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8.1 Introduction

More than a decade ago, the semiconductor technology had entered the so-called
nano-CMOS era, in which the transistor’s feature sizes became below 90 nm. Since
then, the prior trend of voltage scaling came to an end leading to the discontinuation
of Dennard’s scaling [7]. In Dennard’s scaling, both the dimensions of transistor
and the operating voltage are typically scaled by the same factor in order to ensure
a constant electric field. Due to the non-scalable voltage, ever-increasing power
densities in chips became a substantial obstacle for technology scaling due to the
limited ability of existing cooling solutions to dissipate the generated heat [8]. To
overcome this fundamental problem, the maximum frequency of processors had
stopped increasing with every new generation in order to keep the on-chip power
densities under acceptable levels and since 2005 the era of many-core processors
had started.

To understand the inability of technology to scale voltage, we need to understand
what determines the speed of a processor. As a matter of fact, the drive current
(ON current) of a transistor dictates its switching speed and hence it ultimately
determines the maximum delay of logic paths that form the processor’s netlist.
The ON current of a transistor is proportional to (Vpp — Vr), where Vr denotes
the threshold voltage of transistor and Vpp denotes the operating voltage. In
order to maintain the same level of current, while Vpp is scaled down, V7 must
also be reduced by almost the same amount. However, reducing Vr comes with
an exponential increase in the leakage current (OFF current) of transistor. This
is primarily because that the sub-threshold swing of transistor is fundamentally
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limited to 60 mV/decade at room temperature akin to “Boltzmann tyranny” [21].
Such a fundamental limit inevitably restricts the minimum possible Vr to be at
least 300 mV. To ensure a reliable operation, different kinds of safety margins
need to be added on top of the minimum voltage, which enforces the operating
voltage to remain almost the same with every new technology generation. As above-
mentioned, the inability to scale voltage has led to the discontinuation of Dennard’s
scaling, which, in turn, had led to preventing the frequency of processors from
increasing.

In summary, the fundamental limit of sub-threshold swing of transistor is
the primary reason behind not scaling voltage and it is the origin of on-chip
power density problems that processor’s designers are facing since more than a
decade ago.

8.1.1 Negative Capacitance Field-Effect Transistor (NCFET)

NCFET integrates a ferroelectric layer inside the gate stack of a transistor, which
acts as a negative capacitance. Such a layer provides an amplification of the vertical
electric field that the transistor perceives. This, in turn, allows the transistor to
overcome the fundamental limitation of sub-threshold swing of 60 mV at room
temperature. The principle of NCFET was first proposed in 2008 by S. Salahuddin
and S. Datta [16]. After which, it very rapidly gained a large popularity due to the
remarkable steep switching and high ON current of transistors [1]. Many experi-
ments have consistently proved NCFET [10]. A breakthrough has recently occurred
when GlobalFoundries demonstrated NCFET-based circuits using their state-of-the-
art industrial 14 nm FinFET technology [9]. This showed, for the first time, that
NCFET technology has become compatible with the existing CMOS fabrication
process. In fact, such a compatibility is essential for any emerging technology to be
adopted by semiconductor companies. Otherwise, massive production will never be
possible.

In practice, NCFET technology enables the transistor to reach the same ON
current, without increasing the OFF current, but at a much lower voltage [2]. This is
only possible due to steeper sub-threshold swing. Therefore, in an NCFET technol-
ogy, the processor can still meet the same performance (as in the conventional FET)
but at a lower operating voltage leading to a significant power saving. Beside the
low-power usage scenario of NCFET, high-performance usage scenario does also
exist. NCFET enables the processor to be clocked at a higher frequency (compared
to the conventional FET), while it still be operated at the same voltage due to the
increase in the ON current. NCFET technology comes with an important side effect
in which it increases the total capacitance of transistor. Such an increase can lead
to reliability problems caused by IR-drop and voltage fluctuation during circuit’s
operation [2, 18]. At the same time, because NCFET technology enables circuits
to operate at lower voltages, it is expected that other reliability problems, related to
lifetime, to become much less because all the underlying aging mechanisms, such as
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negative bias temperature instability (BTI) and hot-carrier injection (HCI), strongly
depend on the operating voltage [20].

