Chapter 9)
Run-Time Enforcement of s
Non-functional Program Properties

on MPSoCs

Jiirgen Teich, Pouya Mahmoody, Behnaz Pourmohseni, Sascha Roloff,
Wolfgang Schroder-Preikschat, and Stefan Wildermann

9.1 Introduction

In a broad range of embedded systems, e.g., in real-time and safety-critical
domains, applications require guarantees (rather than a best-effort behavior) w.r.t.
non-functional properties of their execution such as timing characteristics and
reliability. Delivering the required guarantees is, therefore, of utmost importance
for the successful introduction of multi-/many-core architectures in the embedded
domains of computing. In a many-core context, existing analysis tools either
impose an immense computational complexity or deliver worst-case guarantees that
suffer from a massive over-/under-approximation for the vast majority of execution
scenarios (due to the inherent uncertainty of these scenarios) and, hence, are of no
practical interest. Noteworthy, a major source of this uncertainty originates from the
interferences among concurrent applications.

In view of abundant computational and storage resources becoming available,
new programming paradigms such as invasive computing [22] have proved effective
in alleviating these interferences by means of spatial isolation among applications.
Here, hybrid (static analysis/dynamic mapping) approaches, e.g., [11, 19, 20, 24],
enable a static generation of different mappings for each application on system
resources in form of mapping classes rather than individual mappings. For each
concrete mapping within such a class, safe bounds on the non-functional execution
properties, e.g., latency, may hold, see, e.g., [25]. The statically generated and
analyzed sets of optimal mapping classes are then provided to the run-time system
which checks the availability of such constellations of resources under the current
system workload, and, if enough resources are available, finally launches the

J. Teich (<) - P. Mahmoody - B. Pourmohseni - S. Roloff - W. Schroder-Preikschat -
S. Wildermann

Friedrich-Alexander-Universitidt Erlangen-Niirnberg, Erlangen, Germany

e-mail: juergen.teich@fau.de

© The Author(s) 2021 125
J.-J. Chen (ed.), A Journey of Embedded and Cyber-Physical Systems,
https://doi.org/10.1007/978-3-030-47487-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47487-4_9&domain=pdf
mailto:juergen.teich@fau.de
https://doi.org/10.1007/978-3-030-47487-4_9

126 J. Teich et al.

application [25]. Such a hybrid approach has been implemented within the language
InvadeX10, a library-based extension of the X10 programming language. In this
extension, the so-called requirements [23] on non-functional execution properties,
e.g., latency, may be annotated to individual applications or program segments
thereof.

Although spatial isolation among applications significantly reduces the afore-
mentioned uncertainties, a considerable degree of them remain unaffected which
might be unacceptable, e.g., for safety-critical applications. But also, real-world
applications from the domain of streaming often exhibit a large jitter in the
latency and throughput (in spite of inter-application resource isolation) which is
not tolerable, e.g., in case of camera-based medical surgery. This intolerable or
annoying variation mainly stems from two sources of uncertainty that cannot be
eliminated or restricted through resource isolation:

* Execution State Uncertainty. This source of uncertainty originates either from
the environment (termed exogenous), e.g., ambient temperature, or from within
the computing system itself (termed endogenous), e.g., cache states or the
voltage/frequency modifications applied by the power manager. While the vast
majority of exogenous sources of uncertainty cannot be avoided or controlled,
endogenous sources of uncertainty may be eliminated, e.g., by flushing caches
before execution or by pinning the voltage/frequency of each core to a desired
fixed level.

* Input Uncertainty. This source of uncertainty originates from the application’s
input(s). For instance, in image processing, the content of a scene may greatly
influence the amount of workload to be processed per image.

In the presence of execution state and input uncertainties, application-specific
run-time techniques can offer a practical approach to confine the non-functional
properties of execution within acceptable bounds or to prevent the violation of
requirements. Such techniques dynamically adjust a given set of control knobs, e.g.,
voltage/frequency settings, in reaction to observed (or predicted) changes in the
input and/or environment states to steer the non-functional properties of execution
within the desired range. Examples of such approaches include the enforcement
of safety properties using automata [13] or the satisfaction of timing constraints
(while minimizing energy) using control-theory oriented approaches [9]. We refer
to this emerging class of application-specific run-time techniques as Run-Time
Requirement Enforcement (RRE). This paper presents the fundamentals, definitions,
and taxonomy of RRE in the context of many-core systems. We exemplify the
practice of different classes of RRE techniques and present a discussion on their
advantages, drawbacks, and challenges in a case study on the enforcement of timing
requirements for a distributed real-time image processing application.

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 127

9.2 Preliminaries and Definitions

9.2.1 System Model

A many-core architecture is typically organized as a set of so-called storage, 1/O,
and compute tiles which are interconnected by a Network-on-Chip (NoC) for
scalability, see, e.g., Fig.9.1. Memory and I/O tiles enable mass storage and off-
chip access, respectively. Each compute tile is typically organized as a multi-core
or a processor array and comprises a set of processing cores, peripherals such as
memories, and a network adapter which are interconnected via one or more buses.
An application to be executed on the architecture is typically composed of a set of
processing tasks with known data dependencies, provided as a task graph. In case
of periodic applications, actor-based models of computation and languages such as
ActorX10 [17] may be used for parallel programming of MPSoCs. Each application
may be augmented with one or a set of requirements on specific non-functional
properties of its execution, e.g., execution time, throughput, or power corridors. In
the following, a mapping of an application on a given architecture corresponds to
a binding of its tasks to platform cores, a routing of the data exchanged between
communicating tasks, an allocation of the required processing, communication, and
storage resources, and a scheduling of tasks and communications on the allocated

LRouter LRouter

Fig. 9.1 A heterogeneous invasive MPSoC architecture

128 J. Teich et al.

resources. Alternatively to concrete mappings, a set of constraints that reflect
a constellation of required resources and, hence, correspond to several concrete
deployments of the application on the architecture may be characterized at design
time through techniques of design space exploration [19, 24, 25].

9.2.2 *-Predictability

Non-functional requirements of applications, e.g., real-time constraints, can often
be expressed in form of intervals according to the definition for the predictability of
a non-functional property from [23]:

Definition 9.1 (*-predictability) Let o denote a non-functional property of a
program (implementation) p and the uncertainty of its input (space) given by [
and environment by Q. The predictability (marker) of objective o for program p is
defined by the interval

o(p, Q.) =linf,(p, Q. D), ..., sup,(p, Q. 1)] .1

where inf , and sup, denote the infimum and supremum of property o, respectively,
under variation of state ¢ € Q and inputi € 1.

