Skip to main content

The Paradoxical Relationship Between Skeletal and Cardiovascular Mineralization

  • Chapter
  • First Online:
Book cover Cardiovascular Calcification and Bone Mineralization

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 619 Accesses

Abstract

Calcific vasculopathy, in which bone mineral is deposited within the walls of arteries and valves in the cardiovascular system, affects almost all individuals over age 65. It is also rapidly accelerated with metabolic disturbances such as atherosclerosis, chronic kidney disease, and diabetes, consistent with the evidence that it is a regulated process. Epidemiological studies show an inverse relationship between mineralization of vascular and bone tissue, in an age-independent manner. The potential interdependency between the skeletal and vascular systems has important clinical implications, where treatment of either condition may affect the other. In this review, we discuss anatomical similarities between the vascular and skeletal systems, the clinical significance of calcific vasculopathy, some of the key regulators in both systems, and the effects of current treatment modalities for atherosclerosis and osteoporosis on calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993;91(4):1800–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Davaine JM, Quillard T, Chatelais M, Guilbaud F, Brion R, Guyomarch B, et al. Bone like arterial calcification in femoral atherosclerotic lesions: prevalence and role of osteoprotegerin and pericytes. Eur J Vasc Endovasc Surg. 2016;51(2):259–67.

    PubMed  Google Scholar 

  3. Han KH, Hennigar RA, O’Neill WC. The association of bone and osteoclasts with vascular calcification. Vasc Med. 2015;20(6):527–33.

    CAS  PubMed  Google Scholar 

  4. Ge Q, Ruan CC, Ma Y, Tang XF, Wu QH, Wang JG, et al. Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci Rep. 2017;7:40253.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Qiao JH, Mertens RB, Fishbein MC, Geller SA. Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of enchondral ossification. Hum Pathol. 2003;34(4):402–7.

    CAS  PubMed  Google Scholar 

  6. Hunt JL, Fairman R, Mitchell ME, Carpenter JP, Golden M, Khalapyan T, et al. Bone formation in carotid plaques: a clinicopathological study. Stroke. 2002;33(5):1214–9.

    PubMed  Google Scholar 

  7. Tintut Y, Abedin M, Cho J, Choe A, Lim J, Demer LL. Regulation of RANKL-induced osteoclastic differentiation by vascular cells. J Mol Cell Cardiol. 2005;39(2):389–93.

    CAS  PubMed  Google Scholar 

  8. Chinetti-Gbaguidi G, Daoudi M, Rosa M, Vinod M, Louvet L, Copin C, et al. Human alternative macrophages populate calcified areas of atherosclerotic lesions and display impaired RANKL-induced osteoclastic bone resorption activity. Circ Res. 2017;121(1):19–30.

    CAS  PubMed  Google Scholar 

  9. Lomashvili KA, Manning KE, Weitzmann MN, Nelea V, McKee MD, O'Neill WC. Persistence of vascular calcification after reversal of uremia. Am J Pathol. 2017;187(2):332–8.

    PubMed  PubMed Central  Google Scholar 

  10. Tintut Y, Parhami F, Bostrom K, Jackson SM, Demer LL. cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem. 1998;273(13):7547–53.

    CAS  PubMed  Google Scholar 

  11. Guzman RJ. Clinical, cellular, and molecular aspects of arterial calcification. J Vasc Surg. 2007;45 Suppl A:A57–63.

    Google Scholar 

  12. Guderian S, Lee S, McLane MA, Prisby RD. Progressive ossification of the bone marrow vasculature with advancing age corresponds with reduced red blood cell count and percentage of circulating lymphocytes in male Fischer-344 rats. Microcirculation. 2019;26:e12550.

    PubMed  Google Scholar 

  13. Giachelli CM. Mechanisms of vascular calcification in uremia. Semin Nephrol. 2004;24(5):401–2.

    CAS  PubMed  Google Scholar 

  14. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–8.

    Google Scholar 

  15. Steiner I, Kasparova P, Kohout A, Dominik J. Bone formation in cardiac valves: a histopathological study of 128 cases. Virchows Arch. 2007;450(6):653–7.

    PubMed  Google Scholar 

  16. Hoshino T, Chow LA, Hsu JJ, Perlowski AA, Abedin M, Tobis J, et al. Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am J Physiol Heart Circ Physiol. 2009;297(2):H802–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guzman RJ, Brinkley DM, Schumacher PM, Donahue RM, Beavers H, Qin X. Tibial artery calcification as a marker of amputation risk in patients with peripheral arterial disease. J Am Coll Cardiol. 2008;51(20):1967–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Criqui MH, Denenberg JO, Ix JH, McClelland RL, Wassel CL, Rifkin DE, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311(3):271–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860–70.

