Mar 5;264(7):4264]. J Biol Chem. 1989;264(1):646–53. http://www.ncbi.nlm.nih.gov/pubmed/2909545.

    CAS  PubMed  Google Scholar 

  12. Yang F, Luna VJ, McAnelly RD, Naberhaus KH, Cupples RL, Bowman BH. Evolutionary and structural relationships among the group-specific component, albumin and alpha-fetoprotein. Nucleic Acids Res. 1985;13(22):8007–17. http://www.ncbi.nlm.nih.gov/pubmed/2415926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deutsch HF. Chemistry and biology of alpha-fetoprotein. Adv Cancer Res. 1991;56:253–312. http://www.ncbi.nlm.nih.gov/pubmed/1709334.

    Article  CAS  PubMed  Google Scholar 

  14. Trojan J, Uriel J. [Intracellular localization of alpha-fetoprotein and serum albumin in the central nervous system of the rat during fetal and postnatal development]. C R Seances Acad Sci D. 1979;289(15):1157–60. http://www.ncbi.nlm.nih.gov/pubmed/95002.

  15. Gershwin ME, Castles JJ, Makishima R. Accelerated plasmacytoma formation in mice treated with alpha-fetoprotein. J Natl Cancer Inst. 1980;64(1):145–9. http://www.ncbi.nlm.nih.gov/pubmed/6153226.

    CAS  PubMed  Google Scholar 

  16. Wang XW, Xu B. Stimulation of tumor-cell growth by alpha-fetoprotein. Int J Cancer. 1998;75(4):596–9. http://www.ncbi.nlm.nih.gov/pubmed/9466662.

    Article  CAS  PubMed  Google Scholar 

  17. Jacobson HI, Bennett JA, Mizejewski GJ. Inhibition of estrogen-dependent breast cancer growth by a reaction product of alpha-fetoprotein and estradiol. Cancer Res. 1990;50(2):415–20. http://www.ncbi.nlm.nih.gov/pubmed/1688512.

    CAS  PubMed  Google Scholar 

  18. Dudich E, Semenkova L, Gorbatova E, Dudich I, Khromykh L, Tatulov E, et al. Growth-regulative activity of human alpha-fetoprotein for different types of tumor and normal cells. Tumour Biol. 1998;19(1):30–40. http://www.ncbi.nlm.nih.gov/pubmed/9422080.

    Article  CAS  PubMed  Google Scholar 

  19. Mizejewski GJ. Biological role of alpha-fetoprotein in cancer: prospects for anticancer therapy. Expert Rev Anticancer Ther. 2002;2(6):709–35. http://www.ncbi.nlm.nih.gov/pubmed/12503217.

    Article  CAS  PubMed  Google Scholar 

  20. Abelev GI. Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv Cancer Res. 1971;14:295–358. http://www.ncbi.nlm.nih.gov/pubmed/4107670.

    Article  CAS  PubMed  Google Scholar 

  21. Biddle W, Sarcione EJ. Specific cytoplasmic alpha-fetoprotein binding protein in MCF-7 human breast cancer cells and primary breast cancer tissue. Breast Cancer Res Treat. 1987;10(3):279–86. http://www.ncbi.nlm.nih.gov/pubmed/2451952.

    Article  CAS  PubMed  Google Scholar 

  22. Trojan J, Uriel J. Immunocytochemical localisation of alpha-fetoprotein (AFP) and serum albumin (ALB) in ecto-, meso- and endodermal tissue derivatives of the developing rat. Oncodev Biol Med. 1982;3(1):13–22. http://www.ncbi.nlm.nih.gov/pubmed/6181479.

    CAS  PubMed  Google Scholar 

  23. Yamamoto I, Kageyama N. Microsurgical anatomy of the pineal region. J Neurosurg. 1980;53(2):205–21. http://www.ncbi.nlm.nih.gov/pubmed/7431059.