Figure 9.2 exemplifies Definition 9.1 for three implementations p, p2, and p3 of
an application with two requirements in terms of latency and power consumption. !
The rectangle associated with each implementation p; confines the observable
latency and power range for p; under the variation of input i € I and state g € Q.
As illustrated, p; never satisfies the latency requirement under any input/state and,
thus, is of no interest. Contrarily, p, satisfies both requirements in all input/state
scenarios which—although offering desirable qualities—is achieved through, e.g.,
an over-reservation of resources or a persistently maximized core voltage/frequency
which is often not affordable and/or practical. Contrarily to p; and p>, p3 exhibits
an attractive case: Under certain input/state scenarios it satisfies the requirements
(with an affordable resource demand), while under other scenarios the acceptable
latency-power region is surpassed.
In real-life use cases, the observable predictability intervals are often too coarse,
so that a large share of viable implementations (like p3) do not satisfy the

Note that a lower bound on latency makes sense in many applications that communicate result
data to other applications or systems. Here, either buffer limitations would cause overflows in case
the producer would be faster than the consumer. Alternatively, data might get lost if the producer
overwrites not yet consumed data. Similarly, a minimal lower bound is the default in the case
of reliability requirements. There, the lower bound could indicate a minimal expected lifetime.
Finally, even lower power bounds can be found in the area of high-performance computing. In fact,
the energy bill of a supercomputer increases by the amount of not consumed power but reserved
by the provider.

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 129

_ - /*Example of a Performance Requirement*/

@REQUIRE(Latency(25, 75, us”,"hard"™))

=]
wn

2% O tile L .
/*Example of a Power Requirement*/

1% TCPA tile
P2 / 3% RISC tile @REQUIRE(Power(l, 2,“W",“s0ft"))

Latency [pus]

(o]
wn

1 2
Power Consumption [W]

Fig. 9.2 Example of a program p with a latency requirement and a power requirement given each
by an interval (corridor). Shown are three program implementations. p; does not satisfy the latency
requirement for any possible execution. p; satisfies the two requirements for any possible variation
ininputi € I and state ¢ € Q. Finally, p3 may satisfy the two requirements, but obviously not for
all observable executions. Here, run-time requirement enforcement techniques might be applicable
to control the resources of the platform based on run-time monitoring to stay within the requirement
corridors

given requirements under all input/state scenarios. For such partially satisfactory
implementations, run-time techniques can be employed to render them consistently
satisfactory by regularly monitoring (or predicting) the online input/state scenario
and either acting proactively to avoid any violation of a set of given requirements,
e.g., by adjusting the voltage/frequency settings of cores prior to program execution,
or in reaction to any observed violation. The purpose of such run-time techniques is,
therefore, to enforce that the desired latency and power corridor are never (or only
occasionally) violated. We refer to these application-specific run-time techniques as
Run-Time Requirement Enforcement (RRE) in the following.

9.3 Run-Time Requirement Enforcement

To satisfy a set of given requirements, the observable predictability intervals of
the partially satisfactory implementations must be obviously reduced. In general,
this can be achieved by techniques such as restricting the input space I or
using approximate computing [23]. Alternatively, isolation techniques that reduce
the state space Q may be applied such as the use of simpler cores, resource
reservation protocols, or using invasive computing [22]. In the latter approach,
an application program invades a set of processing and communication resources
prior to execution. Through inter-application isolation, composability is established
which is essential for an independent analysis of individual applications [1, 8, 12].

Definition 9.2 (Run-Time Requirement Enforcer (RRE)) A Run-Time Require-
ment Enforcer (RRE) of a requirement r,(p) = [LB,, UB,] of a program p is a

130 J. Teich et al.

@ satisfactory run @ violatingrun ~ -» estimated run ~ —> observed run
4
I I
I I .
! ! lact Yact
15 ---- S— ||
< trajectory of
] program execution
o
5 RRE
= .
= requirement
2 B e S e B corridor

Al |l

1

I
]
;
2
Power Consumption [W]

Fig. 9.3 Example of Run-Time Requirement Enforcement (RRE)

control technique to steer o within the corridor spanned by a lower bound LB, and
an upper bound UB, for each execution of p.

Figure 9.3 exemplifies Definition 9.2 for a latency and a power requirement
corridor of an implementation p of an application. An RRE is also depicted whose
task is to confine the observable predictability interval of p within the corridor
specified by the latency and power requirements. Given the actual (current) input
izt € I and state gycr € O, the RRE in this case proactively estimates the expected
latency Legt and power consumption Peg based on which it takes actions (outgoing
arcs of the RRE) with the goal to avoid any violation of the requirements. Examples
of RRE actions include adjusting the voltage/frequency of the cores or awaking
reserved cores that are currently in a sleep state for power reduction, or even
changing the mapping of some tasks to other cores [14].

9.4 Taxonomy of Run-Time Requirement Enforcers

According to [23], each requirement of an application can be either soft or hard.
In case of a soft requirement, occasional violations are still considered acceptable.
In this context, a RRE can be classified as either a loose or a strict enforcement
technique as follows:

Definition 9.3 (Loose/Strict RRE) A Run-Time Requirement Enforcer (RRE) of a
requirement r,(p) = [LB,, UB,] of a program p is called strict if it can be formally
proven that no concrete execution of p will leave the given corridor at run-time. It
is called loose, if one or multiple consecutive violations of o are tolerable.

Independent from the above definition, an RRE can be classified as a centralized
or a distributed enforcement technique:

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 131

Fig. 9.4 Centralized RRE —
RRMU [RRM
cPU
c PU
5D sm
N -Si— 65
o T

RRE

[25,75]

Definition 9.4 (Centralized/Distributed RRE) A Run-Time Requirement Enfor-
cer (RRE) of arequirement r,(p) = [LB,, UB,] of a program p is called centralized
if a single enforcer instance is used to enforce the requirement. It is called distributed
in case multiple enforcers jointly enforce the requirement.

Figure 9.4 illustrates an example of a centralized RRE of a latency requirement
for an object detection streaming application from the area of robot vision illustrated
in Fig.9.6. Here, the execution time of the 9 tasks (actors) of the application is
monitored by a local so-called Run-Time Requirement Monitor (RRM) instantiated
on each of the invaded tiles. A centralized RRE instance is also instantiated which,
in the example, receives the monitored timing information of the last actor in the
chain, i.e., Image Sink (ISi), from the RRM on the respective tile based on which
it conducts enforcement decisions. During the execution of the application, each
RRM derives the time elapsed for the execution of its local actor(s) for the current
image frame and creates a time stamp that is sent together with the processed
frame to the subsequent actor. Thus, each actor in the chain is provided with the
information about the time already elapsed for the processing of the frame by the
previous actors based on which it determines the slack available for the remainder
of the processing. Once the last actor in the chain has completed its processing, the
local RRM computes and sends a completion time stamp to the centralized RRE. In
case of a soft latency requirement, a loose RRE would react to any latency corridor
violation by adjusting the voltage/frequency of the tiles that host the time-critical
actors, i.e., SIFT Description (SD) and SIFT Matching (SM), with the goal to steer
the latency of the chain back into the corridor for subsequent image frames.