In the following sections, we explain how modeling the NCFET effects from
physics all the way to the system level can be done. Then, we explore how a many-
core system can profit from the NCFET technology. Finally, we explore the impact
that NCFET has on power management schemes and how existing assumptions w.r.t
voltage-leakage dependency become not valid anymore when it comes to NCFET,
which creates the necessity to develop novel power management techniques.

8.2 Modeling NCFET at the System Level

In the following we provide an overview of how NCFET is modeled at the system
level, i.e., for the purpose of simulating many-core processors. Fundamentally, the
properties of the ferroelectric layer are modeled at the physics level [12]. Figure 8.1
presents our methodology in which we traverse all layers from physics, through
device, gate, and processor level, to model NCFET at the system level. The behavior
of transistors with varying thickness of the ferroelectric layer is modeled following
the industrial-standard compact model (BSIM-CMG) [5, 14]. Based on this model,
we created NCFET-aware cell libraries supporting four different thicknesses of the
ferroelectric layer under a wide range of the operating voltage [1]. The thickness
ranges from 1nm (called TFE1l) up to 4nm (TFE4). We then implemented a
single many-core tile to the GDSII level and performed timing and power signoffs.
The results are explained in detail in the next section. Signoff tools allow to
compare power and performance of a processor implemented in different NCFET
configurations and are used to extract frequency-dependent scaling factors for
dynamic and leakage power. These factors serve as an abstraction at the system
level and allow to estimate the power of an NCFET-based processor if the power of

[ Simulation of NCFET-Based Many-Cores ] } System Level
{Frequency—Dependent Scaling Fchtors for Dyn./Leak. Power [149]]

[ Processor Timing and Povxf/er Signoffs (GDSII) [149] ] } Processor Level
( NCFET-Aware Cfell Libraries [15] ] } Gate Level

[ FinFET Compact Modfel (BSIM-CMGQG) [169] ] } Device Level

{ Ferroelectric Nflodelling [162] ] } Physics Level

Fig. 8.1 Modeling NCFET at the system level (many-core processors) requires to traverse the
whole stack from the physics level, where the effects of the ferroelectric layer are modeled, to the
system level, where performance and power of many-core processors are affected
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a baseline implementation (conventional FinFET) is known. Finally, these factors
are used to simulate a many-core processor (further details in Sect. 8.2.2).

8.2.1 Processor-Level Investigation

This section shows how NCFET affects the performance and power of a single
processor. The insights gained from this evaluation are important to build system-
level NCFET models and explain observations from system-level simulations. We
implemented the layout (GDSII level) of a single tile of the OpenPiton many-
core [3], which contains a CPU, caches, and a NoC router. Power and timing signoffs
are performed for different NCFET configurations (TFE1 to TFE4) and different
operating voltages. Further details of the experimental setup can be found in [15].
Figure 8.2a shows how NCFET increases the performance of a processor. It
allows to clock a processor at a higher frequency at the same operating voltage
or allows to reduce the voltage while still maintaining the same performance (fre-
quency). This is due to the inherent voltage amplification provided by the additional
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Fig. 8.2 (a) NCFET increases the frequency of a processor at a certain operating voltage, but
(b) also increases the dynamic power consumption due to the increase in the transistor gate
capacitance and frequency. (¢) While leakage increases almost linearly with the operating voltage
with conventional FinFET (baseline), this dependency gets weaker with a thin ferroelectric layer
and even reverses with TFE4 due to a negative DIBL effect
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ferroelectric layer. Like explained earlier, the ferroelectric layer increases the total
gate capacity. Together with increased frequency, this increases the dynamic power
consumption (Fig. 8.2b). The thicker the ferroelectric layer gets, the higher get the
gains in the frequency, but also the higher gets the dynamic power. Figure 8.2¢c
shows that leakage power is affected more severely. NCFET fundamentally changes
the trend. With conventional FinFET (baseline), leakage power increases strongly
with increasing voltage. When a thin ferroelectric layer is added (TFE1 and TFE2),
this dependency becomes weaker, until at TFE3, leakage is almost independent
of the voltage. With a thick ferroelectric layer (TFE4), an effect called negative
drain-induced barrier lowering (negative DIBL) reverses the leakage dependency
on the voltage [13]. Here, leakage increases at lower voltages. We will explain later
(Sect. 8.3.3) how this necessitates developing novel power management techniques.