    PubMed  Google Scholar 

  20. Arnson Y, Rozanski A, Gransar H, Friedman JD, Hayes SW, Thomson LE, et al. Comparison of the coronary artery calcium score and number of calcified coronary plaques for predicting patient mortality risk. Am J Cardiol. 2017;120(12):2154–9.

    PubMed  Google Scholar 

  21. Chiu YW, Adler SG, Budoff MJ, Takasu J, Ashai J, Mehrotra R. Coronary artery calcification and mortality in diabetic patients with proteinuria. Kidney Int. 2010;77(12):1107–14.

    CAS  PubMed  Google Scholar 

  22. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110(22):3424–9.

    Google Scholar 

  23. Yesil Y, Ulger Z, Halil M, Halacli B, Yavuz BB, Yesil NK, et al. Coexistence of osteoporosis (OP) and coronary artery disease (CAD) in the elderly: it is not just a by chance event. Arch Gerontol Geriatr. 2012;54(3):473–6.

    PubMed  Google Scholar 

  24. Farhat GN, Cauley JA, Matthews KA, Newman AB, Johnston J, Mackey R, et al. Volumetric BMD and vascular calcification in middle-aged women: the study of women’s health across the nation. J Bone Miner Res. 2006;21(12):1839–46.

    PubMed  Google Scholar 

  25. Zhou R, Zhou H, Cui M, Chen L, Xu J. The association between aortic calcification and fracture risk in postmenopausal women in China: the prospective Chongqing osteoporosis study. PLoS One. 2014;9(5):e93882.

    PubMed  PubMed Central  Google Scholar 

  26. Dent CE, Engelbrecht HE, Godfrey RC. Osteoporosis of lumbar vertebrae and calcification of abdominal aorta in women living in Durban. Br Med J. 1968;4(5623):76–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sinnott B, Syed I, Sevrukov A, Barengolts E. Coronary calcification and osteoporosis in men and postmenopausal women are independent processes associated with aging. Calcif Tissue Int. 2006;78(4):195–202.

    CAS  PubMed  Google Scholar 

  28. Barengolts EI, Berman M, Kukreja SC, Kouznetsova T, Lin C, Chomka EV. Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int. 1998;62(3):209–13.

    CAS  PubMed  Google Scholar 

  29. Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med. 2006;259(6):598–605.

    CAS  PubMed  Google Scholar 

  30. Kim KI, Suh JW, Choi SY, Chang HJ, Choi DJ, Kim CH, et al. Is reduced bone mineral density independently associated with coronary artery calcification in subjects older than 50 years? J Bone Miner Metab. 2011;29(3):369–76.

    CAS  PubMed  Google Scholar 

  31. Manson JE, Allison MA, Rossouw JE, Carr JJ, Langer RD, Hsia J, et al. Estrogen therapy and coronary-artery calcification. N Engl J Med. 2007;356(25):2591–602.

    CAS  PubMed  Google Scholar 

  32. Zittermann A, Schleithoff SS, Koerfer R. Vitamin D and vascular calcification. Curr Opin Lipidol. 2007;18(1):41–6.

    CAS  PubMed  Google Scholar 

  33. Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol. 1996;16(7):831–42.

    CAS  PubMed  Google Scholar 

  34. Que X, Hung MY, Yeang C, Gonen A, Prohaska TA, Sun X, et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature. 2018;558(7709):301–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sjolund M, Madsen K, von der Mark K, Thyberg J. Phenotype modulation in primary cultures of smooth-muscle cells from rat aorta. Synthesis of collagen and elastin. Differentiation. 1986;32(2):173–80.

    CAS  PubMed  Google Scholar 

  36. Okada Y, Katsuda S, Matsui Y, Watanabe H, Nakanishi I. Collagen synthesis by cultured arterial smooth muscle cells during spontaneous phenotypic modulation. Acta Pathol Jpn. 1990;40(3):157–64.

    CAS  PubMed  Google Scholar 

  37. Speer MY, Yang HY, Brabb T, Leaf E, Look A, Lin WL, et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104(6):733–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Bostrom K, et al. Multilineage potential of cells from the artery wall. Circulation. 2003;108(20):2505–10.