132 J. Teich et al.

Fig. 9.5 Distributed RRE

RRM ﬂ{ RRE

G PU
ED
Wi mory
15 _J
Ro
image grayscale Sobel edge Harris corner SIFT SIFT SIFT RAN- image
source conversion detection detection orientation description matching SAC sink

50 (a5 (0 (e (50 (50— swt }—(s }—(ss
NN AN N N AN

Fig. 9.6 Object detection streaming application

Figure 9.5 illustrates an example of a distributed RRE for the object detection
application. Here, the overall time requirement per image frame could be partitioned
into sub-corridors (or interval budgets) which are assigned to the invaded tiles. Also,
in addition to the RRMs, a local RRE is instantiated per tile to enforce its assigned
sub-corridor locally. Evidently, distributed RRE benefits from a simpler realization
and scalability in comparison to centralized RRE. Nonetheless, centralized enforce-
ment could better use global information to optimize secondary goals such as energy
consumption, as we will show in Sect. 9.5.

9.4.1 Enforcement Automata (EA)

Although arbitrary algorithmic behavior can be envisioned for enforcement, in the
following we focus on automata-based enforcement techniques, as they are simpler
to generate and ideal for application of formal verification techniques for proof
of correctness due to their strong formal semantics. Formal proofs are necessary

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 133

Thread [Power
Scheduler Manager
J
Thread Scheduler Power Manager Memory Manager

Fig. 9.7 Example of an Enforcement Automaton (EA). Depending on the input i of a program p
and a current state s, the automaton takes a state transition to enforce a requirement. In the example,
in state s € S, the EA outputs how many cores n(s) shall be powered on and in which power mode
m(s) (voltage, frequency) p shall be executed

particularly for enforcement of hard requirements. Figure 9.7 illustrates an example
of an enforcement automaton (EA) of type Moore in which the input is a measure of
the current workload i of a periodically executed program (segment or task) p, e.g.,
an image processing actor or kernel. In each state s € S, the EA produces a vector
of two outputs: the number n(s) of cores to be powered on for executing the current
job and the power mode m(s) to be applied to the active core(s). As illustrated, the
RRE acts as an interface between the application and the system software of the
tile. Although in the examples provided in this paper, only the power management
facility (voltage/frequency settings) and the degree of parallelism are controlled by
RREs, they could in general control or restrict other system software components as
well, e.g., the thread scheduler or the memory managing unit, for the enforcement
of the given requirements.

134 J. Teich et al.

9.4.2 i-lets and e-lets

Whereas for centralized enforcement, we assume that only one enforcer is instanti-
ated per application program p, each task/actor of a distributedly mapped appli-
cation program will be assigned its own local enforcer. In our implementation,
an enforcer is implemented as a preferential thread called e-let in the following
whereas application threads spawned for each task execution are called i-lets. Note
that even if both are considered logically equivalent in terms of executable threads
at the level of operating system, there is a notable difference between both: Even
if i-lets present the application code for which requirements need to be guaranteed,
they are usually not preferred by the operating system over other threads of their
kind of the same application program. Whereas e-lets are always considered the
preferred execution entities of the application program, they dominate the i-lets also
included in this program. In addition, according to the principle of least privilege, e-
lets have the capability to overrule or restrict the behavior of system-level software
components including schedulers as well as cache, memory, and power managers in
order to be able to enforce the properties required of their assigned i-lets. Another
major difference between application i-lets and e-lets is the way they are executed.
Whereas i-lets are created and executed upon each activation, e-lets are created only
once at the time where an application program invades a tile of cores. They remain
active not only for one iteration, but until the whole application retreats from all
occupied resources. e-lets, in particular, state transitions in case the behavior is
described by an EA, are triggered by incoming events, very similar to data-driven
execution. In case of the following robot vision application, e.g., a state transition
is triggered each time a new frame is arriving from a neighbor tile. In normal
execution, the i-lets of an activated application task start after the EA has transited
from the actual to the next state and have run-to-completion semantics. Whereas, e-
lets may alternatively be triggered by asynchronous events, e.g., an exception from
a temperature monitor.

Since an e-let is to be provided with special system privileges, including in
particular the capability for immediate and low-latency response in bounded time
to system events and operational state changes, it is implemented as a kernel-level
thread. As a first-class object of the operating-system kernel, such a thread makes
it possible to establish and maintain a semantic relationship between system-level
and user-level code. The same applies to an i-let, but without granting the associated
kernel-level thread any special privileges.

An ensemble of kernel-level threads with and without special capabilities for
the control of system behavior depending on the particular requirements of an
application program is managed by the kernel in the shape of a squad. A squad
is a special unit within a team (a non-empty set of processes sharing a common
address space and common computing resources [4]) of related kernel-level threads.
This unit consists of two types of threads: on the one hand, those that make up the
actual lead of the application program and on the other hand at least one aide who
assists the lead threads as system mediator. From the kernel’s point of view, the

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 135

aide has all the capabilities to assure the lead the required system behavior in a
controlled manner. In addition to be able to override or modify certain operating-
system decisions, the aide is able to instantly respond to system events. In such a
setting, an e-let is mapped to an aide, while the i-lets for which certain properties
are enforced appear as lead.

9.5 Case Study

In this section, we present examples of enforcement techniques for strict vs. loose as
well as distributed vs. centralized enforcement of timing requirements for the case
study of the previously introduced object detection application depicted in Fig. 9.6.
The application consists of a chain of 9 tasks (actors) processing each input image
in succession: an image source (ISo) actor to read in input images periodically at
a constant rate, a gray-scale (GS) conversion actor, a Sobel edge detection (ED)
actor and a Harris corner (HC) detection actor to determine, respectively, edges and
corners in an image, a SIFT orientation (SO) actor to achieve invariance to image
rotation, a SIFT description (SD) actor to extract the features in an image, a SIFT
matching (SM) actor to detect objects in the image based on a previously trained
set of object features, and a RANSAC (RS) actor to insert the detected objects into
the image which is finally sent out by an image sink (ISi) actor. As platform, we
consider a NoC-based 3 x 3 many-core architecture as depicted in Fig. 9.1 and map
the application’s actors on the architecture as illustrated in Figs.9.4 and 9.5. All
evaluations presented in this section are carried out using InvadeSIM [16, 18], a
high-level functional simulation framework for multi-/many-core architectures and
supporting resource-aware programming.