8.2.2 Simulation of NCFET-Based Many-Core

We use the Sniper many-core simulator [6] to simulate many-core processors.
MCcPAT [11] is used to periodically estimate the power consumption of each core.
Since McPAT does not support NCFET, it is used to estimate the power with
conventional FinFET instead. We develop frequency-dependent scaling factors for
dynamic and leakage power based on the processor-level investigation explained
earlier.

Figure 8.3 shows the dynamic and leakage power of the single processor studied
in the previous section depending on the frequency, as opposed to voltage like
in Fig. 8.2. Two effects play a role for the dynamic power: NCFET technologies
increase the dynamic power at a certain operating voltage (Fig.8.2b), but also
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Fig. 8.3 (a) While NCFET technologies increase the dynamic power at iso-voltage, they also
lower the required operating voltage at iso-frequency, which in total decreases the dynamic power
at the same frequency. (b) NCFET technologies with a thin ferroelectric layer lower the leakage
power, whereas leakage increases with a thick layer (TFE4). Most importantly, the negative DIBL
effect reverses the leakage dependency, where lowering the V/f-levels increases leakage
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allow to go to a lower operating voltage (Fig.8.2a) while still maintaining the
same frequency. Lowering the operating voltage has a stronger effect on the
dynamic power. Consequently, NCFET technologies lower the dynamic power when
operating at the same frequency (Fig. 8.3a). Figure 8.3b shows how leakage power
depends on the V/f-level. The reverse leakage dependency with TFE4 strongly
increases the leakage power. Below 700 MHz, TFE4 would allow to reduce the
voltage below 0.2 V, which is the lower limit of the cell library.

Figure 8.3a,b allows to estimate the dynamic and leakage power consumption of
a processor that is implemented in NCFET, if the power consumption in the baseline
(conventional FinFET) is known. We extract frequency-dependent scaling factors
for both dynamic and leakage power. These factors serve as an abstraction that
allows simulation of complex benchmark applications, like PARSEC [4], on many-
core processors with dozens of cores. We thereby scale the leakage and dynamic
power that is estimated by McPAT to estimate the power consumption of NCFET-
based many-cores. For brevity, details on this approach are omitted here and can be
found in [15].

8.3 Performance, Power, and Cooling Trade-Offs
with NCFET-based Many-Cores

NCFET fundamentally changes the characteristics of transistors and therefore also
changes the performance and power of circuits [19], single-core processors [1], and
many-core processors [15]. This section demonstrates the impact of the thickness of
the ferroelectric layer on the power and performance of a many-core processor. We
show that the optimal thickness depends on many factors, such as the application
characteristics and the cooling scenario. This section evaluates performance, power,
and cooling of a 25-core many-core operating under a thermal constraint of 80°C.
We study PARSEC [4] tasks with up to eight slave threads. Their characteristics
range from highly memory-bound (e.g., canneal) to highly compute-bound (e.g.,
swaptions).

8.3.1 Impact of NCFET on Performance

Due to high power densities (failure of Dennard’s scaling) and limited cooling
capabilities, it is not always possible in modern technology nodes to simultaneously
operate all cores at the peak V/f-levels without violating the thermal constraint. This
study investigates the use-case in which cores with an active thread are operated at
the peak V/f-levels and cores without a thread mapped to it are power-gated. In this
use-case, four factors affect the thermally sustainable utilization (i.e., the number of
cores that can be turned on): the application characteristics (power consumption),
the mapping of threads to cores, the cooling system, and the transistor technology.
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Fig. 8.4 NCFET technologies increase the thermally sustainable utilization of a 25-core many-
core, i.e., the number of usable cores without violating the thermal constraint, compared to the
baseline (conventional FinFET). The optimal thickness of the ferroelectric layer depends on the
application characteristics

We use an Integer Linear Program to obtain the thermally-optimal mapping of
threads to cores, which minimizes the formation of hotspots and, thereby, maximizes
the thermally sustainable utilization. We study the use-case of a passive cooling, i.e.,
there is no fan on top of the heat sink.