    Article  CAS  PubMed  Google Scholar 

  24. Carr C, O’Neill BE, Hochhalter CB, Strong MJ, Ware ML. Biomarkers of pineal region tumors: a review. Ochsner J. 2019;19(1):26–31. http://www.ncbi.nlm.nih.gov/pubmed/30983898.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Calaminus G, Frappaz D, Kortmann RD, Krefeld B, Saran F, Pietsch T, et al. Outcome of patients with intracranial non-germinomatous germ cell tumors-lessons from the SIOP-CNS-GCT-96 trial. Neuro Oncol. 2017;19(12):1661–72. http://www.ncbi.nlm.nih.gov/pubmed/29048505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lapthorn AJ, Harris DC, Littlejohn A, Lustbader JW, Canfield RE, Machin KJ, et al. Crystal structure of human chorionic gonadotropin. Nature. 1994;369(6480):455–61. http://www.nature.com/articles/369455a0.

    Article  CAS  PubMed  Google Scholar 

  27. Wu H, Lustbader JW, Liu Y, Canfield RE, Hendrickson WA. Structure of human chorionic gonadotropin at 2.6 a resolution from MAD analysis of the selenomethionyl protein. Structure. 1994;2(6):545–58. http://www.ncbi.nlm.nih.gov/pubmed/7922031.

    Article  CAS  PubMed  Google Scholar 

  28. Cole LA. Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol. 2010;8(1):102. http://rbej.biomedcentral.com/articles/10.1186/1477-7827-8-102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Maston GA, Ruvolo M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol Biol Evol. 2002;19(3):320–35. http://academic.oup.com/mbe/article/19/3/320/981053.

    Article  CAS  PubMed  Google Scholar 

  30. Nwabuobi C, Arlier S, Schatz F, Guzeloglu-Kayisli O, Lockwood C, Kayisli U. hCG: biological functions and clinical applications. Int J Mol Sci. 2017;18(10):2037. http://www.mdpi.com/1422-0067/18/10/2037.

    Article  PubMed Central  CAS  Google Scholar 

  31. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. http://www.ncbi.nlm.nih.gov/pubmed/10647931.

    Article  CAS  PubMed  Google Scholar 

  32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. http://www.ncbi.nlm.nih.gov/pubmed/21376230.

    Article  CAS  PubMed  Google Scholar 

  33. Kovalevskaya G, Birken S, Kakuma T, Ozaki N, Sauer M, Lindheim S, et al. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: preliminary characterization of the hyperglycosylated hCG epitope. J Endocrinol. 2002;172(3):497–506. https://joe.bioscientifica.com/view/journals/joe/172/3/497.xml.

    Article  CAS  PubMed  Google Scholar 

  34. Burton GJ, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig. 2004;11(6):342–52. http://journals.sagepub.com/doi/10.1016/j.jsgi.2004.03.003.

    Article  CAS  PubMed  Google Scholar 

  35. Bahado-Singh RO, Oz U, Isozaki T, Seli E, Kovanci E, Hsu C-D, et al. Midtrimester urine human chorionic gonadotropin β-subunit core fragment levels and the subsequent development of pre-eclampsia. Am J Obstet Gynecol. 1998;179(3):738–41. https://linkinghub.elsevier.com/retrieve/pii/S0002937898700742.

    Article  CAS  PubMed  Google Scholar 

  36. Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman U-H. Site-specific glycan analysis of human chorionic gonadotropin -subunit from malignancies and pregnancy by liquid chromatography—electrospray mass spectrometry. Glycobiology. 2006;16(12):1207–18. https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwl034.

    Article  CAS  PubMed  Google Scholar 

  37. Acevedo HF, Tong JY, Hartsock RJ. Human chorionic gonadotropin-beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer. 1995;76(8):1467–75. http://www.ncbi.nlm.nih.gov/pubmed/8620425.

    Article  CAS  PubMed  Google Scholar 

  38. Acevedo HF, Hartsock RJ. Metastatic phenotype correlates with high expression of membrane-associated complete beta-human chorionic gonadotropin in vivo. Cancer. 1996;78(11):2388–99. http://www.ncbi.nlm.nih.gov/pubmed/8941011.