9.5.1 Enforcement Problem Description

In the following, we assume that each image frame of the given time-critical
application must be processed within a latency upper bound UBp = 115ms.
Table 9.1 provides the average, standard deviation, and overall contribution of
each actor’s latency when processing a sequence of 9 149 images stemming from
different sources of video streams when each actor is processed in isolation on
a single core and running constantly at maximum frequency. As can be seen in
Table 9.1, the SD and SM actors exhibit the highest degree of input-dependent
variation in execution time and also the highest contribution to the overall latency.
The remaining actors, on the other hand, do not exhibit a comparable execution time
jitter and/or a comparable contribution to the overall application latency across the
input space.

136 J. Teich et al.

Table 9.1 Average, standard deviation, and overall contribution to the overall latency of each actor
of the object detection application in Fig. 9.6 when processing a test sequence of 9 149 images and
executed each in isolation on a single core running constantly at maximum frequency according to
Table 9.2

Actor
Latency index GS ED HC SO SD SM RS
Average [ms] 0,21 0,18 1,50 1,79 146,86 21,02 0,01

Std. deviation [ms] 0,09 0,08 0,64 0,80 106,15 15,04 0,03
Overall contribution 0,1 % 0,1 % 0,9 % 1,0% 85,6 % 12,3 % 0,0 %

In the following, we present examples of RRE techniques using Dynamic Voltage
and Frequency Scaling (DVFS) [3, 10, 21, 26] to enforce the global latency upper
bound UB; = 115ms for the given application. Due to the small variation
and overall latency contribution of all except the actors SD and SM according
to Table 9.1, we dedicate a time budget of 20ms to the other actors altogether,
assuming that their cumulative latency per input image does not exceed this budget.
This translates into a latency upper bound of UB; = 95ms for the SD and SM
actors. For the demonstration of distributed RRE techniques, we further decide to
split this bound into two individual latency upper bounds, namely UB;, = 80 ms for
SD and UB1, = 15 ms for SM. Next, we present examples of loose vs. strict as well
as distributed vs. centralized enforcement. As a merit of profit, we also investigate
the potential energy savings of each RRE strategy in addition to evaluating its
capability in enforcing the latency requirement(s).

According to Fig.9.7, the following RRE techniques implemented as enforce-
ment automata are privileged to adjust two control knobs prior to processing an
image frame: (a) the degree of execution parallelism per actor that is adjusted by
setting the number n of active cores that process the workload of each actor and
(b) the power (voltage/frequency) mode m of the core(s) allocated for each actor
adjusted through DVFS (for active cores) and power gating (for inactive cores).
To this end, each RRE decides on a per input image basis how to distribute the
workload of each actor being enforced between one and four cores available per tile
according to the mappings shown in Figs. 9.4 and 9.5. At the same time, it sets the
power mode of the cores of each tile to either a power-gated mode (with f =0 and
Vpp =0) or 20 possible DVFES configurations (with a frequency step size of 0.2 GHz
and a maximum frequency of 4 GHz) summarized in Table 9.2. For both actors
under enforcement, SD and SM, we analyzed the major source of latency variation
according to Table 9.1 (single core, constant maximal frequency) as stemming from
the variability in the number i of features in each image to be processed. Therefore,
this number is used as a direct indicator of the input workload to the following RRE
strategies.

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 137

Table 9.2 Voltage/frequency (DVFS) modes of each core
mode | f(m) | Vpp(m) mode| f(m) | Vpp(m)| mode| f(m) | Vpp(m)| mode| f(m) | Vpp(m)

[GHz] | [V] m [GHz] | [V] m [GHz] | [V] m [GHz] | [V]
0.2 0.5 6 1.2 0.91 11 2.2 1.26 16 32 1.58
0.4 0.6 7 1.4 0.98 12 2.4 1.32 17 3.4 1.65

0.6 0.69 8 1.6 1.05 13 2.6 1.39 18 3.6 1.71
0.8 0.77 9 1.8 1.12 14 2.8 1.45 19 3.8 1.78
1.0 0.84 10 2.0 1.19 15 3.0 1.52 20 4.0 1.84

SN R R

9.5.2 Power, Latency, and Energy Model

Our investigation of enforcement strategies involves the evaluation of power con-
sumption, execution latency, and energy demand per actor under enforcement. To
evaluate the power consumption P (m) of a core in power mode m, we use Eq. (9.2)
in which the first summand represents the dynamic power contribution calculated
based on the effective switching capacitance Cefr and the supply voltage Vpp(m)
and operating frequency f(m) of the core in power mode m. The second summand
describes the static power consumption calculated as the product of leakage current
Tieak and supply voltage Vpp(m).

P(m) = Ceft - Vop(m)* - f(m) + hea - Vo (m) (9.2)

For the construction of proper enforcement automata, we need to know the
relation between the number i of input features and the execution latency L of
each actor to be enforced in dependence of the number n of cores and power mode
m. Let L(1, 1, mpax) denote the latency for processing one feature on one core in
power mode mp,y (highest voltage and frequency). In the following, L(1, 1, mmax)
is determined by simulatively determining the execution latency of each actor per
image for a representative set of 9 149 test images that fully covers the considered
input space. Subsequently, the latency per feature of an actor is determined for
each image by dividing its latency by the number of features i in that image.
Figure 9.8 illustrates the distribution (left) and the cumulative distribution (right)
of the per-feature latency for the SD actor. Based on the obtained distribution, we
then determine L(1, 1, mp,x) according to the strictness of the latency requirement
which specifies the minimum rate s € [0, 1] of requirement satisfaction that must
be achieved, specified by the user. In case of (a) strict enforcement, a strictness of
s = 1 is considered, and hence, the maximum observed per-feature latency among
all images is used as L(1, 1, mp,x). For (b) loose enforcement, i.e., when s < 1,
L(1, 1, mpay) is set to the lowest per-feature latency among all images such that for
s -100 % of images, the latency per feature is lower than or equal to the selected
L(1, 1, mmax). In Fig. 9.8 (right), this calculation corresponds to finding the lowest
x-coordinate with a cumulative density of s. Having L(1, 1, mpyax) determined, the
following Eq. (9.3) is then used to determine the actor latency L (i, n, m) based on

138 J. Teich et al.

0.15F

. =
0.12f 4 E oosp S 0p 20298
Z 009 4 T 06f (3728
= 2 N
S 0.06 [B g 04p (385, 50)
0.03 |- ~ g 02t i
(U= i i i 3 0k I 1 L
360 380 400 420 360 380 400 420
per-feature latency [us] per-feature latency [us]

Fig. 9.8 Distribution (left) and cumulative distribution (right) of observed per-feature latency of
the SD actor for a test sequence of 9 149 input images with number i of features to be processed
varying between 0 and 5513. To the right, the value of L(1, 1, mpyax) is marked for requirement
strictness values of s = 0.5, 0.84, and 0.98

the number of features i to be processed within an image, the number of cores n
employed, and the power mode m selected by an RRE scheme. In Eq. (9.3), e(n)
denotes the parallel efficiency in dependence of the number of cores n employed for
the computation with e(n) = 1 in the best case. In our experiments, we consider
e(n) =1.