Figure 8.4 shows the thermally sustainable utilization of two benchmarks
bodytrack and swaptions during the parallel section of the benchmarks (Region
of Interest) for different NCFET technologies. Other benchmarks are available
in [15]. Swaptions is a highly compute-intensive task, which results in high power
consumption and therefore, the thermally sustainable utilization in the baseline is
low (only 8 out of 25 cores). Dynamic power forms the major part of the total
power consumption and therefore, thicker ferroelectric layers increase the thermally
sustainable utilization because dynamic power is reduced (compare Fig.8.3a).
Consequently, the highest performance is observed with the thickest ferroelec-
tric layer (TFE4). Bodytrack is less compute-intense and has lower dynamic
power consumption and consequently lower total power. This results in a higher
thermally sustainable utilization compared to swaptions. However, due to lower
dynamic power, leakage power accounts for a larger fraction of the total power.
As demonstrated in Fig. 8.3b, TFE4 increases the leakage significantly over TFE3.
Consequently, TFE4 results in a lower thermally sustainable utilization than TFE3
for bodytrack and the highest performance is observed with TFE3.

These investigations show that the optimal thickness of the ferroelectric layer
depends on the application characteristics. Further investigations on how NCFET
affects the performance in the case that cores are not operated at the peak V/f-levels
can be read in [15]. These investigations additionally study forced-convection
cooling (a heat sink with a fan) and reveal that the optimal thickness of the
ferroelectric layer also depends on the cooling scenario.
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8.3.2 Impact of NCFET on Cooling Requirements

This section studies how NCFET reshapes the existing trade-off between cooling
costs and achievable performance, where higher performance comes at the cost of
higher power dissipation and therefore higher cooling costs. We study the use-case
in which the many-core is operated at its peak performance, i.e., all cores are active
at the peak V/f-levels and determine the cooling capabilities that are required to
make this use-case thermally safe. The cooling capabilities are measured by the
inverse of thermal resistance of the heat sink 1/R;;,. Varying this value corresponds
to changing the air convection.

Figure 8.5 shows the required cooling capabilities for the three PARSEC
benchmarks swaptions, bodytrack, and canneal during the parallel section of
the benchmarks (Region of Interest). NCFET technologies allow to reduce the
cooling capabilities over the baseline (conventional FinFET). Most importantly,
the required cooling capabilities are minimized at different thicknesses of the
ferroelectric layer depending on the application. Swaptions is highly compute-
intensive and consequently, dynamic power accounts for the majority of the total
power. Increasing the thickness of the ferroelectric layer reduces the dynamic power
(see Fig. 8.3) and therefore reduces the required cooling. Canneal on the other side
is highly memory-bound and therefore, the power consumption is dominated by
leakage. Leakage is minimized at TFE2, which consequently minimizes the cooling
requirements. Bodytrack shows intermediate values for the dynamic power and
therefore, TFE3 is optimal. This investigation shows again that the optimal thickness
of the ferroelectric layer depends on the application characteristics and ranges from
2 nm to 4 nm.

Fig. 8.5 NCFET
technologies decrease the
required cooling capabilities
while maintaining the same
maximum temperature of
80°C under full system
utilization (all cores active at
peak V/f-levels). The
thickness of the ferroelectric
layer that results in the lowest
cooling costs depends on the
application characteristics
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8.3.3 Impact of NCFET on Power Management Techniques

The above investigations use the well-established concept of V/f-pairs that are
determined at design time by selecting the operating voltage for a given frequency
as the lowest voltage that makes operating at this frequency reliable. This is a
reasonable approach with conventional transistor technologies, because using a
higher voltage would unnecessarily increase both dynamic and leakage power.
However, this is no longer true with NCFET with a thick ferroelectric layer
(TFE4). Here, increasing the voltage decreases the leakage power. This leads to
new optimization potential by selecting the operating voltage for a given frequency,
which is demonstrated in the next section.