    PubMed  Google Scholar 

  39. Bostrom KI, Yao J, Guihard PJ, Blazquez-Medela AM, Yao Y. Endothelial-mesenchymal transition in atherosclerotic lesion calcification. Atherosclerosis. 2016;253:124–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Towler DA. Oxidation, inflammation, and aortic valve calcification peroxide paves an osteogenic path. J Am Coll Cardiol. 2008;52(10):851–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lim J, Ehsanipour A, Hsu JJ, Lu J, Pedego T, Wu A, et al. Inflammation drives retraction, stiffening, and nodule formation via cytoskeletal machinery in a three-dimensional culture model of aortic stenosis. Am J Pathol. 2016;186(9):2378–89.

    PubMed  PubMed Central  Google Scholar 

  42. Tintut Y, Patel J, Parhami F, Demer LL. Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation. 2000;102(21):2636–42.

    CAS  PubMed  Google Scholar 

  43. Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation. 2002;105(5):650–5.

    CAS  PubMed  Google Scholar 

  44. Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, et al. Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr−/− mice. Arterioscler Thromb Vasc Biol. 2007;27(12):2589–96.

    CAS  PubMed  Google Scholar 

  45. Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116(24):2841–50.

    CAS  PubMed  Google Scholar 

  46. Brodeur MR, Brissette L, Falstrault L, Ouellet P, Moreau R. Influence of oxidized low-density lipoproteins (LDL) on the viability of osteoblastic cells. Free Radic Biol Med. 2008;44(4):506–17.

    CAS  PubMed  Google Scholar 

  47. Tintut Y, Morony S, Demer LL. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol. 2004;24(2):e6–10. https://doi.org/10.1161/01.ATV.0000112023.62695.7f.

    Article  CAS  PubMed  Google Scholar 

  48. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL. Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res. 2001;16(1):182–8.

    CAS  PubMed  Google Scholar 

  49. Pirih F, Lu J, Ye F, Bezouglaia O, Atti E, Ascenzi MG, et al. Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res. 2012;27(2):309–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tintut Y, Demer LL. Effects of bioactive lipids and lipoproteins on bone. Trends Endocrinol Metab. 2014;25(2):53–9.

    CAS  PubMed  Google Scholar 

  51. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol. 1997;17(4):680–7.

    CAS  PubMed  Google Scholar 

  52. Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, et al. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res. 1999;14(12):2067–78.

    CAS  PubMed  Google Scholar 

  53. Tintut Y, Parhami F, Tsingotjidou A, Tetradis S, Territo M, Demer LL. 8-Isoprostaglandin E2 enhances receptor-activated NFkappa B ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J Biol Chem. 2002;277(16):14221–6.

    CAS  PubMed  Google Scholar 

  54. Puri R, Nicholls SJ, Shao M, Kataoka Y, Uno K, Kapadia SR, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65(13):1273–82.

    CAS  PubMed  Google Scholar 

  55. Saremi A, Bahn G, Reaven PD, Investigators V. Progression of vascular calcification is increased with statin use in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care. 2012;35(11):2390–2.

    PubMed  PubMed Central  Google Scholar 

  56. Houslay ES, Cowell SJ, Prescott RJ, Reid J, Burton J, Northridge DB, et al. Progressive coronary calcification despite intensive lipid-lowering treatment: a randomised controlled trial. Heart. 2006;92(9):1207–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. McEvoy JW, Blaha MJ, Defilippis AP, Budoff MJ, Nasir K, Blumenthal RS, et al. Coronary artery calcium progression: an important clinical measurement? A review of published reports. J Am Coll Cardiol. 2010;56(20):1613–22.

    PubMed  Google Scholar 

  58. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9.

    CAS  PubMed  Google Scholar 

  59. Lin SM, Wang JH, Liang CC, Huang HK. Statin use is associated with decreased osteoporosis and fracture risks in stroke patients. J Clin Endocrinol Metab. 2018;103(9):3439–48.

    PubMed  Google Scholar 

  60. Yue J, Zhang X, Dong B, Yang M. Statins and bone health in postmenopausal women: a systematic review of randomized controlled trials. Menopause. 2010;17(5):1071–9.

    PubMed  Google Scholar 

  61. Pena JM, Aspberg S, MacFadyen J, Glynn RJ, Solomon DH, Ridker PM. Statin therapy and risk of fracture: results from the JUPITER randomized clinical trial. JAMA Intern Med. 2015;175(2):171–7.