9.3)

L@i,n,m) = L(1, 1, mmax) - ’7 i —‘ . S (Mmax)

n-e(n) f(m)

Note that Eq.(9.3) is a latency model specific to the SD and SM actors of our
running application where L(1, 1, mp,x) must be determined individually for each
actor to be enforced. Moreover, Eq.(9.3) could be alternatively replaced with an
elaborate many-core timing analysis, e.g., those from [2, 5-7, 15, 25], to derive tight
worst-case latencies that support a variety of different resource arbitration policies
and resource sharing schemes. Based on the power consumption and latency models
in Egs. (9.2) and (9.3), the energy E (i, n, m) required by the actor for processing an
image with i features using n cores running in power mode m is derived using
Eq.(9.4).

E(i,n,m)=L(i,n,m)- P(m)-n 9.4)

Finally, the maximum number of features that can be processed within a
given latency bound UBjp using n active cores running in power mode m
can be determined using Eq.(9.5) which is derived from Eq. (9.3), considering
L(i,n,m) < UBj.

9.5)

imax(UBL,n,m):Ln,e(n).L UB, Fom) H

L 1L, mmax) f (Mmax)

For example, with Eq. (9.5), we may compute ijn,x (80, 4, 20) for the SD actor which
is the highest number i of features of an input image for which a latency upper
bound of UB;, =80 ms can be enforced with a strictness of s € [0, 1]. For instance,
for loose enforcement with s = 0.5, we obtain i, (80, 4,20) = 828, and for

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 139

strict enforcement where s = 1, the maximum enforceable workload decreases to
imax(go, 4, 20) = 760 features.

9.5.3 Energy-Minimized Timing Enforcement

According to Fig.9.7, RRE may involve to set, modify, or impose restrictions on
typically OS-related techniques such as thread scheduling or memory management.
In the following examples, we exemplify enforcement strategies for latency enforce-
ment of individual actor executions or complete applications by varying the number
n € [1, 4] of cores (parallelism) and the power mode m € [1, 20] configuration for
each actor execution. As, in general, multiple ways and settings for n and m might
be feasible to enforce a requirement, the question becomes which requirement-
adhering constellation the enforcer selects at run-time. Often, this freedom of choice
may be exploited by optimizing one or more (secondary) objectives in addition to
satisfying the given requirement. In the following, we consider energy demand as an
objective to be minimized.> Given a latency requirement UB; and the RRE decision
space of n € [1,4] and m € [1, 20], design space exploration can be conducted per
actor (or a set of actors) to derive, e.g., in our running example for the SD actor, the
maximum number in,x of features that can be processed under each choice of (n, m)
while respecting the latency requirement. Taking the SD actor with a latency upper
bound UBy =80 ms as an example, Fig. 9.9 illustrates the maximum workload iy,x
and the respective energy demand for each of the 80 possible (n, m) configurations

I I
= 40| |* 1 .
= x 4,20
£ 30| |e (4.20)]
(oW
e n
Z2 20 |
=]
S
? Lo 1 o 4 13))
5 0 |
| QZ, 5) (‘\1’) | | | | | |

0 100 200 300 400 500 600 700 800
max. enforceable workload (i,) [#features]

Fig. 9.9 Maximum enforceable workload ipax and energy demand of the SD actor under the
variation of the number n € [1, 4] of active cores and their power mode m € [1,20] for a hard
(s = 1) latency bound of UB; = 80 ms. Pareto-optimal (n, m) configurations are connected by a
red line. For an exemplary subset of them, the Pareto-optimal configuration (n, m) is also annotated

2Qther objectives for choice of settings could be to activate the least number n of cores for
increasing aspects of long-term reliability.

140 J. Teich et al.

derived using Eqgs. (9.5) and (9.4), respectively, in case of strict enforcement (s =1).
The red line designates Pareto-optimal (n, m) configurations.

Based on such a design space exploration and the Pareto front of (n,m)
configurations derived thereby, an energy-minimizing enforcement automaton may
be systematically constructed in which prior to each execution of the SD actor,
the enforcement automaton selects a state (Pareto-optimal (n, m) configuration)
that is energy-minimal while satisfying the latency requirement in case input
i is enforceable, thus if i < iymax(UBL,n,m). For the example in Fig.9.9,
the enforcement automaton has 31 states, each corresponding to one of the 31
Pareto-optimal (n, m) configurations and the maximum enforceable workload imax
associated with that configuration. Here, the state selection is steered solely by the
number i of features in the image to be processed by the SD actor.? For instance, for
images with i < 9 features, n = 1 and m = 1 minimizes the energy demand of the
SD actor without violating the given latency requirement UB; = 80 ms. For input
images with 142 < i < 152 features, an energy-minimal and requirement-adhering
execution can be realized only if n = 4 cores are used for SD in parallel and power
mode m = 4. Finally, a strict enforcement becomes impossible if i > 760, even
using the configuration with the highest compute power, i.e., n = 4 and m = 20.
For non-enforceable inputs, the enforcer needs to either throw an exception, stop
processing (drop) the image, or process only as much as the latency bound allows to
be processed. In Sect. 9.5.6, we propose a number of exception handling techniques
under the topic of range extension. Before that, we first present techniques for
distributed enforcement where each actor is individually enforced. Subsequently,
we present also an example of centralized enforcement in which a more global view
of the system state can be obtained by a centralized RRE instance that can take
decisions affecting multiple actors and resources.

9.5.4 Distributed Enforcement

Figure 9.10 shows the resulting automatically generated energy-minimizing
enforcement automata for a distributed enforcement strategy of the two individual
actors SD and SM with latency upper bounds 80 ms and 15 ms, respectively. The
EAs for selecting the energy-minimizing (n, m) configurations obtained through
the previously presented design space exploration are implemented as lightweight
lookup tables for each actor. At run-time, once an image is ready to be processed,
the number i of features in it becomes known. Prior to processing an image, the
RRE (e-let) retrieves the energy-minimizing (n, m) configuration corresponding to

3Note that in this example, the RRE could also be represented by a function table rather than an
FSM, as the selection of state is only dependent on the input. More general cases such as restricting
the allowed settings in each state to allow only step-wise increase or decrease of DVFES modes can
be constructed.