8.4 NCFET-Aware Voltage Scaling

Dynamic voltage scaling (DVS) technique for processor power management is
considered to be one of the most effective ways to reduce the energy consumption
of an application. DVS technique typically selects the minimum operating voltage
Vmin that sustains the operating frequency of the processor at runtime based on
the frequency demands of the application being executed. Reducing the operating
voltage, in conventional FET, results in reducing the total power consumption,
which implicitly reduces both dynamic and leakage power. However, such a well-
known voltage dependency becomes inverse with respect to leakage power in
NCFET due to the negative DIBL effect (see Sect.8.2.1). With such opposed
dependencies (dynamic and leakage) to the operating voltage, total power follows
the dominant component when voltage changed which leads to a novel trade-off.
Consequently, power is not necessarily minimized at the minimum voltage Vpin,
which traditional DVS selects, but at another voltage V,,;. Unawareness of NCFET
and its trade-off could lead to not minimize the total power consumption. Therefore,
in this section, a novel NCFET-aware voltage scaling technique is presented [17] to
overcome the shortness that traditional DVS has in NCFET-based processors.

8.4.1 Importance of NCFET-Aware DVS

With traditional DVS, a set of voltage-frequency pairs are typically selected at
design time and later are employed by the DVS technique at runtime to optimize
the power. In this case, the lower the selected voltage is, the lower the total power
is. Due to the new inverse dependency in leakage power that NCFET exhibits, this
is not always valid with respect to NCFET. To demonstrate the consequence of such
an inverse dependency at the system level, we plot the total power consumption and
its components of the master thread of PARSEC canneal benchmark in Fig. 8.6.
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The power examined starting from Vpip, that traditional DVS selects to sustain the
required frequency, and then to overscale the operating voltage. The result shows
that the power is not minimized at Vinin (i.e., Vops7 Viin)-

Different workloads exhibit different characteristics and hence different total
power. Therefore, the contribution of power components differs. Traditional DVS
neglects this difference as both contributions (leakage and dynamic) are affected in
the same manner with voltage (both are reduced). With NCFET, the contribution
of leakage to the total power cannot be neglected because it affects the operating
voltage selection when DVS tries to minimize total power. Hence, based on the
leakage share, V,,,; could differ from Viyin.

For the aforementioned reasons, NCFET-aware DVS is crucial due to the change
in the behavior of total power consumption over voltage scaling which emerges from
the inverse dependency with respect to leakage power in NCFET.

8.4.2 NCFET-Aware DVS Technique

To enable runtime voltage selection, DVS first needs to determine workload
characteristics and then V,,,; can be correctly selected. Therefore, determining V/f-
pairs at runtime, like in traditional DVS techniques, is not possible here. Instead,
the results from Sect. 8.2.1 have been used to build the power and performance
analytical models at design time. Then, these models can be integrated with our
new NCFET-aware DVS technique for runtime voltage selection.

8.4.2.1 Design-Time Models

Power and Performance Modeling The maximum operating frequency fiax(V)
depends on the voltage V over the minimum delay dpin(V):
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dpin(V) = ager - Vbdd + Cdet;  fmax(V) =

dmin(v) (81)

Adel>0, bge1 <0, cqe1>0 are constants fitting parameters obtained at design time.
Peak leakage and peak dynamic power consumption results by operating at maxi-
mum frequency are

Prear (V) = ajear - Vblmk (8.2)

k
Ppo (V, duin(V)) = dayn - VPO + cayn (8.3)

Agyn>0, bagyn>1, cayn =0, jeak >0, bear <0 are constant fitting parameters obtained

at design time. Both vaefk(V, dmin(V)) and Pj.qx (V) are convex in V. By lowering

the operating frequency of the CPU (higher delay), dynamic power decreases.
However, since leakage power is independent from CPU activity, it is not affected.

k Ain(V) X
Pi (Vo d) = =5 RISV, dnin(V) (8.4)
Therefore, Pf;?k(V, d) is convex in V (for constant d) if bay, + bger>1.