    PubMed  PubMed Central  Google Scholar 

  62. Cipriani C, Irani D, Bilezikian JP. Safety of osteoanabolic therapy: a decade of experience. J Bone Miner Res. 2012;27(12):2419–28.

    PubMed  Google Scholar 

  63. Wang Y, Nishida S, Boudignon BM, Burghardt A, Elalieh HZ, Hamilton MM, et al. IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J Bone Miner Res. 2007;22(9):1329–37.

    CAS  PubMed  Google Scholar 

  64. Huang MS, Morony S, Lu J, Zhang Z, Bezouglaia O, Tseng W, et al. Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts. J Biol Chem. 2007;282(29):21237–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang MS, Lu J, Ivanov Y, Sage AP, Tseng W, Demer LL, et al. Hyperlipidemia impairs osteoanabolic effects of PTH. J Bone Miner Res. 2008;23(10):1672–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Okano K, Wu S, Huang X, Pirola CJ, Juppner H, Abou-Samra AB, et al. Parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor and its messenger ribonucleic acid in rat aortic vascular smooth muscle cells and UMR osteoblast-like cells: cell-specific regulation by angiotensin-II and PTHrP. Endocrinology. 1994;135(3):1093–9.

    CAS  PubMed  Google Scholar 

  67. Hagstrom E, Michaelsson K, Melhus H, Hansen T, Ahlstrom H, Johansson L, et al. Plasma-parathyroid hormone is associated with subclinical and clinical atherosclerotic disease in 2 community-based cohorts. Arterioscler Thromb Vasc Biol. 2014;34(7):1567–73.

    PubMed  Google Scholar 

  68. Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: roles for phosphate, FGF23, and klotho. Bone. 2017;100:87–93.

    CAS  PubMed  Google Scholar 

  69. Shao JS, Cheng SL, Charlton-Kachigian N, Loewy AP, Towler DA. Teriparatide (human parathyroid hormone (1-34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem. 2003;278(50):50195–202.

    CAS  PubMed  Google Scholar 

  70. Hsu JJ, Lu J, Umar S, Lee JT, Kulkarni RP, Ding Y, et al. Effects of teriparatide on morphology of aortic calcification in aged hyperlipidemic mice. Am J Physiol Heart Circ Physiol. 2018;314(6):H1203–H13.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jono S, Nishizawa Y, Shioi A, Morii H. Parathyroid hormone-related peptide as a local regulator of vascular calcification. Its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17(6):1135–42.

    CAS  PubMed  Google Scholar 

  72. Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates endothelial expression of atherosclerotic parameters through protein kinase pathways. Am J Physiol Renal Physiol. 2007;292(4):F1215–8.

    CAS  PubMed  Google Scholar 

  73. Ariyoshi T, Eishi K, Sakamoto I, Matsukuma S, Odate T. Effect of etidronic acid on arterial calcification in dialysis patients. Clin Drug Investig. 2006;26(4):215–22.

    CAS  PubMed  Google Scholar 

  74. Hashiba H, Aizawa S, Tamura K, Kogo H. Inhibition of the progression of aortic calcification by etidronate treatment in hemodialysis patients: long-term effects. Ther Apher Dial. 2006;10(1):59–64.

    CAS  PubMed  Google Scholar 

  75. Nitta K, Akiba T, Suzuki K, Uchida K, Watanabe R, Majima K, et al. Effects of cyclic intermittent etidronate therapy on coronary artery calcification in patients receiving long-term hemodialysis. Am J Kidney Dis. 2004;44(4):680–8.

    CAS  PubMed  Google Scholar 

  76. Torregrosa JV, Fuster D, Gentil MA, Marcen R, Guirado L, Zarraga S, et al. Open-label trial: effect of weekly risedronate immediately after transplantation in kidney recipients. Transplantation. 2010;89(12):1476–81.

    CAS  PubMed  Google Scholar 

  77. Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG. Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am J Kidney Dis. 2010;56(1):57–68.

    CAS  PubMed  Google Scholar 

  78. Hill JA, Goldin JG, Gjertson D, Emerick AM, Greaser LD, Yoon HC, et al. Progression of coronary artery calcification in patients taking alendronate for osteoporosis. Acad Radiol. 2002;9(10):1148–52.

    PubMed  Google Scholar 

  79. Tanko LB, Qin G, Alexandersen P, Bagger YZ, Christiansen C. Effective doses of ibandronate do not influence the 3-year progression of aortic calcification in elderly osteoporotic women. Osteoporos Int. 2005;16(2):184–90.