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 141

tile #1 tile #2

& introducing distributed enforcement

tile #1 tile #2
- -

il l(n,m) (n,m)l Tt

K Y

i power manager power manager i

i .
i [0,9] [10,19] ... [142,152] [153,171] ... [721,760] i [0,12] [13,25] ... [115,128] [129,153] ... [985,1036]
n o1 o 4 3. 4 a1 [2 3

1 2 4 6 20 m 1 2 5 4 20

| O non-enforced actor Q enforced actor

Fig. 9.10 Implementation of distributed RRE using pre-explored energy-optimal parallelism
degree and DVFS settings (n, m) for SD and SM actors with hard (s = 1) latency upper bounds of
UB; =80ms and UB[=15 ms, respectively

i features from the table and instructs the power manager to use these settings. As
shown in Fig. 9.10, the integration of enforcers may be achieved at the level of actor
graphs as a model transformation by inserting the enforcer as an actor in front of
each actor to be enforced, such that for each image to be processed, the energy-
minimizing (n, m) configuration is set prior to execution of the image, and the
configuration stays constant over the duration of processing this image. Employing
the above enforcement strategy, the run-time manager is not compelled to run the
enforced actors constantly with the maximum number n = 4 of cores and in the
highest power mode m = 20 to guarantee the satisfaction of latency constraints in
the presence of input variations, unless i >721 for SD or i > 985 for SM. Also note
that the given latency bounds cannot be strictly enforced for a feature count i > 760
for SD and i > 1036 for SM. Thus, the maximum workload that can be strictly
enforced by both actors is limited to i = 760 features.

The histograms of observable latencies of the SD and SM actors (a) without
enforcement (n =4 and m =20) and (b) with enforcement considering hard (s = 1)
latency upper bounds of UB;, = 80ms and 15 ms for SD and SM, respectively, are
illustrated in Fig.9.11. As shown in the plots, the RREs choose a power mode that
maximizes energy savings while satisfying the given latency upper bound of each
actor under enforcement. For a variety of requirement strictness levels, Table 9.3
finally presents the average dynamic energy consumption and the achieved dynamic
energy savings of the SD and SM actors compared to the non-enforced scenario
with n = 4 and m = 20. As can be seen, in case of loose enforcement, i.e., a
strictness s < 1, the RRE achieves between 38.3 % and 41.2 % dynamic energy
savings per enforced actor (respectively, between 39.3 % and 40.8 % collectively

142 J. Teich et al.

—— enforced —— non-enforced —— enforced —— non-enforced
g g T T T E T
) 5]]
3 & i
E E l
3 5 '
(=9 j=9 1
| g

0 20 40 60 80 100 0 5 10 15 20
latency [ms] latency [ms]

Fig. 9.11 Latency distribution for the SD (left) and SM (right) actors. The enforced case
corresponds to the energy-minimized enforcement for hard (s = 1) latency bounds of UB =80 ms
for SD and UB, =15 ms for SM. The non-enforced case corresponds to a fixed setting of n = 4
and m = 20 per actor

for the two actors) while satisfying latency upper bounds of 80 ms and 15 ms for the
SD and SM actors, respectively. In case of strict enforcement which corresponds to
a requirement satisfaction rate of s = 1, the RRE still is able to achieve dynamic
energy savings of 37.6% for SD and 37.2% for SM (respectively, 37.6% collectively
for the two actors) while guaranteeing that the given latency upper bound for each
actor will never be violated. Evidently, this guarantee holds only for enforceable
input images, i.e., those with i <760 features for the SD actor and i <1036 for SM
(see the RRE tables in Fig. 9.10). In Sect. 9.5.6, we discuss approaches that can be
employed to enable the enforcement of latency requirements for inputs which are
not enforceable merely using the given RRE control knobs. Finally, when analyzing
the overall energy consumption of all actors per input frame, we obtain an overall
dynamic energy reduction of 33.8 % in case of strict enforcement (s = 1) and
between 35.4 % and 36.8 % in case of loose enforcement (s < 1) for the whole
application, even though only two out of 9 actors are enforced. Noteworthy, the
additional execution time and energy consumption of the RREs themselves can
be neglected as these are implemented by simple table lookups.

9.5.5 Centralized Enforcement

In this section, we consider the combined enforcement of the SD and SM actors
using centralized enforcement. As depicted in Fig.9.12, a single instance of
an RRE is now enforcing the overall hard (s = 1) latency upper bound of
UBr = 80+ 15 = 95ms for both SD and SM actors collectively. Similar to the
distributed case, the energy-minimizing (n, m) configurations which are required
for the construction of the RRE are obtained through a previously presented design
space exploration, but now considering a unified latency upper bound UB; = 95 ms
for the execution of both SD and SM actors. Note that considering a compound

143

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs

QUIASEQ B SB SOAIIS ()7 = W “p= 1) JUSWIOIOFUD Inoyim uonduwnsuod AS1o0us ayJ,

(o1 (Jon) (Jom) ULy - (Fom) T'eTe — | JUSWRDIOJUS INOYIM
%S8EE| BYLE BTLE 9'6¢ 8°LS| %9°LE T'6€l LOTY %001 | WNWIXe
%BYSE| BHE6GE BHESE 1'6C 6°SS| %S6E 0°S€l €70y %LL6| ©-T+3Ae
%I9E| %BIOF BLSE 0'6C 9°¢S | %oy 6°C€l 0°T6€ %1¥8| o 1+3Ae
%89E| %8Oy %68 6'8C ¥'SS| %TIY T'I€1 ¥'S8¢ % 0S UBIPIN
[eIAQ | INS+S | s3uraes [rw] [s1] s3uraes [ruw] [s1] (s) orex Xopurt

£Sroug | AS1ouo Say | (*™Wu‘y ‘1)7 | ASrouq | ASouo -Say | (¥eWuu ‘q ‘p)77 | ‘s UIW | ISIp ‘uiiou
s3uraes A31oug (swgy = 7gn) 10308 NS (swpg = 7g) 10)0e QS | ssoworns juowarnboy

9e1 uonoejsnes juswaImbar 9[qedoooe wWnWIUIW Y} St PAUYIP SSAUIOLIS JudwaImbar jo souspuadap ur
JUSWIOIOJUS PAINGLISIP YINoIy) s10308 NS pue (S dy3 10} 9Fewr 1od s3uraes pue uondwnsuod A310us onweudp a3eIoAy ¢'¢ dqeL

144 J. Teich et al.

tile #1 tile #2
i [0,8] ... [189,192] ... [786,790]
no 1 4 4 @ introducing centralized enforcement
my 1 5 0 | S
ny 1 3 4
m; 1 6 20
RRE

(nl,ml)r _l(nz,mz)
; -

tile #1 \ \ tile #2
. A@— RRM RRM —» @

| O non-enforced actor Q enforced actor |

Fig. 9.12 Implementation of a centralized RRE using pre-explored energy-optimal parallelism
degree and DVFS settings (n, m) for SD and SM actors with a hard (s = 1) latency upper bound
of UB;, = 95 ms for both actors collectively

g 40 |- ||—— enforced
% 3 8 non-enforced
= 20

E)

= B |

g

— O - T T T —

0 20 40 60 80 100 12
latency [ms]

Fig. 9.13 Latency distribution of the SD and SM actors when collectively enforced for a hard
(s = 1) compound latency bound of UB; =95 ms. The enforced scenario is realized using energy-
minimized enforcement, and the non-enforced scenario corresponds to a fixed configuration of
n =4 and m = 20 per actor

latency bound for both actors enables enforcing this bound for images with up to
i = 790 features.