8.4.2.2 Runtime Models

Workload-Dependent Power Modeling Dynamic power consumption Pyy, (V, d)
is affected by the running workload, which is reduced by a factor 0<r4y, <1 from

the peak dynamic power P” eak(V, d):

dyn
Payn(V. d) = rayn - P (V. d) (8.5)
Prota1(V,d) = den(vy d) + Prear (V) (8.6)

Ydyn 18 DOt constant since it represents the current workload activity. Therefore, total
power consumption Pyoq;(Ve, d) at the current voltage Ve, ryyp is

den(vc’ d) Ptotal(vc»d) = Preax (Ve)
rdyn == ==

- k - k
P (Ve,d) P (Ve,d)

8.7)

Optimal Voltage Computing V,,, that minimizes the total power can be obtained
from the power and performance models:

1
d — cgel ) bdel (8.8)

Adel

Vinin (d) = (
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Algorithm 1 NCFET-aware voltage scaling algorithm to select the optimal voltage
(Vopt) at runtime [17]

Require: Power and performance models: Pfye: k (c,d) and Pjeqr(V), current operating voltage

V. and delay d, current power consumption P, min. voltage resolution €
Ensure: Optimal operating voltage V),

k
1 rayn < (Peurr—Preak (V) | P (Ve, d) > Eq. (8.7)
2: Vopt < Vmin(d) > Eq. (8.8)
3: repeat
4: Avopt < —Piotal (Vopt s d),/Pmml(Vopta d)//
S5: 0 Vopr < Vopr + AVop; > iterative update
6: if V,pr <Vinin(d) then return Viyin(d) > out of bounds
7: if Vpr > Vinax then return Vipx > out of bounds
8: until AV, <€ > Termination criteria
9: return V,,,

Vopt (d, rdyn) = arg min Protat(V, d) (8.9
Vinin (d) <V < Vmax

Since Pioq1(V, d) is composed of convex functions, our implemented algorithm
exploits that Py (V, d) is convex in V. This guarantees that Py, (V, d) has
exactly one minimum w.r.t. V within the range [Vpin(d), Vinax]. Algorithm 1
summarizes our implemented DVS technique and obtaining V,;.

8.4.3 Operating Voltage Selection

Both DVS techniques differ in the way they select the operating voltage. Therefore,
to show the different behavior between both techniques in operating voltage
selection, the design space of the operating voltage selection with NCFET-aware
(Vopt) and NCFET-unaware DVS (Viin) has been explored in Fig.8.7. NCFET-
unaware DVS sets Vi, that is needed to sustain the required frequency and therefore
workload characteristic is not considered. Contrarily, NCFET-aware DVS considers
the workload characteristic as it depends on the ratio of leakage to total power
measured at Viin. The explored design space in Fig. 8.7 shows two distinct regions:
(1) For low leakage to total power ratio and for high frequencies, the same voltage
is selected (similar action) by both techniques (i.e., Vopr=Vmin). (2) For high
ratios of leakage to total power or low frequencies, NCFET-aware DVS selects a
higher voltage (Vjp: > Vmin). Moreover, Fig. 8.7 reveals that: the higher the required
frequency or the higher the leakage to total power ratio, the higher V,; is.
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Fig. 8.7 Operating voltage selection using both DVS techniques. Two regions appear: (1) NCFET-
aware selection differs from NCFET-unaware (Viin# Vop,). (2) Similar action is done by both DVS
as they select the same operating voltage (Vimin="V,p;). NCFET-unaware DVS selects Vyy;, (that
sustains the required frequency) and NCFET-aware selects V,,,; to minimize the power depending
on the frequency and the ratio of leakage to total power. NCFET-aware DVS selects higher voltages
when leakage power becomes prominent or at lower frequency

8.4.4 Evaluation
8.4.4.1 Experimental Setup

Using the same setup in Sect. 8.2.1, power and delay results were examined using
the highest ferroelectric thickness (4 nm). Afterwards, the power and performance
analytical models have been developed as described in Sect. 8.4.2.

For system-level simulation, relying on the setup described in Sect. 8.2.2, the
NCFET-aware DVS technique (Algorithm 1) has been used to select the operating
voltage when a set of tasks were examined from the PARSEC benchmark suite [4].
The frequencies are set between 1.0 GHz and 2.4 GHz. Vy,; is set between 0.2 V
and 0.7 V. The low operating voltages V;; in NCFET are lower than traditional
FET due to the inherent voltage amplification in NCFET provided by the negative
capacitance. For fair comparisons, simulators for both DVS cases were configured
to have: the same frequencies, and architecture, in addition to running the same
benchmarks. Hence, only voltage selection differs based on DVS decision.

8.4.4.2 NCFET-Aware DVS Results and Analysis

To show the effectiveness of the NCFET-aware DVS, we first show how NCFET-
aware DVS actually operates to save power and later to report the energy savings
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Fig. 8.8 (a) Operating voltage and (b) total power consumption during an interval of the execution
time of the canneal master thread with NCFET-unaware and NCFET-aware DVS. NCFET-aware
DVS selects higher voltage most of the time (in this particular example) and reduces the power
further at the same CPU frequency. Voltage selection is based on workload characteristics

for different benchmarks in comparison with NCFET-unaware DVS. Accordingly,
an illustrative example of the master thread of PARSEC canneal benchmark was
selected. Figure 8.8 shows distinct phases during an interval of the execution time.
In phase-1, in Fig. 8.8b, it shows the total power consumption when the frequency
is set at 1.7 GHz. Traditional DVS sets V44 to the minimum voltage (0.28 V)
which required to sustain this frequency. Thus, dynamic power is minimized but the
leakage power is not. NCFET-aware DVS sets V;; to a higher value to guarantee a
better trade-off. This will increase the dynamic power but strongly decreases leakage
power resulting in a power saving. In phase-2, the master thread is idle and waits for
the termination of the slave threads. Therefore, frequency is reduced to the minimum
frequency (1.0 GHz). Traditional DVS reduces V4, to 0.2V due to the low required
frequency in which it increases the leakage power. NCFET-aware DVS, instead of
reducing V4, increases the voltage to 0.53 V, which decreases the leakage power.
Thereby, the total power consumption in phase-2 is reduced by 67 % compared to
the traditional DVS. In phase-3, after the slaves terminated, the master resumes
operation and its frequency is boosted again to 1.7 GHz. It is worth to mention that
the performance obtained with both DVS techniques is the same. This is because
they do not affect the frequency, but only set the V;; under performance constraint.

To reveal the energy savings, different PARSEC benchmarks were examined
when active threads are operated at 1.7 GHz and idle cores are suppressed to
1.0 GHz. Figure 8.9 summarizes the energy savings. Energy savings range as shown
in Fig. 8.9 from 14 % up to 27 % and in average are up to 20 %.
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Fig. 8.9 Energy saving results of different benchmarks using the NCFET-aware DVS compared
to NCFET-unaware DVS. Energy savings range from 14 % up to 27 % , and in average 20%

8.5 Conclusion

In this chapter, we investigated how NCFET technology impacts the existing
trade-offs in processors and how it can reshape the future of many-core systems.
Compared to the existing FinFET technology, NCFET technology allows the pro-
cessor to operate at a much lower voltage while it still meets the same performance.
This results in a considerable power saving and as a result the total number of
cores, that can be simultaneously turned on at the maximum frequency, increases
without violating the predetermined thermal constraints. We also showed how
NCFET inverses the leakage-voltage dependency and proposed a new NCFET-
aware DVS technique that provides an energy saving of 20% on average compared
to conventional DVS techniques, which are unaware of the new leakage-voltage
dependency that NCFET brings.
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