    Article  CAS  PubMed  Google Scholar 

  39. Li D, Wen X, Ghali L, Al-Shalabi FM, Docherty SM, Purkis P, et al. hCG beta expression by cervical squamous carcinoma—in vivo histological association with tumour invasion and apoptosis. Histopathology. 2008;53(2):147–55. http://www.ncbi.nlm.nih.gov/pubmed/18752498.

    Article  CAS  PubMed  Google Scholar 

  40. Iles RK. Ectopic hCGbeta expression by epithelial cancer: malignant behaviour, metastasis and inhibition of tumor cell apoptosis. Mol Cell Endocrinol. 2007;260–262:264–70. http://www.ncbi.nlm.nih.gov/pubmed/17069968.

    Article  PubMed  CAS  Google Scholar 

  41. Nagasawa DT, Lagman C, Sun M, Yew A, Chung LK, Lee SJ, et al. Pineal germ cell tumors: two cases with review of histopathologies and biomarkers. J Clin Neurosci. 2017;38:23–31. https://linkinghub.elsevier.com/retrieve/pii/S0967586816309730.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Qian L, Tomuleasa C, Florian IA, Shen J, Florian IS, Zdrenghea M, et al. Advances in the treatment of newly diagnosed primary central nervous system lymphomas. Blood Res. 2017;52(3):159–66.

    Google Scholar 

  43. Florian IS, Tomuleasa C, Soritau O, Timis T, Ioani H, Irimie A, et al. Cancer stem cells and malignant gliomas. From pathophysiology to targeted molecular therapy. J BUON. 2011;16(1):16–23.

    Google Scholar 

  44. Deak D, Pop C, Zimta AA, Jurj A, Ghiaur A, Pasca S, et al. Let’s talk about BiTEs and other drugs in the real-life setting for B-cell acute lymphoblastic leukemia. Front Immunol. 2019;10:2856.

    Google Scholar 

  45. Pasca S, Tomuleasa C, Teodorescu P, Ghiaur G, Dima D, Moisoiu V, et al. KRAS/NRAS/BRAF mutations as potential targets in multiple myeloma. Front Oncol. 2019;9:1137.

    Google Scholar 

  46. Jurj A, Pop L, Petrushev B, Pasca S, Dima D, Frinc I, et al. Exosome-carried microRNA-based signature as a cellular trigger for the evolution of chronic lymphocytic leukemia into Richter syndrome. Crit Rev Clin Lab Sci. 2018;55(7):501–15.

    Google Scholar 

  47. Susman S, Berindan-Neagoe I, Petrushev B, Pirlog R, Florian IS, Mihu CM, et al. The role of the pathology department in the preanalytical phase of molecular analyses. Cancer Manag Res. 2018;10:745–53.

    Google Scholar 

  48. Tomuleasa C, Fuji S, Berce C, Onaciu A, Chira S, Petrushev B, et al. Chimeric antigen receptor T-cells for the treatment of B-cell acute lymphoblastic leukemia. Front Immunol. 2018;9:239.

    Google Scholar 

  49. Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther. 2017;11:2871–90.

    Google Scholar 

  50. Nagy-Simon T, Tatar AS, Craciun AM, Vulpoi A, Jurj MA, Florea A, et al. Antibody conjugated, raman tagged hollow gold-silver nanospheres for specific targeting and multimodal dark-field/SERS/two photon-FLIM imaging of CD19(+) B lymphoblasts. ACS Appl Mater Interfaces. 2017;9(25):21155–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teodorescu, P., Pasca, S., Tomuleasa, C. (2020). The Usefulness of Biomarkers for Diagnosis. In: Florian, I.S. (eds) Pineal Region Lesions. Springer, Cham. https://doi.org/10.1007/978-3-030-50913-2_6

Download citation

Publish with us

Policies and ethics