The histogram of observable collective latency of the SD and SM actors (a) with-
out enforcement (n = 4 and m = 20 for both actors) and (b) with enforcement
considering a hard latency upper bound, i.e., for a requirement strictness of s = 1,
is illustrated in Fig.9.13. As shown in the plots, the RRE assigns the number n of
active cores and their power mode m for each actor under enforcement to maximize
energy savings while satisfying the given latency upper bound of UB; = 95 ms
collective for both actors. For a variety of requirement strictness levels, Table 9.4
finally presents the average dynamic energy consumption and the achieved dynamic
energy savings of the two enforced actors using centralized enforcement compared
to the non-enforced scenario with n = 4 and m = 20. As can be seen, the
RRE achieves in case of loose enforcement, i.e., strictness s < 1, between 39.7 %

145

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs

Jur[aseq B Se SOAIRS ()7 = Ul ‘{ =) JUSWADIOJUL Jnoyiim uondunsuod AS1ous ay [,

(o) (o) (o) 'Ly - (Jon) TETT — | JUSWSJIOJUS INOYIM
%0SE| %S88E| %HTOY T'8C 8°LS| %S8E TLET L0TY %001 | wnurxew
%BLSE| BL6E| %60Y 6°'LT 6°SS| %Y6E €°6€1 €T0v %LL6| O-T+BAe
BELE| BSTY| %H6TY 0°'LT 9°6S | BTIY €1€1 0°T6¢ %198| o-1+3ae
%B6LE| BITY| %HIEY L9 ¥'SS| B8y 6°6C1 ¥'68¢ % 0S uerpawt
[[BIAQ | INS+AS | sSutaes [rw] [s71] s3urAes [rw] [s77] (s) QeI Xoput

A310ug | AS10u0 Ay | (X*Ww ‘1 ‘1)7 | ASioug | AS1ouo -SAy | (X®Ww ‘y ‘1) | ¥es ‘Ui | ISIp ‘uliou
s3uraes A31oug 10308 NS 10)08 (US| SSewjorns juowarmboy

9Je1 uondeJsHEs JuowaInbar
9[qe1doooe winwuIW JY) Se PAUYIP SsauloLns JudwaInbar jo aouspuadep ur swige = 7g) jo punoq Aousje| punodwod e 10j
JUSUIDIOJU PIZI[ENUD YINOIy) SI0J0. JAS pue (S 2y 1oJ oew 1od sSuraes pue uondwnsuod A310u9 onueuip 95e1oAy ¢ IqEL

146 J. Teich et al.

and 42.1 % dynamic energy savings collectively for the two enforced actors while
satisfying a compound latency upper bound of 95 ms. In case of strict enforcement
(s = 1), the RRE still is able to achieve dynamic energy savings of 38.8%
collectively for the two actors while guaranteeing that the given latency upper bound
UB1 = 95 ms will never be violated. Finally, when analyzing the overall energy
consumption of all actors per input frame, we obtain a dynamic energy reduction of
35 % in case of strict enforcement (s = 1) and between 35.7 % and 37.9 % in case
of loose enforcement (s < 1), even though only two out of 9 actors are enforced.
In summary, compared to distributed enforcement, the centralized scheme is able to
even save slightly more dynamic energy while enforcing a higher workload.

9.5.6 Lower Latency Bound Enforcement and Range
Extenders

In certain cases, a latency requirement may introduce—in addition to an upper
bound UBj—also a lower bound, LBy, thus, demanding the enforcement of a
latency corridor. Such a lower latency bound could be enforced by means of, e.g.,
a simple timer (counter) that measures the time elapsed from the beginning of
the current execution of the actor(s) under enforcement. The transmission of the
produced result(s) to the next actor(s) could then be simply delayed to the time
the timer indicates that the time interval of LB; has passed, see Fig.9.14. More

8
Range extension (examples):
7r - Drop input
/ - Change operating point
6 - Scheduling
++% - Approximate Computing
S 5) .7 - Anytime-Algorithms
5 N
j% 4 | imax (4, Tmax) 4
ol imax (4! fmax—1)
3t ! 1
-
5| Enforcement of lower bounds: Ll]
waiting times M
1r e «w 1
- e
: /
ol 1 Z 7 : fUB. i
0 20 40 60 80 100 120 140 160

Latency [ms] imax (1, fmin)

Fig. 9.14 Examples of range extenders and enforcement of lower latency bounds L By, and thus
latency corridors

9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs 147

difficult and also diverse in the space of possible solutions, however, is the question
of how to deal with non-enforceable inputs. In case of our running distributed object
detection application, our test image sequences on purpose contained images with
more features i than for which the given latency upper bound can be enforced with
only n = 4 cores in highest power mode m = 20. In case of strict enforcement
(s = 1) corresponding to hard real-time requirements, not even a single violation
of a latency upper bound is tolerable. Hence, there must be techniques to avoid
such violations per construction, if a non-enforceable input is observed. This is a
matter of current research. We therefore briefly outline a few techniques how to
deal with these cases: input omission (dropping), approximate computing to trade
off processing speed with result accuracy (if applicable), revision of scheduling
decisions, over-allocation of resources, or a dynamic reconfiguration between
different mappings at run-time (change of operating point [14]), see also Fig.9.14.

9.6 Conclusions

In this paper, we presented a formalization, classification, and the practice of a
class of run-time techniques subsumed under the term of Run-Time Requirement
Enforcement (RRE) that make the system management software of an MPSoC
platform become the advocate of a parallel application program instead of both
acting independently with the goal to provide means for the satisfaction of given
non-functional requirements of parallel program execution such as performance
(latency, throughput), power or energy consumption, or reliability. The non-
functional requirements can thereby be expressed by interval ranges and specified
over the application program as a whole, e.g., when specified by an actor graph.
Alternatively, requirements can be specified for individual actors/tasks or threads,
or even segments thereof. The goal of RRE is to enforce the satisfaction of
these requirements at run-time. It has been shown by introductory examples on
latency enforcement of a distributed object detection application that enforcers
may be generated through profiling and the creation of high priority system-level
threads called e-lets that are formally described in behavior by an enforcement
automaton each. These e-lets proactively control the system resources claimed
by an application program in view of observed workload variation. First, based
on the assignment of exclusive resources to periodic workload such as streaming
applications, composability is created that is necessary to allow for a static and
independent analysis of each application running on a given MPSoC platform.
This enables us to statically analyze non-functional properties of applications or
parts thereof and define RRE techniques to control requirements dynamically. For
a distributed object detection application as an example, it has been shown that
the variability of non-functional execution properties can be greatly reduced in
dependence of the level of strictness that shall be fulfilled for each requirement.
Moreover, it has been shown that RRE techniques can be either implemented
in a centralized or distributed manner. In the future, we want to look at how

148 J. Teich et al.

to decompose requirement corridors for distributed enforcement and study the
control overheads of centralized enforcement. Finally, techniques for simultaneous
enforcement of multiple non-functional requirements need to be investigated, as
here, not only the input (workload) variation as considered in this seminal paper,
but also the shared system state must be taken into account once multiple RREs are
at work.

Acknowledgments This paper is dedicated to Peter Marwedel on behalf of his 70th birthday in
recognition of his lifetime achievements in the area of design automation for embedded systems.
Special thanks also to Zhai Ming for several experiments conducted for this paper. Finally,
we would like to acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—Project Number 146371743—TRR 89 Invasive Computing that funded our work.

References

1. B. Akesson, et al., Composability and predictability for independent application develop-
ment, verification, and execution, in Multiprocessor System-on-Chip (Springer, Berlin, 2011),
pp. 25-56

2. S. Altmeyer, et al., A generic and compositional framework for multicore response time
analysis, in Proceeding of RTNS (ACM, New York, 2015), pp. 129-138

3. D. Angioletti, et al., A runtime resource management policy for OpenCL workloads on hetero-
geneous multicores, in Proceeding of DATE (IEEE/ACM, New York, 2019), pp. 1385-1390

4. D.R. Cheriton, et al., Thoth, a portable real-time operating system. Commun ACM 22(2),
105-115 (1979)

5. R.I. Davis, et al., An extensible framework for multicore response time analysis. Real-Time
Syst. 54(3), 1-55 (2017)

6. G. Giannopoulou, et al., Timed model checking with abstractions: towards worst-case response
time analysis in resource-sharing manycore systems, in Proceedings of the International
Conference Embedded Software (ACM, New York, 2012), pp. 63-72

7. G. Giannopoulou, et al., Mixed-criticality scheduling on cluster-based manycores with shared
communication and storage resources. Real-Time Syst. 52(4), 399-449 (2016)

8. A. Hansson, et al., CoMPSoC: a template for composable and predictable multi-processor
system on chips. ACM TODAES 14(1), 2 (2009)

9. C. Imes, et al., POET: a portable approach to minimizing energy under soft real-time
constraints, in Proceeding of RTAS (IEEE, Silver Spring, 2015), pp. 75-86

10. A. Kanduri, et al., Approximation-aware coordinated power/performance management for
heterogeneous multi-cores, in Proceeding of DAC (IEEE/ACM, New York, 2018), pp. 1-6

11. P.N. Khanh, et al., Incorporating energy and throughput awareness in design space exploration
and run-time mapping for heterogeneous MPSoCs, in Proceeding of DSD (IEEE, Silver Spring,
2013), pp. 513-521

12. H. Kopetz, Real-time Systems: Design Principles for Distributed Embedded Applications, 2
edn. (Springer, Berlin, 2011)

13. S. Pinisetty, et al., Runtime enforcement of reactive systems using synchronous enforcers, in
Proceeding of ACM SIGSOFT International SPIN Symposium Model Checking of Software
(2017), pp. 80-89

14. B. Pourmohseni, et al., Hard real-time application mapping reconfiguration for NoC-based
many-core systems. Real-Time Syst. 55(2), 1-37 (2019)

15. B. Pourmohseni, et al., Isolation-aware timing analysis and design space exploration for
predictable and composable many-core systems, in Proceeding of ECRTS (2019)

16.

17.

18.

19.

20.

2

—_

22.
23.

24.

25.

26.

Run-Time Enforcement of Non-functional Program Properties on MPSoCs 149

S. Roloff, et al., Execution-driven parallel simulation of PGAS applications on heterogeneous
tiled architectures, in Proceeding of DAC (IEEE/ACM, New York, 2015), pp. 1-6

S. Roloff, et al., ActorX10: an actor library for X10, in Proceeding of ACM SIGPLAN
Workshop on X10 (ACM, New York, 2016), pp. 24-29

S. Roloff, et al., Modeling and Simulation of Invasive Applications and Architectures (Springer,
Berlin, 2019)

T. Schwarzer, et al., Symmetry-eliminating design space exploration for hybrid application
mapping on many-core architectures. IEEE TCAD 37(2), 297-310 (2018)

AK. Singh, et al., Accelerating throughput-aware runtime mapping for heterogeneous
MPSoCs. ACM TODAES 18(1), 9:1-9:29 (2013)

. A K. Singh, et al., Energy optimization by exploiting execution slacks in streaming applications

on multiprocessor systems, in Proceeding of DAC (IEEE/ACM, New York, 2013), p. 115

J. Teich, et al., Invasive Computing: An Overview (Springer, New York, 2011)

J. Teich, et al., Language and compilation of parallel programs for *-predictable MPSoC
execution using invasive computing, in Proceeding of MCSOC (IEEE, Silver Spring, 2016)

A. Weichslgartner, et al., DAARM: design-time application analysis and run-time mapping
for predictable execution in many-core systems, in Proceeding of CODES+ISSS (IEEE/ACM,
New York, 2014), pp. 1-10

A. Weichslgartner, et al., Invasive Computing for Mapping Parallel Programs to Many-Core
Architectures (Springer, Berlin, 2018)

Z. Zhu, et al., Energy minimization for multi-core platforms through DVFS and VR phase
scaling with comprehensive convex model, in /EEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	9 Run-Time Enforcement of Non-functional Program Properties on MPSoCs
	9.1 Introduction
	9.2 Preliminaries and Definitions
	9.2.1 System Model
	9.2.2 *-Predictability

	9.3 Run-Time Requirement Enforcement
	9.4 Taxonomy of Run-Time Requirement Enforcers
	9.4.1 Enforcement Automata (EA)
	9.4.2 i-lets and e-lets

	9.5 Case Study
	9.5.1 Enforcement Problem Description
	9.5.2 Power, Latency, and Energy Model
	9.5.3 Energy-Minimized Timing Enforcement
	9.5.4 Distributed Enforcement
	9.5.5 Centralized Enforcement
	9.5.6 Lower Latency Bound Enforcement and Range Extenders

	9.6 Conclusions
	References