    CAS  PubMed  Google Scholar 

  80. Price PA, Faus SA, Williamson MK. Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption. Arterioscler Thromb Vasc Biol. 2001;21(5):817–24.

    CAS  PubMed  Google Scholar 

  81. Narisawa S, Harmey D, Yadav MC, O'Neill WC, Hoylaerts MF, Millan JL. Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res. 2007;22(11):1700–10.

    CAS  PubMed  Google Scholar 

  82. Cutini PH, Rauschemberger MB, Sandoval MJ, Massheimer VL. Vascular action of bisphosphonates: in vitro effect of alendronate on the regulation of cellular events involved in vessel pathogenesis. J Mol Cell Cardiol. 2016;100:83–92.

    CAS  PubMed  Google Scholar 

  83. Iseri K, Watanabe M, Yoshikawa H, Mitsui H, Endo T, Yamamoto Y, et al. Effects of denosumab and alendronate on bone health and vascular function in hemodialysis patients: a randomized, controlled trial. J Bone Miner Res. 2019;34(6):1014–24.

    CAS  PubMed  Google Scholar 

  84. Scragg RKR. Overview of results from the vitamin D assessment (ViDA) study. J Endocrinol Investig. 2019;42:1391.

    CAS  Google Scholar 

  85. Burt LA, Billington EO, Rose MS, Raymond DA, Hanley DA, Boyd SK. Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength: a randomized clinical trial. JAMA. 2019;322(8):736–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sato Y, Iwamoto J, Honda Y. RETRACTED: beneficial effect of etidronate therapy in chronically hospitalized, disabled patients with stroke. J Stroke Cerebrovasc Dis. 2010;19(3):198–203.

    PubMed  Google Scholar 

  87. Hsia J, Heiss G, Ren H, Allison M, Dolan NC, Greenland P, et al. Calcium/vitamin D supplementation and cardiovascular events. Circulation. 2007;115(7):846–54.

    CAS  PubMed  Google Scholar 

  88. Bolland MJ, Grey A, Gamble GD, Reid IR. Concordance of results from randomized and observational analyses within the same study: a re-analysis of the women’s health initiative limited-access dataset. PLoS One. 2015;10(10):e0139975.

    PubMed  PubMed Central  Google Scholar 

  89. Price PA, Buckley JR, Williamson MK. The amino bisphosphonate ibandronate prevents vitamin D toxicity and inhibits vitamin D-induced calcification of arteries, cartilage, lungs and kidneys in rats. J Nutr. 2001;131(11):2910–5.

    CAS  PubMed  Google Scholar 

  90. Price PA, Faus SA, Williamson MK. Warfarin-induced artery calcification is accelerated by growth and vitamin D. Arterioscler Thromb Vasc Biol. 2000;20(2):317–27.

    CAS  PubMed  Google Scholar 

  91. Henley C, Colloton M, Cattley RC, Shatzen E, Towler DA, Lacey D, et al. 1,25-Dihydroxyvitamin D3 but not cinacalcet HCl (Sensipar/Mimpara) treatment mediates aortic calcification in a rat model of secondary hyperparathyroidism. Nephrol Dial Transplant. 2005;20(7):1370–7.

    CAS  Google Scholar 

  92. Inoue T, Kawashima H. 1,25-Dihydroxyvitamin D3 stimulates 45Ca2+−uptake by cultured vascular smooth muscle cells derived from rat aorta. Biochem Biophys Res Commun. 1988;152(3):1388–94.

    CAS  PubMed  Google Scholar 

  93. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008;117(4):503–11.

    CAS  PubMed  Google Scholar 

  94. Shroff R, Egerton M, Bridel M, Shah V, Donald AE, Cole TJ, et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J Am Soc Nephrol. 2008;19(6):1239–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Seibert E, Lehmann U, Riedel A, Ulrich C, Hirche F, Brandsch C, et al. Vitamin D3 supplementation does not modify cardiovascular risk profile of adults with inadequate vitamin D status. Eur J Nutr. 2017;56(2):621–34.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funding from the National Institutes of Health (AG061586, HL137647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda L. Demer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iriana, S., Tintut, Y., Demer, L.L. (2020). The Paradoxical Relationship Between Skeletal and Cardiovascular Mineralization. In: Aikawa, E., Hutcheson, J. (eds) Cardiovascular Calcification and Bone Mineralization. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-46725-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46725-8_15

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-46724-1

  • Online ISBN: 978-3-030-46725-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics